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Abstract.  Asymptotic Kardar–Parisi–Zhang (KPZ) properties are 
investigated in the totally asymmetric simple exclusion process (TASEP) with 
a localized geometric defect. In particular, we focus on the universal nature of 
nonequilibrium steady states of the modified TASEP. Since the original TASEP 
belongs to the KPZ universality class, it is mathematically and physically a 
quite interesting question whether the localized columnar defect, the slow bond 
(SB), is really always relevant to the KPZ universality or not. However, it 
is numerically controversial to address the possibility of the non-queued SB 
phase in the weak-strength SB limit. Based on the detailed statistical analysis 
of KPZ-type growing interfaces, we present a comprehensive view of the non-
queue SB phase, compared to finite-size crossover eects that reported in our 
earlier work (Soh et al 2017 Phys. Rev. E 95 042123). Moreover, we employ two 
types of passive tracer dynamics as the probe of the SB dynamics. Finally, we 
provide intuitive arguments for additional clues to resolve the controversy of 
the SB problem.
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1.  Introduction

In nature, most of dynamic phenomena are far from equilibrium. While the theory of 
equilibrium systems has been well built, nonequilibrium systems do not have theor
etically successful descriptions. One of the breakthroughs came out from the nonequi-
librium interface growth of the Kardar–Parisi–Zhang (KPZ) equation  [1], described 
by a nonlinear stochastic dierential equation. The KPZ equation  represents, not 
only limited to interface growth such as body-centered solid-on-solid (BCSOS) growth  
[2, 3], but also spans models described by the stochastic heat equation with multiplica-
tive noise, such as directed polymers in random media (DPRM) [4], the directed last 
passage percolation (DLPP) [5, 6], and so on.

Based on the lowest relevant orders and symmetries, it is known that the KPZ 
equation describes the wide range of nonequilibrium models, where the model details 
are dierent, but the macroscopic property among them coincides with one another. 
Although some subtle issues still left in questions, most of computational model tests 
and experimental studies have successfully confirmed the KPZ equation that describes 
in such models [7, 8].

In a (1+1)-dimensional (1D) KPZ system, it is the simplest implementation of the 
broken translational invariance to add a single-site defect on the 1D space. The KPZ 
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universality systems can be also considered with global defects under general spatial 
dimensions, such as in (d  +  1)-dimensional DPRM with d-dimensional planar attractive 
potentials, interface growth with random defects, stochastic transport with blockages, 
and the pivot enhancement in the DLPP.

In general, the eect of the defect is irrelevant in the (d  +  1)-dimensional system as 
far as the defect dimension D< is lower than d, which means that such a defect does not 
aect the scaling property of the system [9]. Hence, for the defect dimension D> that is 
larger than d, one expects that the defect eect becomes relevant to the system. In the 
same conmbox, we pose the question: what happens if D  =  d? For the marginal case, it 
is marginally either relevant or irrelevant.

If the line defect (D  =  1) is marginally relevant to 1D KPZ interface growth, it 
can significantly alter the KPZ universality property in Tracy–Widom scaling limits. 
Accordingly, for past decades, the question whether any arbitrarily small value of the 
defect can always destroy the KPZ universality has been in discussion. The same ques-
tion has been asked and answered with controversial issues [10–15] in the totally asym-
metric simple exclusion process (TASEP), which is the exact mapping of the BCSOS 
growth and another interpretation of the KPZ equation: at any arbitrarily small defect 
strength, is it possible that the microscopically localized slow-bond (SB) defect cannot 
aect the macroscopic behavior of the system, termed as the longstanding ‘SB prob-
lem’ [10–15]. On the other hand, in real-world studies the geometrical modifications 
of the original TASEP have were widely studied from biological transport to trac. 
Some examples may also include forked paths, random directed networks, unlimited 
capacitances, and Langmuir adsorption/desorption process [16–20]. Such spatial and 
dynamic deformation plays equivalent role of SB in the TASEP. Thus, the SB problem 
is a important question in both physical and practical aspects.

Regarding the localization of the defect eect on the TASEP, most studies [9–15, 
21–28] employed both analytic and numeric methods. Analytic studies [10] involving 
the mean-field (MF) analysis always predict that the SB aects globally, irrespective 
of its strength. However, the analytic approach is useful in the SB problem due to the 
diculty of calculating the average of localized quenched randomness, which is quite 
nontrivial and precarious. On the other side, earlier numerical studies [11, 26, 28] pre-
dict a phase transition at the finite SB strength. However, most recent work [15] has 
suggested that the non-queued SB phase is a crossover phenomenon in finite systems, 
not the thermodynamically stable phase.

In this paper, we revisit the controversy of the critical SB strength, below which the 
SB eect is confined locally, in the conmbox of the KPZ universality statistics and two 
types of passive tracer dynamics, respectively. Due to the diculty of numerical stud-
ies caused by finite-size eects and boundary conditions as well as initial-setup issues, 
we present a comprehensive view of the non-queued SB phase in the conmbox of the 
systematic data analysis and provide intuitive arguments that support the existence of 
non-queued SB phase in the weak SB limit.

More specifically, we investigate the TASEP with a SB, in terms of 1D BCSOS 
growth, where we systematically quantify the SB eect as performing extensive Monte-
Carlo (MC) simulations. In the presence of the SB, most of analytic solutions become 
unstable due to the broken spatial symmetry. Addressing the existence of the non-
queued SB phase, we define the following four observables: surface fluctuations in 
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transient 1D BCSOS growth, and the distribution of passive tracer location in the 
steady-state limit.

The rest of the paper is organized as follows. In section 2, we show that the TASEP 
with a SB is exactly mapped onto the 1D BCSOS growth with a columnar defect and 
passive tracer dynamics. Based on physical quantities of interest, we state key ques-
tions and clarify possible implications. In section 3, we present extensive numerical 
simulation results and discuss two dierent time regimes: in the transient regime, we 
discuss the height statistics of growing surfaces, while in the stationary regime we dis-
cuss how the TASEP measure is changed due to the SB. Finally, we summarize the 
controversial results with some remarks in section 4.

2. Model

2.1. TASEP with a SB

Consider a one-dimensional (1D) lattice with L sites and the total number of N(� L) 
particles. Each site x can be occupied by at most a particle, so the occupancy number 
at site x is n(x) ∈ {0, 1}. At each time step, a site is selected at random. If the chosen 
site is occupied and its right nearest neighboring (NN) site is empty, then the particle 
at the chosen site, say x, jumps to the right NN site, x  +  1, with unit probability. This 
is just as the ordinary TASEP. We here add a localized defect on the TASEP, which 
is implemented by assigning a special bond in the middle of the system with a reduced 
hopping probability, r(� 1), namely the SB. It is noted that the MC simulation time is 
always updated on the random site selection by the increment of time, 1/L, regardless 
of the success of the particle jump.

Two ends of the 1D lattice can be connected to either each other as periodic bound-
ary conditions (PBC), or particle reservoir as open boundary conditions (OBC). For 
the PBC, the particle density ρ0 = N/L is fixed as the initial value, which becomes a 
control parameter of the system, while for the OBC, the particle entry (from the left of 
the leftmost site) and the particle exit (to the right of the rightmost site) are controlled 
with respect to each particle reservoir density: α ≡ ρleft and β ≡ 1− ρright, where α is 
the probability that a particle from the left particle reservoir tries to enter to the left-
most site of the system and β is the probability that a particle at the rightmost site of 
the system exits from the system.

2.2. Physical quantities of interest

2.2.1. Transient regime.  The main purpose of this paper is to observe the true impact 
of the SB in the thermodynamic limit through various observables, in particular to the 
conmbox of the KPZ universality class. Since it is well known that the KPZ-type mod-
els exhibit distinctive features in both time and space, one can classify physical observ-
ables of interest for such models, based on the observation time and length scales. 
Our starting point is to focus on the transient regime before the system reaches the 
steady state. Under the circumstances, KPZ fluctuations are far from equilibrium. In 
recent mathematical studies for the 1D KPZ universality class (see [29] and references 
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therein), the rescaled height distribution as well as its fluctuations and correlation func-
tions between heights, are exactly derived for six fundamental initial conditions.

We here limit the TASEP with the SB to start at the flat initial condition: [h0]x = 0 
for 1D BCSOS growth and ρ0 = [n0]x = 1/2 for the TASEP, where [·]x is the spatial 
average. In the case of 1D BCSOS growing interface without the SB, the height func-
tion h(x, t) at asymptotically large time is written rigorously as follows (see [30–32]):

lim
t→∞

t/2− h(x, t)

t1/3
(≡ τ) −→d F1(2τ).� (1)

Here the rescaled height distribution of ordinary KPZ fluctuations, F1(τ), is indepen-
dent of x. However, when the SB is inserted to the system, h(x, t) is not symmetric 
any more in space, i.e. spatially inhomogeneous. To investigate such a inhomogeneity 
caused by the SB strength, we measure height fluctuations with respect to the aver-
age with stochastic realizations for both the conventional definition W2 and the site-
dependent one σ2

w.
In presence of the SB, there is no well-defined form for the deterministic part of 

h(x, t) to define τ  properly. This is why we directly investigate the cumulant ratios for 
such unknown distributions. More specifically, we focus on the standard deviation σw, 
the skewness S, and the kurtosis K for height profiles as a function of space and time, 
which are defined as follows:

σ2
w(x, t) = 〈(δh(x, t))2〉,� (2)

S(x, t) = 〈(δh(x, t))3〉/σ3
w(x, t),� (3)

K(x, t) = 〈(δh(x, t))4〉/σ4
w(x, t)− 3,� (4)

where we denote δh(x, t) ≡ h(x, t)− 〈h(x, t)〉 and 〈·〉 for the ensemble average. Note 
that the standard deviation σw is distinguished from the conventional surface width W 
for homogeneous growth models,

W 2(L, t) =
[
〈(h(x, t)− [h(x, t)]x)

2〉
]
x
.� (5)

Here [ f(x)]x ≡
∑L

x=1 f(x)/L is independent of x.
Starting with 1D BCSOS growth with the flat initial condition, the alternatively 

ordered configuration of the TASEP is broken at the early stage of MC simulations 
by the random deposition of particles. In this regime, the exclusion does not occur 
dominant, so that the surface fluctuates as Gaussian. As suciently long time elapsed, 
the slowest order of fluctuations governs global fluctuations, namely KPZ fluctuations. 
Simultaneously, the SB builds up to the global facet and spreads to the whole system, 
which eventually distorts KPZ fluctuations. The detailed discussion will be provided 
in section 3.

2.2.2.  Steady-state regime.  In the steady-state limit when both spatio-temporal cor-
relations develop as time goes by and eventually cover the whole system, we mea-
sure time-independent properties of physical quantities. Particle configurations in the 
TASEP keep fluctuating around the average density profile ρ(x) = 〈n(x)〉, while 1D 
BCSOS growing surface configurations fluctuate around the average height profile 
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〈h(x)〉. Since the stationary current J in the TASEP is a well-defined quantity, which 
corresponds to the growing velocity v in BCSOS surface growth, it is useful to check 
the fundamental relation between J and the bulk density ρb as the SB strength varies.

For the TASEP in the absence of the SB,

JOBC = min [α(1− α), β(1− β), 1/4] ,

ρb = min[α, 1/2] (low-density); max[1− β, 1/2] (high-density); 1/2 (maximal-current) for 
the open case, and

JPBC = ρb(1− ρb),

ρb = ρ0 for the closed case.
The diculty of quantifying the SB eect on the TASEP through numerical simu-

lations arises from the competition between boundaries and the local defect in similar 
orders of magnitude. Moreover, in the aspect of the global J calculation, finite-size cor-
rections should be considered, which depend on the boundary conditions and obey the 
following analytic form [33, 34]:

JOBC (L,α + β = 1) = JOBC (L = ∞) ,

JOBC (L,α = β = 1) = JOBC (L = ∞) +
3

8L
+O

(
L−2

)
,

JPBC (L, ρ) = JPBC (L = ∞) + ρ (1− ρ)
1

L− 1
.

As a result, we find that the open TASEP without the SB has the special line (α + β = 1), 
where no finite-size corrections exist in the global current. This is why we choose 
α = β = 1/2 for the OBC. Moreover, the SB problem and its variant were also studied 
with a special site of the unlimited capacity in the TASEP with the PBC, namely the 
parking garage model [35]. Since the SB itself behaves as another boundary, which 
controls J but preserves the fluctuations of ρ. In contrast, the OBC do not conserves ρ 
directly. According to the capacity of the parking garage, one can easily consider both 
the open and the closed case.

Discussing the ensemble equivalence with the direct comparison of the OBC with 
the PBC, physically interesting quantities are expressed in terms of the height function 
h(x, t) that suces the KPZ equation as follows:

∂h(x, t)

∂t
= νh∇2h(x, t) +

λ

2
(∇h(x, t))2 + η(x, t),� (6)

J =

〈
lim
t→∞

[
∂h(x, t)

∂t

]

x

〉
,� (7)

ρ(x) =

〈
lim
t→∞

(
∂h(x, t)

∂x

)〉
,� (8)

where νh and λ are some constants, and η(x, t) is a Gaussian white noise function with 
〈η(x, t)η(x′, t′)〉 ∝ δ(x− x′)δ(t− t′).

Finally, we clarify the SB problem in the conmbox of the KPZ universality class 
by a tagged passive walker in the steady-state limit, which traces height configurations 
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without interrupting the KPZ dynamics, namely a passive tracer. The feedback of 
steady-state fluctuations to this passive tracer, can be either positive or negative. 
The positive/advection (negative/anti-advection) tracer jumps right if the next site is 
vacant (occupied), and left if the site is occupied (vacant). The passive tracer is kind of 
the second-class particle introduced to track shock fronts in the TASEP [36], and its 
scaling properties without the SB were discussed in several studies [37–40].

Consider a passive tracer with positive/negative feedback at x±(t) at time t driven 
by the SB biased particle field and its dynamics can be written as follows:

dx±(t)

dt
= s±

∂h(y, t)

∂y
|y=x±(t) + ζ(t),� (9)

where s± = ±1 (positive/negative feedback) and ζ(t) represents a Gaussian white noise.

3. Numerical results

In this section, we present numerical results with the comparison of conjectured ana-
lytical results and physical arguments and provide three dierent points of view in 
discussing the SB problem.

Preforming MC simulations of the TASEP with the localized SB, we employ both 
rejection-free continuous-time algorithms and standard ones. Initially, particles are 
all set in alternating order, ρ0 = 1/2. First, we make the list of active sites at which 
particles can always jump, with respect to particle configuration for the rejection-free 
selection. At each step, a site is randomly selected and removed from the list of active 
sites. The particle at the selected site hops to the right NN site, and the active site list 
is updated by adjacent site configurations. If the selected active site tries to jump the 
SB, then a random number is generated5.

For the OBC, the enter (exit) event is also included in the active site list, only 
if the leftmost (rightmost) site of the system becomes vacant (occupied). If the 
enter (exit) event is picked, a particle enters (exits) with probability α(β). At every 
t = 2n(n ∈ {0, 1, ...}) MCS, h(x, t) and its statistics are measured until t  >  100L3/2 to 
ensure the system can reach the steady state. The stationary-state cuto is determined 
by temporal correlations, which decay as Ct−2/3. The coecient is numerically checked 
using surface width that has a stable value at r = 1 (ε = 0), which belongs to the KPZ 
universality class. To measure stationary quantities of interest with the better quality, 
we save configurations at every inter-sampling time L3/2 to avoid temporal correlations 
in samples.

Moreover, we limit our study to focus on the impact of the SB at α = β = 1/2, which 
only allows the flatness of the density profile in the maximal-current phase (α, β � 1) 
with the bulk density ρmc = 1/2 and the maximal current Jmc = 1/4. Since the char-
acteristics of the TASEP depends on boundary conditions, the considerate choice of 
boundaries is essential to separate the SB eect from that of BCs. As discussed in a 

5 We used the Mersenne twister as a pseudo-random number generator (PRNG), which is by far the most widely 
used general-purpose PRNG and of which name derives from the fact that its period length is chosen to be a Mer-
senne prime (see www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html for the details).
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lot of earlier studies for the OBC without a SB, the physical quantities of interest in 
the steady-state limit, such as the bulk density ρ and the stationary current J, have 
the analytic forms under the condition of α + β = 1, where spatial correlations vanish, 
so that no finite-size eects are left [33]. As a result, one can easily find that the only 
BCs that suce both the product state, and the maximal-current phase is the setting 
of α = β = 1/2, unlike the case of the most recent numerical study [14], where they 
set α = β = 1. Here we like to note that for the regime of α, β > 1/2, there are always 
power-law decaying parts in both ends of the density profile, so that the bulk is never 
flat. For the PBC, the choice of ρ0 = 1/2 satisfies both the maximal-current phase and 
the flatness of the density profile in average.

3.1. TASEP with the SB

We start with the steady measure for the TASEP with the SB. As the system reaches 
its steady state, every site has the equal rate of flow (the stationary current) J. Even in 
presence of the SB, its impact in a system directly aects the density dierence across 
the SB, but the stronger correlations between adjacent jumps maintain J per every 
bond. As a result, the stationary density profile ρ(x) is determined by J.

The density profile can be directly analyzed for various SB strength as discussed in 
the previous works [11, 14, 15, 41], where it is found that in the suciently large size, 
the partial evidence of ‘εc �= 0’ exists based on the following physical ansatz for ρ(x) in 
the presence of the SB: the SB eect induces the special structure to the density profile 
in the steady-state limit, where the power-law correction term is conjectured for the 
jamming tail ∆(x) = 2ρ(x)− 1.

∆(x) = ∆b + Ax−ν ,� (10)
where ∆b = 2ρb − 1 denotes the oset of ρb from the value in the absence of the SB, 

the group velocity vg =
∂J
∂ρb

, and x is the distance from the SB. Note that there is a 

conjecture [11] for the decay exponent ν converges to 1/3 as εc > ε → 0 as ∆b → 0 from 
ε = εc, where the SB asymptotically plays a role as the OBC with eective enter/exit 
rates. However, finite-size eects become dominant, which induces the pseudo-critical 
strength εc(L) in both the PBC and the OBC. So we pose the main question whether 
the non-queued SB phase can be stable below ε ≈ 0.2 in the thermodynamic limit.

Recently, a numerical study [14] has claimed that the stable non-queued SB phase 
at non-zero SB strength (ε < εc �= 0) is attributed to finite-size eects from improper 
setups for the OBC. Moreover, it was argued that numerical tests eventually confirm 
the analytic form of Js(ε) conjectured by Costin et al [12] and mathematical approaches 
for εc = 0 by Basu et al [13]. However, the systematic check-ups are missing and the 
setup of α = β = 1 is the worst choice to test the SB eect in the OBC since both 
boundaries generate the power-law tail in ρ(x), so that there is no bulk even in the 
absence of the SB. In [15], such finite-size eects were tested on ρ(x) and J with and 
without the SB for the PBC with ρ0 = 1/2 and the OBC with α = β = 1/2. In par
ticular, we focus on J(ε;L) with the comparison of exact solutions, J(0;L) [33, 34, 36] 
and the analytic conjecture of J(ε) [12] in the thermodynamic limit.

In the intermediate SB regime, 0.2 < ε < 0.5, ∆J  is well fitted by the following ana-
lytic form, which is conjectured by Costin et al [12] and confirmed in [15]:
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∆J ∼ exp(−b/ε),� (11)
where b � 2. However, we cannot say that this proves that εc = 0 because it does not fit 
the data well in the weak SB regime (ε < 0.2). In order to resolve the finite-size eect 
in the SB problem, we employ two more numerical approaches in the conmbox of the 
KPZ universality in the following two subsections.

3.2. KPZ fluctuations with the SB

We begin with the discussion of the SB eect in the transient regime of 1D BCSOS 
growth with L sites as ε varies. The flat initial surface suers surface relaxation until 
the system reaches the steady state at a finite time. During surface relaxation, random 
deposition processes first lead the surface width to grow in time. As time elapses, the 
local interaction suppresses the width to grow slower than the random deposition case.

In the presence of the SB at the middle of the system, the height profile h(x, t) forms 
a special shape near the SB, namely a facet, which spreads to the whole system and 
sharpen the surface width. Until the global facet forms, the surface grows as if there 
were no SB, however the density shock builds up and spreads away from the SB. This 
faceting sharpens the surface width in linear time as shown in figure 1. We here note 
that the time until the system grows a macroscopic facet is proportional to the system 
size, which is equivalent to the time scale that every site is influenced enough by the 
SB.

In the transient regime with suciently large time, the system fluctuates as the 
Gaussian orthogonal ensemble (GOE) Tracy–Widom distribution when the flat initial 
condition is employed. Once the SB is introduced in the system, the density dierence 
around the SB velocitys up the surface to relax faster than sites far from the SB. The 
SB shock also drags the Tracy–Widom distribution to Gaussian one that is described 
by measuring skewness S(x, t) and kurtosis K(x, t) at each site at time t.

Figures 2 and 3 show that the system can maintain the GOE values of SGOE ≈ 0.2935 
and KGOE ≈ 0.165 24 before the SB shock arrives. When the SB gets strong, the induced 
density field also becomes strong enough to relax faster than the global relaxation builds 
up, while the weak SB drags less, therefore, the system is relaxed almost uniformly.

3.3. Tracer dynamics with the SB

In this subsection, we employ a passive tracer to figure out the SB eect in detail. In 
particular, we consider two types of passive tracers: one is with the positive feedback 
from surface growth, which slides with the avalanche of the growth (advection in fluid 
dynamics), and the other is with the negative feedback from surface growth, which 
slides against the avalanche (anti-advection).

Similar to earlier studies [37–39] for the dynamics of passive tracers in 1D KPZ 
interface without the SB, we define a positive (negative) tracer in the TASEP (1D 
BCSOS growth) with the SB as illustrated in figure 4(a). Due to the SB, the underlying 
TASEP suers jamming, which induces the bias of the field around the SB. Two fol-
lowing questions are posed as the core of the SB problem: ‘Is εc finite?’ and ‘How the 
SB change the nature of the KPZ universal dynamics?’ 
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3.3.1. Positive tracer.  As denoted in equation (9), the dynamics of the positive tracer, 
see figure 4(a) is equivalent to that of the second-class particle in the TASEP [36]. 
Note that this tracer is always on either particle (upper cases) or hole (lower cases). 
For the case of the tracer dynamics defined in [37], the particle on a surface should 
select one of the neighbor site if both NN site has the same height, see the left cases 

Figure 1.  Dynamic scaling of surface width W (ε;L, t) is tested at ε = 0.50 
(triangle), 0.20 (diamond), 0.10 (circle) and 0 (cross) for L  =  2500–40 000 (from the 
lightest to the darkest): (a) W versus t in double-logarithmic scales, and (b) the 
rescaled width W̃ = WL−1/2 versus the rescaled time t̃ = tL−3/2. The inset in (b) 
shows that another scaling collapse with W/L versus t/L works in the strong SB 
regime (ε = 0.5), which implies the global faceting in the steady state. All data are 
averaged over 108–1010 samples.

Figure 2.  Skewness S(x, t) ((a)–(d)) and kurtosis K(x, t) ((e) and (f)) of h(x, t) for 
L  =  2500 are plotted in the 3D format at ε = 0.10 ((a), (e)), 0.20 ((b), (f)), 0.25 
((c), (g)), and 0.50 ((d), (h)). Each spatial point is the value at every 50 sites away 
from the SB (from top to bottom) and every 2n time steps (from left to right) from 
the flat initial condition. The color indicates ratio to SGOE and KGOE at the GOE 
Tracy–Widom distribution. Due to the finite-size eect, the system saturates to 
the KPZ fluctuations at t  <  L3/2 and returns to the Gaussian fluctuations as the 
system reaches the stationary state. In the strong SB regime (ε = 0.50 and 0.25), 
a shock propagates from the SB with the constant velocity as peaks move. Each 
simulation is averaged over 1.5× 106 samples.
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Figure 3.  S(x, t) and K(x, t) are plotted against t̃ = t/L3/2 for L  =  2500 at 
ε = 0.10, 0.20, 0.25, and 0.50 for the selected values of x̃ = x/L from figure 2.

Figure 4.  Dynamics of passive tracer: (a) positive feedback (advection) and (b) 
negative feedback (anti-advection). We here illustrate all the possible movements 
of the tracer and the the blue/green flag represents the positive/negative tracer.
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of figure 4), where in this case random selection is restricted. The passive tracer is 

super-diusive, so the standard deviation σp(t) = (∆x) ∼ t1/zp with the dynamic expo-

nent zp = zKPZ = 3/2. As the SB gets strong, the positive tracer experiences repulsive 
forces from the SB, resulting a constant drift from the SB. In figure 5, we present the 
spatio-temporal movements for a typical positive tracer and the distribution of its dis-
placement at time t, P+ (x,t). The displacement can be rescaled as ξ = xt−1/zp. There-
fore, the distribution of P+ (x,t) collapses into the single curve with the constant drift, 
ξ′ = ξ − vg, that depends on ε as shown in figure 5.

In figure 6, we analyze the statistical properties of P+ (x,t) systematically to discuss 
how the impact of the SB spreads to the whole system. Here we distinguish that a 
constant drift of the positive tracer is apparent in the strong SB regime ε > 0.2, while 
below the some point of the SB strength ε, say ε < 0.2, the tracer seems to have a 
very slow drift, or even none. The standard deviation of the positive tracer position at 

time t, σp(t), without the SB eect, scales as σp(t) ∼ t2/3 with the KPZ dynamic expo-
nent z  =  3/2, while the strong SB eect makes the positive tracer to lead the ballistic 
diusion, so σp(t) ∼ t.

Since the positive tracer does not reside the outside of a particle (as well as a 
vacancy, by the particle-vacancy symmetry), the diusion characteristics remains that 
of the underlying TASEP field. In the biased density field, it does drift away from the 
SB, so that the displacement distribution cannot become stationary. Moreover, the 
minimum of σp(t) indicates the time of particles drifting out around the SB. Again, we 
note that this crossover time tc is proportional to inverse of vg:

tc ∼ v−1
g (= ∆−1

b = ∆
−1/2
J ) ∼ exp(1/ε).� (12)

3.3.2. Negative tracer.  The same measurements are analyzed for the negative tracer, 
the dynamics of which is illustrated in figure  4(b). Negative tracer moves as oppo-
site orientation to positive tracer in case of surface neighboring surface has dierent 
height. However when the neighboring height is the same particle moves as given 
rule, because there is no time-reversal picture of underlying particle dynamics. As ε 
increases, fluctuations becomes suppressed by the biased density field around the SB to 
the dynamic exponent zm > zKPZ = 3/2. This behavior is distinct from that of the posi-
tive tracer. The negative tracer does not suer any constant drift due to the convergent 
field, therefore, it is not able to move ballistically.

As shown in figure 7, the typical spatio-temporal movements of the negative tracer 
is confined in a certain domain when the SB strength is strong enough. This behavior 
is analyzed by the statistics of the displacement distribution for the negative tracer at 
time t, such as the standard deviation σm(t). In the strong SB regime where macro-
scopic jamming is apparent, we observe that tracer is confined within a finite time as 
a random walker in the confined space, while in the weak SB regime, it anomalously 
diuses even in the presence of the SB. In figure 8, we present that σm(t) scales as 
σm(t) ∼ t1/zm. Without the SB, the diusion is characterized by zm � 1.8, which is 
within the range reported by previous work (z = 1.74 ∼ 1.98) [37].

Moreover, uncorrelated approximations are proposed to explain the asymptotic dis-
placement distribution for the negative tracer in the SB biased TASEP field. The nega-
tive tracer has the case of changing the orientation from a particle to a vacancy and 
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vice versa. The negative tracer driven by the SB biased particle field [37] is described 
in equation (9), where the driving field includes its own intrinsic randomness. Hence, 
we apply uncorrelated approximations to the field as follows:

dx(t)

dt
= − [v(x; ε)]x + ζ(t).� (13)

The dynamics of the tracer can be written by a Fokker–Planck (FP) equation as follows:

∂P−(x, t)

∂t
= K

∂2P−(x, t)

∂x2
+ vgsign(x)

∂P−(x, t)

∂x
,� (14)

where K is a diusion constant. The group velocity vg is equivalent to the global slope 
in the BCSOS growth.

Regardless of the initial distribution, the stationary solution sis as follows:

P−(x) =
vg
2
exp(−vg|x|),� (15)

where vg = ∆b = ∆
1/2
J . The MF value for the standard deviation of this distribution is

σMF =
√
2/vg ∼ ∆−1

b ∼ ∆
−1/2
J .

Using the the MF current JMF = ρb(1− ρb) and the approximate conjecture for 
∆J ∼ exp(b/ε) [12] with b ≈ 2, we are able to derive

σMF = C exp(1/ε),� (16)

Figure 5.  In the presence of particles as fields, at the SB strength 
ε = 0.10 (weak), 0.20 (intermediate), and 0.50 (strong) (a)–(c), we present 
spatiotemporal movements of the positive tracer, where each dot and space in 
horizontal lines represent site configurations with the SB indicated as the red strip 
at the middle. An instance of the positive tracer is represented as the blue trail. 
(d)–(f) The rescaled displacement ξ = xt−1/zp distribution are presented and the 
insets show the original distribution of P+ (x,t). Both of the panels are drawn on 
the half plane. Each distribution is averaged over 106 samples.
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where C is a constant.

3.3.3.  Fractional FP equation with intuitive arguments.  However, the MF result is 
slightly dierent from our numerical observation. It is because we ignore the anomalous 
diusion nature of the tracer. To take account of super-diusive behavior, we establish 
a fractional FP (fFP) equation,

∂P−(x, t)

∂t
=

∂

∂x

[
KD

1−2/zm
t

∂

∂x
+ vgsign(x)

]
P−(x, t),� (17)

where K is a diusion constant and the operator D
1−2/zm
t  is the Riemann–Liouville frac-

tional dierential operator of order (1  −  2/zm) about t.
The fFP equation, equation (17), gives the solution P−(x,t) with the following sta-

tistical properties:

µm(t) = 〈x〉 ∼ t,� (18)

Figure 6.  The statistics analyses of figure 5 for the positive tracer are presented 
at ε = 0, 0.1, 0.14, 0.2, 0.25, 0.3, 0.35, 0.4, and 0.5 (from the darkest/bottom to the 

lightest/top) in the OBC for L = 10 000: (a) µpt
−1/zp versus t in double-logarithmic 

scales. In the strong SB regime (bright lines) evolves as t1/3, which implies a 

constant drift from the SB. (b) σpt
−1/zp versus t in the semi-logarithmic scale. The 

time at the minimal value of each curve is indicated as the crossover time tc. In the 
inset of (b), σp/σ

∗
p versus t/tc. (c) σ∗

p versus ε and (d) tc versus ε, where grey shaded 
dots represent the limiting data values (too erroneous to estimate). The inset of (d) 
shows the least squares fitting (LSF) of ln(tc) with 1/ε, by coecient 1.144, where 
the blue line guides the slope of 1.
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σ2
m(t) =

〈
(∆x)2

〉
∼ t2/zm ,� (19)

which represents a constant drift (mean displacement) and an anomalous diusion 
(fluctuation) of P−(x,t). In the spirit of this anomalous diusion, the time-dierential 
operator is related to the spatial derivative via dt ∼ dxzm, so the first term becomes the 
fractional derivative about space via

(
∂

∂t

)1− 2
zm

(
∂

∂x

)
=

(
∂

∂x

)zm(1− 2
zm

) (
∂

∂x

)

=

(
∂

∂x

)zm−1

.

�

(20)

In the steady-state limit, equation (17) satisfies

0 =
∂

∂x

[
K

(
∂

∂x

)γ

+ vgsign(x)

]
P−(x).� (21)

Note that although the first derivative leads P−(x) to have an arbitrary constant, the 
constant should always be 0 due to normalization of the probability. Therefore, the 
resulting P−(x) has the stretched exponential form as follows:

P−(x) = C− exp(−∆b|x|γ)� (22)

Figure 7.  In the presence of particles as fields, at the SB strength 
ε = 0.10 (weak), 0.20 (intermediate), and 0.50 (strong) (a)–(c), we present spatio-
temporal movements of the negative tracer, where each dot and space in horizontal 
lines represent site configurations with the SB indicated as the red strip at the 
middle. An instance of the negative tracer is represented as the green trail. (d)–(f) 
The rescaled displacement (ξ = xt−1/zm) distribution are presented and the insets 
show the original distribution of P−(x,t). Note that the negative tracer does behave 
as neither particle nor hole. Each distribution is averaged over 5× 104 samples.
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that the stationary standard deviation σ∗

m that scales as

σ∗
m =

√
Γ(3/γ)

βΓ(1 + 1/γ)
∆

−1/γ
b ∼ ∆

−1/2γ
J .� (23)

This relation connects the stretched exponential distribution function P−(x) with 
γ � 0.6, see figure 9 to b � 2.21 in σ∗

m ∼ exp(b/2γε) based on ∆J ∼ exp(−b/ε). This cor-
responds to zm � 1.6, which is still in the intermediate stage between random (normal) 
diusion and KPZ, zKPZ(= 3/2) < zm < 2 (normal diffusion).

Another possible origin to the stretched-exponential distribution is the inhomoge-
neity in the density profile near the SB. In this case, we assume again that particle 
movements fluctuate by random Gaussian noise, but the drift term vg is actually not 
constant. From equation (10), vg = ∆(x), so that equation (21) can be rewritten as

Figure 8.  The statistics analyses of figure 7 for the negative tracer are presented 
at ε = 0, 0.1, 0.14, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, and 0.6 (from the darkest to the 
lightest) in the OBC for L = 10 000. (a) σp(t) versus t in double-logarithmic scales. 
In the weak SB regime, the tracer anomalous diuses with 1/zm ≈ 0.55, while in 
the strong SB regime (ε > 0.2), (b) data collapse works well in terms of the rescaled 
standard deviation σmt

−1/2 and the rescaled time t∆2
J . The inset shows that the 

slope of data collapse is ∼ 0.5, which denotes that the saturation is closely related 
to the standard diusion, 1/z  =  0.5. (c) and (d) The minimal value of the saturated 
standard deviation σ∗

m and the saturation time t∗m are plotted against the SB strength 

ε, respectively. The data in the insets of (c) and (d) obtained from (b) are fitted 

by the LSF of ln(σ∗
m) ∼ [ln(t∗m)]

1/2 ∼ b/ε with b ≈ 2: 1.837 for (c) and 3.699 for (d), 
where blue lines guide the slope of 2 and 4, respectively.
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0 =
∂

∂x

[
K

(
∂

∂x

)
+ vg(|x|)sign(x)

]
P−(x).� (24)

Recalling equation  (10), ∆(x) = ∆b + Ax−ν, with the assumption P−(x) ∝ exp 
(−

∫
∆(x)dx), the solution of equation (24) reduces the following simple form:

P−(x) = C ′
− exp

[
−∆b|x| − A/(1− ν)|x|(1−ν)

]
,� (25)

where C ′
−
 is a proper normalization constant. This also agrees well with the value of ν 

in both intermediate and strong SB regimes, ν ∈ [0.33, 0.5] as ∆b → 0 with ε → εc. Our 
numerical results are presented in figure 9. Morever, we provide the summary of the 
comparison of numerical results with analytic conjectured values as table 1 for various 
observables.

4. Summary with remarks

To sum up, we revisited so far the SB problem in the totally asymmetric simple exclu-
sion process on a one-dimensional lattice. We considered it with both open and closed 
boundary conditions, in the context of the existence of the non-queued SB phase in the 
thermodynamic limit. This SB problem, has a longstanding controversial issues exist 
because of some discrepancy between numerical results and mathematical results with 

Figure 9.  The stationary stretched exponential distribution function P−(x) for the 
negative tracer are plotted as lnP−(x) versus x in double-logarithmic scales, where 
γ ∈ [0.55, 0.65] against ε ∈ [0, 65, 0.35].

Table 1.  The comparison of analytical conjecture [12] and the LSF values of 
numerical simulations in the strong SB regime. Here γ = zm − 1 � 0.6 for the 
negative tracer as shown in figure 9.

Variable Conjecture b (LSF) Ratio

∆J = [ρb(1− ρb)− 1
4
] ∼ exp(−b/ε) b � 2.25 1

tc ∼ v−1
g ∼ ∆

−1/2
J

∼ exp(b/2ε) b � 2.29 1.02

σ∗
m ∼ ∆

−1/2γ
J

∼ exp(b/2γε) b � 2.21 0.98
a t∗m ∼ (σ∗

m)
2 ∼ ∆−2

J
∼ exp(b/γε) b � 2.27 1.01
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Figure A1.  Dynamic scaling of height fluctuations (related figure 1): σ2
w is defined 

in equation (2). Here σ̃2
w = σ2

w/L and t̃ = t/L3/2.

Figure A2.  Skewness S(x, t) and Kurtosis K(x, t) (compared to figure 2) are defined 
in equations (3) and (4), respectively. At ε = 0, we denote the skewness and the 
Kurtosis as S0 and K0, respectively.
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some approximations. In particular, we discussed the SB relevance from fundamen-
tal relations, i.e. density and current, with derivative observables (positive/negative 
tracers) to observe how the KPZ universality properties are deformed. Our extensive 
numerics showed detailed structures related to the finite-size SB eect, and checked 
out the ensemble equivalency as well. The anomalous diusion of the tracer can be pro-
posed another comprehensive view of the SB problem. Extensions of this problem, such 
as complex defects or controlling junctions is an interesting subject for further studies. 
As the final remark, we would like to comment on something dierences happened near 

Figure A3.  Skewness S(x̃, t̃) and Kurtosis K(x̃, t̃) (compared to figure 3) are plotted 
against x̃ and t̃ , respectively. Here r = 1− ε, x̃ = x/L, and t̃ = t/L3/2.
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ε ≈ 0.2 as if there is either a phase transition or a crossover between weak and strong 
SB eects. To numerically clarify the issue is currently not doable. However, we found 
that the ambiguity of the drift velocity plays a crucial role in the SB problem. The 
proper choice of the drift velocity determines a boundary for either a phase transition 
or a crossover occurs.
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Appendix. Extra plots for the BCSOS growth with the columnar defect

We here provide extra plots of asymptotic properties for the BCSOS growth with the 
columnar defect. The height fluctuations are plotted with the dynamic scaling in figure 
A1 (a) and (b). The spatio-temporal skewness and kurtosis are plotted as heatmaps 
and 3-dimensional formats in figure A2. The detailed analysis of figure A2 is provided 
in figure A3.
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