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Effect of Blockage on Driven Flow with Periodic Boundary Conditions
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We provide a detailed discussion of the role of boundary conditions in the totally asymmetric

simple exclusion process (TASEP) with a localized blockage, located at the middle of the system.

This quenched disorder is a bond defect, either a slow bond (SB) or a fast bond (FB), where

the transport probability is different from those of other bonds in the system. Using numerical

simulations, we found that for the SB case, a queuing transition occured in the periodic TASEP

as it does in the open one. A density depletion was found for the FB case as well, irrespective of

boundary conditions. Queuing and depletion are related to a power-law decay of the density profile

from the defect bond. Finally, we argue ensemble equivalence for the effect of the quenched disorder

in the TASEP, which implies that the same class of critical behaviors of the queuing transition are

observed and that the critical bond strength is exactly the same for both boundary conditions.
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I. INTRODUCTION

In many physical and biological systems, stochastic

driven flow through narrow channels with a blockage are

often observed, where the most interesting phenomenon

is queuing or traffic jam. There are several ways to study

on its characteristics. Among them, the simplest model

approach of the driven diffusive flow is to employ the

asymmetric simple exclusion process (ASEP) in a one-

dimensional lattice [1,2]. The ASEP is well established

to mimics driven flow, which belongs to the same uni-

versality class as the Kardar-Parisi-Zhang (KPZ) type

growth of one-dimensional interfaces [3].

The original purpose of ASEP was to describe biopoly-

merization [4,5]. Later on, it is known that the ASEP

could also cover gel electronics [6], directed polymers in

a random medium [7], traffic jams [8, 9], and the fluc-

tuations of shock fronts [10–13]. In the case of periodic

boundary conditions without any blockage, the time de-

velopment of the ASEP is exactly soluble by the Bethe
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ansatz [1,2] while in several other setups the exact sta-
tionary state has been constructed as well [12,14,15].

The effect of a localized blockage on driven flow has
been widely studied as an example of quenched disorder
phase transitions. A localized slow bond (SB) was first
introduced in the totally ASEP (TASEP) to study on
shock fluctuations and its finite-size scaling (FSS) [13],
where periodic boundary conditions (PBCs) were em-
ployed and mean-field (MF) solutions were used. MF
solutions says that the periodic TASEP with a SB has
always macroscopic queue at any SB strength, so that
no queuing transition occurs. However, it turns out that
MF solutions are not correct. In the earlier work by the
author and coworkers [16], the role of the SB in TASEP
was considered with open boundary conditions, of which
main results are compared with the experimental results
of stochastic flameless combustion of paper. In the exper-
iment, the paper was impregnated with KNO3 in order
to provide a steady oxygen source. The burning speed
could thus be controlled by the KNO3 concentration. As
a result, the KNO3 concentration could be enhanced or
reduced in a narrow strip along the burning direction.
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Fig. 1. (Color online) Periodic TASEP with a blockage in
a one-dimensional ring and its phase diagram:(a) queued
slow-bond (SB) phase (b) non-queued SB phase (c) non-
queued fast-bond (FB) phase

Fig. 2. The decay of the density profile from the SB is
fitted by two different ways, namely JL-fit (see Fig. 2 in
Ref. [13] for the details) versus our power-law fit (ν '
1/2). The data are obtained at r = 0.4 for Ns = 1200
with PBCs.

Experiment results nicely illustrate the presence of non-

linear terms in the equation of motion; the burning front

facets for enhanced concentrations but not for reduced

concentrations. The detail of these experiments and the

matching of the experimental data with our numerical

results for the SB in the TASEP were published as well

as the fast bond (FB) case, separately [17].

The existence of such a transition, scaling properties,

the shape of the density profile near the SB (above, be-

low, and at the transition), and also how and whether

Fig. 3. In the left panel, MC simulation data of density
profiles for various r are obtained at Ns = 2048. Note
that the location of the SB/FB is changed to the middle
of the system. In the right panel, ∆L = 2(〈nL〉 − 1)
versus (1− r)/(1 + r).

information transports through the SB, are the most im-

portant issues.

II. MODEL AND MAIN RESULTS

We here focus only on the half-filled TASEP system,

i.e., ρo = 1/2, which is equivalent to our boundary-free

setup α = β = 1/2 in the open TASEP [16]. Using the

power-law best-fit method for various r, we can find the
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Fig. 4. The best-fit values of (left panel) the exponent ν and (right panel) the amplitude A for various r in Eq. (1).
Again, we also plot the OBC results for comparison.

Fig. 5. Double logarithmic plots for the power-law decay of density profiles from the SB/FB with Ns = 2048: (upper-
left panel) r = 0.4 − 0.7 (queued phase), (upper-right panel) r = 0.8, 0.9 (non-queued slow bond phase), and (lower
panel) r = 1.6 (non-queued fast bond phase). The data of Ns = 4096 are only shown for r = 0.8 and r = 1.6. For
comparison, we also plot the OBC data.

critical value of rc in terms of the decay exponent ν. If the SB strength is smaller than rc, the system yields a
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Fig. 6. In the left panel, the order parameter ∆b versus the strength r is compared to that in OBC. In the right panel,
double logarithmic plots indicate the value of rc and the critical exponent β in ∆b ∼ εβ , where ε = rc − r.

Fig. 7. Data collapse with the best-fit values of a and b for the shock profile by Eq. (2).

queued phase with J = J(r) < Jmax with a shock wave.
For rc < r < 1 (r > 1), there is a non-queued SB (FB)
phase. For all r, the density profile from the blockage
decays as a power law:

ρ(X) ' 1
2
(1 + ∆b + AX−ν), (1)

where X = Ns

2 +1−x is the distance from the blockage.
We denote that the order parameter is ∆b, but the

exponent ν also indicates the value of rc. As a starting
point of a detailed numerical analysis, we address that
excess density profile from the blockage decays as a the
same power law as that found in [16]. The earlier result

claimed by Janowsky and Lebowitz (JL) was 1/|X| with-

out any further investigation [13]. However, their result

looks only valid for small X. By two different function

forms, |X|−1 and |X|−ν with ν < 1, we compare ours

to JL-fitted results. Figure 2 confirms that the density

profile indeed decays as a power law with ν ' 1/2 rather

than 1/|X| when including a larger X region.

Our scenario including phase diagrams is confirmed by

Figs. 3 and 4, which show how density profiles changes

as increasing r at Ns = 2048. Since there is particle-hole

symmetry, we plot them only up to Ns

2 (just in front of

the SB/FB). As expected, the decay of density profiles

from the SB/FB with PBCs is exactly the same as that
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Fig. 8. Shock profiles are fitted by Eq. (2) for various r and various system sizes Ns.

with OBCs, even including the average value of the den-

sity just in front of the SB/FB, see Fig. 3 (right panel).

Through three-parameter fits for each density profile in

terms of Eq. (1), we get the order parameter ∆b, the am-

plitude A, and the exponent ν. In Fig. 5, we show the

power-law decay of the density profile from the SB/FB.

The best-fit values of A and ν for various r are shown

in Fig. 4 and the plot of the order parameter versus r

in Fig. 6 (left panel). The OBC data (from Ref. [16])

are also plotted for comparison. Figure 6 (right panel)

indicates that rc ' 0.8 and ∆b ∼ εβ with β ∼ 1.5, where

ε = rc − r. This is almost the same results as what we

obtained with OBCs.

On the other hand, the edge density profile is quite

different from each other, since PBCs generate a shock

wave for r < 1, see [8] for a detailed discussion. We find

that it is well-fitted by the form:

ρ(x) ' 1
2

+ a tanh(bx.) (2)

Here the amplitude a is related to the order parameter
∆b, i.e., a ' ∆b/2 since ρ(x) ' 1

2 (1 + ∆b) for 0 � x �
Ns/2. Through two-parameter fit, we get the best-fit
values of a and b for various r and for various system
sizes. Due to less statistical averages for large system
sizes, we cannot get such a good FSS results. However,
we can show data collapse by using the best values of a

and b at the largest system size, Ns = 2048, for various
r, and at rc = 0.8 for various Ns. Figure 7 confirms the
validity of Eq. (2) for the shock profile in the presence
of the blockage. In particular, we reconfirm the FSS at
rc = 0.8 in Fig. 7 (right panel), where we used b ∼ N−yb

s

and a ∼ N−xa
s with yb ' 1 and xa ' 0.32(4). Recall that

∆b ∼ N−x∆
s with x∆ = 0.360(5). The detailed analysis

is shown in Fig. 8.
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III. CONCLUSION AND REMARK

In summary, we studied on ensemble equivalence be-
tween the periodic TASEP for ρo = 1/2 and open TASEP
for α = β = 1/2 in the presence of the localized blockage
(bond defect-type disorder) at the middle of the system.
It was observed that the quenched disorder in the TASEP
yields the queuing transition for the SB case at the crit-
ical bond strength, which is exactly the same in both
boundary conditions. For the FB case, we also checked
out the density depletion with the power-type decay in
both boundary conditions. Our results implies that MF
solutions are incorrect even in the periodic TASEP with
the SB.

Finally, we should mention that some of the contents
and plots in this paper are taken from Appendix of my
Ph.D. thesis at the University of Washington [18], which
are not published anywhere.
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