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Abstract – Inspired by recent bacterial chromosome experiments in narrow channels, we simulate
the expansion (and internal) dynamics of a self-avoiding polymer under cylindrical confinement.
The chain is trapped in a piston, compressed up to 20% of its equilibrium length, and released
unidirectionally from the right end of the piston. Our results suggest that the chain initially
expands like a concentrated hard-sphere system, enters a subdiffusive regime at an intermediate
time, and eventually relaxes globally to its equilibrium size. Using our results, we test a few
theoretical models (e.g., a Flory-type approach), in which the blob-blob or monomer-monomer
interaction determines “expansion forces,” clarifying their applicability. Our results can be used
for exploring further the polymer aspect of bacterial chromosomes.

Copyright c© EPLA, 2013

Introduction. – There has been growing interest in
understanding single chain molecules (e.g., bacterial chro-
mosomes) in confined or cell-like spaces [1–6]. At the heart
of much progress with single molecules is the technical ad-
vance for manipulating and visualizing them [1–6]. This
enables us to probe quantitatively their static and dynami-
cal properties, which might otherwise remain suspect. For
instance, by observing the free expansion of initially com-
pressed chains in a cylindrical pore, one can measure chain
relaxation times and effective spring constants [5,6]. In
a biological context, such an effort has been useful for
clarifying the role of cross-linking proteins in determining
the elasticity and spatial organization of bacterial chromo-
somes as well as for identifying molecular forces required
for chain compaction in the cell [5].

Coarse-grained polymer models have often been
entertained in the literature as fitting models for chain-
expansion or force-compression data [5–7]. In particu-
lar, a “renormalized Flory approach”, originally proposed
for confined polymers with self-avoidance [7–9], has been
used to interpret bacterial chromosome experiments [5].
While it is expected to capture correctly the global or
long-time behavior of confined molecules, its applicability

(a)E-mail: yjung@kisti.re.kr
(b)E-mail: byha@uwaterloo.ca

especially outside the long-time range remains to be tested
more systematically. On the other hand, an earlier study
suggests that as the chain continues to be compressed,
it enters a few distinct scaling regimes: the linearly or-
dered, semidilute, and concentrated regimes [7]. How this
equilibrium picture fits into chain expansion dynamics
is unclear and merits consideration. Furthermore, poly-
mer dynamics often reflects the interplay between internal
modes, which relax at different rates [10,11]. It will be use-
ful to clarify its significance in the expansion and internal
dynamics of a confined chain (see ref. [12] and references
therein for its nontrivial effect on looping dynamics). To
what extent will the bacterial chromosome in a narrow
channel behave as a confined polymer? A better under-
standing of the latter system is desirable to further explore
the polymer aspect of the chromosome beyond what has
been observed recently [5].

Using molecular-dynamics (MD) simulations, we study
the expansion and internal dynamics of a self-avoiding
polymer, consisting of N monomers in a cylindrical pore
of diameter D. In the first set of simulations, the chain
is capped by a piston and compressed up to 20% of its
equilibrium value. One of the piston wall (the one on the
right) is removed suddenly and the chain is then allowed
to expand and relax, as illustrated in fig. 1. (This is to
mimic the experimental setting for chromosome expansion

68003-p1
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Fig. 1: (a) Equilibrium blob picture of a polymer confined in
a cylindrical space: a linear array of blobs of size ≈ D each, as
illustrated in green. The farthermost distance or the length of
the enveloping tube (the red dashed line) can be chosen as the
chain size. Panel (a) is reproduced from [8] by permission of
the Royal Society of Chemistry. (b) As the chain is compressed
with a piston, it breaks up into smaller blobs of size ξ each (see
the top illustration in (b)), resembling a semidilute (ξ ≫ a)
or concentrated polymer solution (ξ ≈ a) (for the latter, the
notion of blobs becomes irrelevant). The chain is then allowed
to expand, by removing the piston on the right, similarly to the
experimental setting for chromosome expansion [5]. How this
equilibrium picture is reflected in chain expansion dynamics is
unclear yet.

from lysed cells in a recent work [5]1.) In the second set
of simulations, we let the confined chain relax freely from
its uncompressed conformation.

Let L(t) be the chain size as a function of time t and
L0 its equilibrium or relaxed value (i.e., L(t) → L0 as
t → ∞), as shown in fig. 1(a). Note that L(t) and L0 are
not uniquely defined (see ref. [13] and references therein).
The end-to-end distance is often used in theoretical con-
siderations (see for instance ref. [7]). A recent study, how-
ever, suggests that the unfavorable effect of finite-chain
lengths can be corrected by using as L(t) the farthermost
distance or the length of an imaginary “enveloping tube”
(the red dashed line in fig. 1(a)) [13]. Also this quantity
is relevant to ring polymers, e.g., bacterial chromosomes
(see ref. [13] for details). This quantity is thus chosen as
the chain size.

We find that the chain initially expands like a corre-
sponding hard-sphere system released from a concentrated
state (“explosive”), undergoes subdiffusive expansion
at the intermediate time range, and eventually en-
ters an exponential-relaxation regime beyond the global

1See movies S1 and S2 in ref. [5]. On physics grounds, this setting
is not expected to introduce any artifact. We rather note that the
expected subdiffisive regimes shows up more clearly this way.

relaxation time τ . The emergence of the subdiffusive
regime is delayed by the initial explosive expansion. In
fig. 1, the onset time for the subdiffusive regime is denoted
as τ1.
On the other hand, for the initially compressed case,

right-end proximate segments and the center of mass
(CM) undergo hard-sphere-like and subdiffusive motion
for short time and intermediate time scales, respectively;
they eventually enter the diffusive regime at t ≈ τ . The
dynamics of the left-end segment resembles that of chain
segments for the uncompressed case. Our result suggest
that chain segments in the initially compressed case en-
ter the subdiffusive and diffusive regimes in a sequen-
tial matter: left-end proximate ones first and right-end
proximate ones later.

Molecular-dynamics simulations. – In our molecu-
lar dynamics, we use the “bead-spring model” of a polymer
chain: beads, connected by the finitely extensible non-
linear elastic (FENE) potential, interact with each other
through the fully repulsive Weeks-Chandler-Anderson
(WCA) potential [14]. If r be the center-to-center dis-
tance between beads, the WCA potential is given by

UWCA(r) =

⎧

⎪

⎨

⎪

⎩

4ǫ

[

(σ

r

)12

−
(σ

r

)6

+
1

4

]

, for r < 21/6σ,

0, otherwise,
(1)

where ǫ and σ represent the strength and range of the
WCA potential, respectively. Accordingly, the bead or
monomer size a ≈ σ. On the other hand, the FENE
potential is described by [15,16]

UFENE(r) = −
1

2
kr0

2 ln

[

1−

(

r

r0

)2
]

, (2)

where k = 30.0 ǫ/σ and r0 = 1.5 σ.
The confining cylinder is made up of “imaginary” beads

of size σ, interacting with beads through WCA potential
given in eq. (1).
We simulate the polymer system described above using

the simulation package LAMMPS [17]. The equation of
motion for beads is integrated using the velocity Verlet
algorithm in a discrete time space with a time step 0.01 τ0,
where τ0 = σ

√

m/ǫ (m is the bead mass). At the same
time, the system is kept at a constant temperature T =
1.0 ǫ/kB via a Langevin thermostat with a few choices of
the damping constant γ = 0.1 τ0

−1, 1.0 τ−1
0 , 2.0 τ−1

0 (see
refs. [8,9] and references therein). Here and below, kB is
the Boltzmann constant and T the temperature. On the
other hand, in our simulations, we do not include long-
range hydrodynamic interactions.
As discussed earlier, we carried out two sets of

simulations, depending on whether the chain was initially
compressed or not. In both cases, to get reliable chain
statistics, we performed 500–1000 independent simula-
tions over which ensemble averages were obtained. As a

68003-p2



Expansion dynamics of a polymer chain in a cylindrical pore

result, the error bars are smaller than the thickness of lines
or the size of symbols used to represent the results.

Theoretical models. – According to the blob scal-
ing picture [10,18] (see ref. [13] for a quantitative basis for
blobs), a self-avoiding chain trapped in a cylinder of width
D is a linear string of blobs of size ξ ≈ 0.7D each [13], as
described in fig. 1(a), where the blobs are illustrated in
green. This results in the equilibrium size L0 ∼ ND−2/3

and the effective spring constant keff ∼ N−1D−1/3 (recall
N is the number of monomers) [7,13,18]. In this work, all
lengths are measured in units of the monomer size a ≈ σ,
unless otherwise stated. As the chain is compressed with
a piston, it breaks up into smaller blobs (see the top illus-
tration in fig. 1(b)); it enters the semidilute (a ≪ ξ ≪ D)
and concentrated (a < ξ ≪ D) regimes [7]. (Note that
these inequalities can be satisfied only for sufficiently large
D and N .) The extent to which this feature is reflected
in chain dynamics is, however, unclear yet. Nevertheless,
it is expected that the initial expansion of a much com-
pressed chain will be dominated by excluded-volume ef-
fects; chain connectivity will not play a significant role. As
the blobs grow in size while the chain expands, the nature
of the expansion force will change, affecting the dynam-
ics. Eventually, the chain enters a (quasi) one-dimensional
Rouse regime, in which relaxed blobs behave as subunits
of the chain, as illustrated in fig. 1(b)(iii) [13]. The in-
teraction between neighboring blobs will determine chain
dynamics. We thus expect subdiffusive and exponentially-
relaxing regime to emerge.
Before presenting our simulation results, we first recall

a few theoretical models for chain expansion, which are
based on a “single-particle” picture. Let f be the chain
deformation force and γchain the chain friction coefficient.
If F(L) is the confinement-deformation free energy, f =
−∂F/∂L. Within this picture, the equation of motion for
L(t) is

f +
1

2
γchain

dL

dt
= 0. (3)

This can be solved subject to the initial condition:
L(t = 0) = Li [6]. Here and below, the subscript i refers
to the initial compressed state. In an “immobile” solvent
(in the absence of hydrodynamic interactions), γchain ∼ N
is independent of D. On the other hand, in a mobile sol-
vent, γchain ∼ (N/g)ξ ∼ (N/ξ5/3) ξ = Nξ−2/3 [18,19],
where g ∼ ξ5/3 is the number of monomers per blob [10].
An explicit form of f relies on the physical picture,

within which it is obtained. For instance, a Flory-type
approach [6,7] leads to the following force-deformation
relation:

f

A
=

(

L

L0

)

−

(

L0

L

)2

, (4)

where A = kBT×keff/D = τ/D. If combined with eq. (3),
this produces

L(t) = L0

{

1−

[

1−

(

Li

L0

)3
]

e−t/τ

}1/3

(Flory), (5)

where τ ∼ γchain/keff (∼ N2D1/3 in an immobile sol-
vent [7,13]). For t > τ , this implies L(t)− L0 ∼ e−t/τ .
It is tempting to improve this mean-field result by map-

ping the compressed chain onto an equivalent semidilute
polymer solution [7] (see ref. [20] for the unconfined case)2.
Then the confinement-compression free energy is given by

F ∼
V

ξ3
∼

D2L

φ−9/4
∼

D2L
(

N

D2L

)

−9/4
∼ N9/4

(

D2L
)

−5/4
.

(6)
With f = −∂F/∂L, this leads to the following solution:

L(t) ∼ Li(1 + t/τI)
4/13 (semidilute-I), (7)

where τ
I
∼ D5/2L

13/4
i /N5/4 ∼ L2

i /φ
5/4
i .

So far, hydrodynamic interactions have been ignored.
Within the blob scaling picture, their effects can be taken
into account by assigning a friction ∼ ξ to each blob.
The underlying physical picture is that the hydrody-
namic interaction is screened beyond ξ [10,11,18,19]. In
other words, we consider ξ as the hydrodynamic screen-
ing length ξh: ξ = ξh. The total chain friction is then
γchain ∼ (N/g) ξ ∼ N/ξ2/3. As a result, we find

L(t) ∼ Li(1 + t/τ
II
)4/11 (semidilute-II), (8)

where τ
II

∼ D3/2L
11/4
i /N3/4 ∼ L2

i /φ
3/4
i . The exponent

here is somewhat larger than in eq. (7) and τ
II

< τ
I
. This

means that the chain expands faster in a mobile solvent,
thanks to the hydrodynamic effect, as expected.
Despite seeming plausibility, these models need to be

tested. In particular, the use of equilibrium forces (e.g.,
f in eq. (4)) in the description of chain dynamics is ques-
tionable. A related point is that the one-particle picture as
assumed in eq. (3) is valid for large t, when internal modes
have relaxed [10–12]. (This picture is often referred to as a
“local-equilibrium” approach in the sense that all modes
but the global-deformation mode have relaxed.)

Results and discussions. – In an effort to present
a clear dynamical picture of a confined chain, we car-
ried out MD simulations, following the procedure out-
lined in the previous section. A chain consisting of N
monomers trapped inside a cylindrical space of diame-
ter D is compressed up to 20% of its equilibrium length
L0 (Li ≈ 0.2L0); it is then allowed to relax from the right
end (see fig. 1(b)).

Figure 2 shows our results for L(t), the farthermost dis-
tance, obtained with a few choices of N and D: N =
500, 1000 and D = 4, 7, 13. For (a), we used γ = 0.1/τ0
and compared a few larger γ values in (b) to extract
a common feature of chain dynamics. Superimposed in

2Monomers are not uniformly distributed as assumed in the Flory
approach. Monomer-density correlations persist up to a length ∼ ξ.
These effects can be taken into account by considering as “interaction
units” closely packed blobs of size ξ each [7,21].
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Fig. 2: Chain dynamics under confinement. (a) Three regimes are identified to characterize L(t), especially for D ≥ 7, as also
illustrated in fig. 1(b). i) For small t, the chain expands like a corresponding hard-sphere system released from a concentrated
state (“explosive”), initially ballistically and diffusively later (see (b)). ii) For intermediate t, ΔL(t) ∼ t1/4 (subdiffusive).
iii) For large t, L(t)−L0 ∼ e−t/τ , and the chain relaxes globally (single-exponentially) from its initial conformation. Similarly,
the Flory model works well in this regime. For too small D, i.e., D = 4, however, the subdiffusive regime appears to be missing.
Our Rouse model (the dashed lines in magenta) fits the expansion data surprisingly well outside regime i). (b) All the regimes
shown in (a) are realized for larger damping constants (e.g., γ = 1.0/τ0, 2.0/τ0). The main difference is that for larger γ the
emergence of a diffusive sub-regime within the (hard-sphere–like) explosive regime is more obvious.

fig. 2(a), (b) are our results for the corresponding hard-
sphere system initially compressed up to Li, in which
beads interact with the WCA potential only3. Three
regimes are identified in (a): i) “explosion” (hard-sphere–
like expansion) for t < τ1, ii) subdiffusion for the interme-
diate time range τ1 < t < τ , and iii) global relaxation for
t > τ . The explosive motion is initially linear with time
(ballistic) but crosses over to diffusion. If L(t)−L0 ∼ t1/4

in the subdiffusive regime, L(t) − L0 ∼ e−t/τ in the
global (single-exponential) relaxation regime described by
dashed lines. (See refs. [8,9] for actual computations of τ .)
It is worth noting that the general trend observed in (a)
persists for larger γ values as shown in (b). The main dif-
ference is that the linear or ballistic regime is narrower for
larger γ.

Note that the exponent 1/4 = 0.25 for regime ii) is
somewhat close to the exponent 4/13 ≈ 0.31 in eq. (7).
We believe that this is a coincidence, since the underly-
ing physical picture is obviously different (see below for
details). Also, the Flory model in eq. (5) (the dot-dashed
line in fig. 2(a)) works well in the global-relaxation regime
but deviates noticeably from the data in the other regimes.
This clarifies the limitation of equilibrium pictures in de-
scribing chain dynamics.

For the D = 4 case in fig. 2(a), the agreement between
the polymer and hard-sphere systems persists even out-
side the initial explosive regime, up to L(t)/L0 ≈ 0.4–0.5.
This also explains why the subdiffusive regime is missing
(or too narrow) in the this case. Based on this comparison,

3For this comparison, we rescaled the time for hard-sphere expan-
sion by some constant. Note that this will not change the physics of
the hard-sphere system qualitatively.

the emergence of the explosive regime can then be at-
tributed to a stored energy in the initial concentrated or
compressed system.

Following up on ref. [18], we propose a fitting model for
the subdiffusive and global relaxation regimes by mapping
the confined chain onto an equivalent one-dimensional
Rouse chain. Chain statistics outside ξ is not influenced by
self-avoidance, since this effect is screened beyond ξ. Fur-
thermore, each blob relaxes much faster than the whole
chain, and thus one can treat blobs as “already relaxed”
subunits of the chain. This suggests that the confined
chain with self-avoidance can map onto an effective Rouse
chain. The free energy of such blob deformations in the
Hookean limit, as illustrated in fig. 1(b) (the bottom one or
the second one from the bottom4), is given by [18]

Fblob

kBT
≈

(uj+1 − uj)
2

2D2
+ . . . , (9)

where uj (j = 1, 2, . . . , N/g) is the position of the
i-th blob. The squared chain-size fluctuation ΔL2(t) =
〈

[L(t)− L(0)]2
〉

can be expressed as a sum over relaxation
modes (see ref. [12] and references therein). If normalized

4A direct comparison is obscured by the non-uniformity of the
expanding chain in fig. 1(b). But the “Hookean chain” is closer to
the bottom illustration, which is described to be relevant for t > τ .
It is worth mentioning that the time here is measured with reference
to the initial state right before chain expansion. When we map the
expanding chain onto a Rouse chain, we need to reset the reference
time so that this picture is applicable for t < τ .
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Fig. 3: Dynamics of internal segments and the center of mass
(CM) for the initially compressed and uncompressed case. The
internal dynamics of the central and right end as well as the
the dynamics of CM are hard-sphere–like or explosive, sub-
diffusive, and diffusive in the short-time, intermediate-time,
and long-time range, respectively, if the chain is initially com-
pressed. (The slopes of fitting curves are shown.) The emer-
gence of the latter two regimes is delayed, compared to that
for the left chain end, because of their initial explosive mo-
tion. Also the motion of CM and the central monomer looks
a bit more complex than that of a chain end, since it reflects
the internal arrangement of chain segments during chain ex-
pansion/relaxation. Also included are our results for a freely
relaxing chain. The central monomer initially undergoes subd-
iffusion and enters the diffusive regime at t ≈ τ . This crossover
time appears to coincide with that for the left end dynamics in
the compressed case.

at t = ∞, it is given by

Δℓ2(t) =
8

π2

∞
∑

p odd

1

p2

[

1− e−(t+τ2)p
2/τ

]

(Rouse), (10)

∼

⎧

⎨

⎩

√

(t+ τ2)/τ , if t < τ,

1− e−(t+τ2)/τ , if t > τ.

(11)

Here, τ2 is introduced to “reset” the initial time for free
relaxations outside the explosive regime. This is necessary
since the Rouse model does not capture the initial explo-
sive forces the chain experiences. These results clearly
show the expected crossover between the subdiffusive and
global-relaxation regimes. They also highlight the signif-
icance of internal modes in determining chain dynamics
in the intermediate time range, which are suppressed in a
one-particle approach (e.g., eq. (7))5.
We have fitted the large-D data to Δℓ(t) in eq. (10) with

τ2 (τ as well) as a fitting parameter (see the dashed lines in
magenta). The excellent agreement between our data and
theory for t > τ2 approves eq. (10) as a valid fitting model
for chain expansion outside the explosive regime. Even

5The two time scales, τ1 and τ2, are related to each other in some
complicated way. But we will not further explore the relationship
here. Crossover times are loosely defined and establishing a relation-
ship between such quantities will not add new insight.

when τ2 was set to zero, eq. (10) fit the data in a much
wider range than the simple exponential fit does (the data
not shown)6.

It proves useful to examine the dynamics of individual
segments as well as the center of mass (CM) of a con-
fined chain. During the sudden expansion of the chain,
its different sections will experience different forces and
deformations, possibly entering the regimes at different
times. This effort will provide additional information,
which is hidden in our results for L(t). Let ri(t) be
the position of monomer i at time t. Here, we intro-
duce its mean squared displacement (MSD) defined as
an average over several neighboring monomers: gi(t) =
1
10

∑i+4
j=i−5

〈

[rj(t)− rj(0)]
2
〉

, where 〈. . .〉 is an ensemble
average, i.e., an average over many independent simula-
tions. Note that this procedure is merely to improve statis-
tics as also done in ref. [22]. Similarly, the CM is given by

gCM(t) = 1
N

∑N
j=1

〈

[rj(t)− rj(0)]
2
〉

.

Figure 3 shows our MSD results for the initially com-
pressed (lines or lines with symbols) and uncompressed
cases (symbols) for γ = 0.1/τ0. (From fig. 2(b), it is
expected that this choice will not limit the applicability
of these results; it alters the relative width of different
regimes.) For the former case (Li ≈ 0.2L0), the inter-
nal dynamics of the central and right-end monomers as
well as the the dynamics of CM are initially explosive,
subdiffusive in the intermediate-time range, and diffusive
in the long-time range. (The slopes of fitting curves are
designated by numbers.) The emergence of the last two
regimes is somewhat delayed for right-end proximate seg-
ments, compared to that for the left-chain end, because of
their initial explosive motion. As a result, chain segments
enter the subdiffusive and diffusive regimes in a sequen-
tial manner: left-end proximate ones first and right-end
proximate ones later. Also the motion of CM and the cen-
tral monomer appears to be a bit more complex than that
of the left-end or right-end monomer. We attribute this
to the internal arrangement of chain segments somewhere
in the middle during chain expansion/relaxation.

If initially uncompressed, the confined chain shows sim-
pler dynamics (see squares and circles in fig. 3). Sim-
ilarly to what we expect from a free chain, the CM of
such a chain undergoes diffusive motion for the entire
time range; the central monomer initially undergoes sub-
diffusion and enters the diffusive regime at t ≈ τ . These
results confirm earlier numerical results [22] and are con-
sistent with the Rouse chain analogy described in eq. (9)7.
This crossover time appears to coincide with that for the
left-end dynamics in the compressed case.

6For too small D, i.e., D = 4, however, the separation of length
scales in terms of ξ becomes more arbitray, and the notion of blobs as
assumed in the blob approach breaks down; so does the Rouse chain
analogy. This is consistent with our earlier view that for small D the
confined chain resembles a hard sphere system for wide parameter
ranges, shrinking the subdiffusive regime (see fig. 2(a)).

7Similarly to the result in eq. (11), one can derive these results
using eq. (9).
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While the emergence of the subdiffusive and exponential
relaxation regimes is obvious based on the analogy with a
one-dimensional Rouse chain (see eqs. (10) and (11)), the
seeming absence of the semidilute analogue (see eq. (7))
deserves discussion. One possibility is that in our simula-
tion D is not large enough for this regime to be realized.
On the other hand, asD increases, the range ofN required
to be in the blob-scaling limit increases rapidly. The dy-
namic blob-scaling limit for moderate D values (< 20) has
only recently been reached in numerical studies [13]. Simi-
larly to the Flory approach in eq. (4), however, the semidi-
lute analogue may have a limited applicability in dynamics
considerations, since it is based on an equilibrium picture.
Furthermore, the reduced one-particle approach, as as-
sumed in eq. (3) (thus in this approach as well), is valid
for t > τ . As a result, the semidilute analogue will work
for t > τ . However, this is also the condition under which
ξ → D. This explains why such a regime is not realized in
our results presented in fig. 2. This also implies that this
regime in a mobile solvent (see eq. (8)) may suffer a sim-
ilar fate, especially when D is not asymptotically large or
in the parameter space that is computationally accessible.

Our discussion above implies that the effect of hydrody-
namic interactions will be felt mainly in the subdiffusive
and global-relaxation regimes captured in fig. 2. In the
global relaxation regime, this effect can be taken into ac-
count by considering ξ ≈ D as the hydrodynamic screen-
ing length ξh [9,18]. How this effect will modify chain
dynamics in the subdiffusive regime is less obvious and
will be left for future work.

Conclusions. – Measurements of chain expansion
under cylindrical confinement are effective means of prob-
ing the physical properties of chain molecules (e.g., bac-
terial chromosomes) and for clarifying how confinement
influences them [5]. Such efforts will also be beneficial
for unravelling the way they interact and segregate in a
cell-like confined space, because of the relationship be-
tween single-chain properties and their segregation [23].
Our results presented here not only test existing models
but also show how expansion data should be fitted. If the
Flory model works well for the long-time limit (t > τ), the
semidilute analogue (in the presence or absence of hydro-
dynamic interactions) will not be easily realized, especially
in computationally accessible parameter ranges. The lat-
ter model may be relevant to the intermediate-time range
but in this case the chain has not relaxed yet. This lim-
its the applicability of this model based on an equilibrium
picture.

It will be instructive to fit experimental data to our re-
sults. Along this line, in recent experiments, E. coli chro-
mosomes released from lysed cells were allowed to expand
in narrow channels [5]. Similarly to what we observed here,
the resulting raw data for chromosome expansion indicate
the existence of a few dynamic regimes [5,24]. However,
more comprehensive efforts under controlled conditions
will be needed to draw a definite conclusion and to further

illuminate the polymer aspect of the chromosome beyond
recent observations.
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