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Abstract: We investigate the critical behavior of one-dimensional (1D) stochastic flow with competing nonlocal and
local hopping events, in context of the totally asymmetric simple exclusion process (TASEP) with a defect
site in a 1D closed chain. The defect site can effectively generate various boundary conditions, controlling
the total number of particles in the system. Both open and periodic-like setups exhibit dynamic instability
transitions from a populated finite density phase to an empty road (ER) phase as the nonlocal hopping
rate increases. In the stationary populated phase, strong clustering promoted by nonlocal skids drives
such transitions and determines their scaling properties. By static and dynamic simulations, we locate
such transition points, and discuss their nature and scaling properties. In the open TASEP variant, we
numerically establish that the instability transition into the ER phase is second order in the regime where
the entry point reservoir controls the current, while it is first order in the regime where the bulk controls the
current. Since it is well known that such transitions are absent in the periodic TASEP variant, we compare
our results in the open setup with those in the periodic-like setup, and discuss the issue of the ensemble
equivalence. Finally, the same discussion is extended to the symmetric cases.
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1. Introduction

For a long time, driven diffusive systems of particles withsome local rules and some reasonable interactions havebeen widely studied as a prototype of nonequilibriumsteady states [1]. Interestingly, systems far from equi-librium can undergo nonequilibrium phase transitions be-
∗E-mail: msha@kaist.ac.kr

tween different steady states as the control parameters ofsystems vary, either discontinuously or continuously, evenin one dimension, which is very unlikely in equilibriumcases. So it is important to check how robust they arewith respect to new dynamics once they are found. Suchresearch is an endeavor to understand the unusual be-haviors of discrete elements with the cooperative dynam-ics in dissipative systems, e.g., traffic or granular flow [2],the motion of stuck and flowing grains in a sand pile [3],phase separation in the steady sedimentation of a col-loidal crystal [4–6], and the motion of molecular motors
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driven by ATP [7–9].In this paper, we study how clustering and coarsening dy-namics affect one-dimensional (1D) driven diffusive flowwith a simple variant of the parking garage model [10]. Theoriginal parking garage model was proposed as the bare-bone version of dynamic Bose condensation and queuingphenomena, where traffic jams caused by so-called bot-
tleneck phenomena were investigated on the defect site,namely the parking garage with infinite capacity. It isfound that the model yields nonequilibrium phase tran-sitions with macroscopic car condensation among threedifferent types of uniform steady state according to thefraction of parked cars and steady-state current, namelyCondensed (C), Maximal-Current (MC), and Normal (N)phases. In the modified version, we newly add nonlo-cal hopping to the totally asymmetric simple exclusionprocess (TASEP) [11, 12] and also consider the symmet-ric simple exclusion process (SSEP) [13, 14], respectively.Due to the fact that nonlocal hopping promotes cluster-ing and coarsening and cause new instability to conven-tional steady-state phases, we expect dynamic phase tran-sitions and their critical behaviors. Moreover, based onpossible mappings of the SEP onto other processes, weare able to discuss similar studies with the well-knownmass dynamics, the zero-range process (ZRP) [15–17] andthe mass aggregation-chipping models [18–23], the well-known surface growth models, the body-centered solid-on-solid (BCSOS) model [24–27], the ballistic deposi-tion (BD) model, and the BD variant [28, 29], and thespin exchange dynamics, namely Toom model and M(k)model [30, 31].In the context of traffic, nonlocal hopping may not be sucha common phenomenon. However, it may occur at free-ways without any speed limit, under wet or icy roads dueto weather, and in some special situation of nonstop roads,e.g., before and after some big sport games or concerts,since under such circumstances either cars or drivers tendto be just behind their front car as long as they avoid anyaccidents. To make use of the earlier results of the originalparking garage model, we here address the role of nonlo-cal hopping on 1D driven diffusive systems in traffic-wisepoint of view first, and then discuss its general aspectslater.The following two main questions are posed in this paper:
Does this new instability yield new phase transitions
at its finite value? If so, how does clustering induced
by nonlocal stick-slip events affect such transitions and
scaling properties? To answer them, this paper is orga-nized as follows: Section 2 describes the original parkinggarage model and its modification with nonlocal hopping.In Sec. 3, we show schematic phase diagrams with single-site mean-field approximations and propose simple intu-

itive arguments about the nature of newly existing phasetransitions. We present extensive numerical simulation re-sults in Sec. 4, in terms of the finite-size scaling analysisand correct the MF phase diagrams. Finally, in Sec. 5, weconclude this paper with final remarks and open questions.
2. Model

Consider a one-dimensional (1D) closed road (chain) of
Ns sites with a parking garage at site Ns, so that theroad begins at the exit of the garage and ends at theentrance to the garage. Each site on this road, 1 ≤ x ≤
Ns − 1, is either empty or occupied by at most one car,
nx = 0, 1, while the garage at site Ns has no occupationupper limit, np ≡ nNs = 0, 1, 2, 3, .... It is noted thatthe actual upper limit of np is determined by the initiallygiven total number of cars (Nc) which is conserved in thesystem. In the modified parking garage model, we considertwo more control parameters: One is the nonlocal hoppingprobability as p ∈ [0, 1] and the other is the bias of thehopping direction as r ∈ [0, 1] as shown in Fig. 1. We userandom sequential updating as in the original model.Here is the detailed dynamic rules for the case of r = 1,
i.e., TASEP variant only (see Fig. 1 for other values of
r): At each time step t → t + 1, choose one site withequal probability 1/Ns. If the chosen site, i, belongs tothe road, 1 ≤ i ≤ (Ns − 2), and has a car with emptynearest-neighbor site, then the car moves either to thesite i+m with probability p (nonlocal hopping) or to thesite i + 1 (local hopping) with probability (1 − p) where
m is its possible maximum displacement up to the sitejust behind its front car (m ≥ 1 always). Near, and atthe garage site, the dynamics rules are slightly modifieddue to the garage allowing multiple occupancy and theexit probability α , independent of the number of cars atthe garage site. Note that we do not allow passing thegarage and nonlocal hopping of the car that just exits fromthe garage site is allowed to keep the role of car reservoirand slow bond, so that the process occurs with 1 ≤ m ≤
Ns − i. The modified parking garage model has threecontrol parameters, the total car density ρo = Nc/Ns, theexit probability α at the garage site, and the speeding-up probability p on the road. For convenience, we define
ρp(t) = Np(t)

Ns and ρr(t) = Nr (t)
Ns , where Np(t)=〈np(t)〉 and

Nr(t)=∑Ns−1
i=1 〈ni(t)〉 with Nc = Np(t) + Nr(t), such that

ρ0 = ρp(t) + ρr(t). It is noted that the parking garageplays a role of a reservoir of the road, so the ordinarymodel is equivalent to the open TASEP with the injectionprobability α and the removal probability setting to be1, provided that it is macroscopically occupied as long asthe total car (particle) density, ρ0 , is large enough to be
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Figure 1. The modified parking garage model with nonlocal hop-
ping and its possible mappings to other studies: (a) open
SEP with nonlocal hopping, (b) open ZRP and mass
aggregation-chipping model with diffusion, (c) BCSOS-
type surface growth with BD interface dynamics, and (d)
spin exchange dynamics. It is noted that the same color
represents the same dynamic rule with the same proba-
bility, but the role of the parking garage is slightly modified
for each case (see the text for the detailed mapping pro-
cedure).

compared with ρr . We here consider both the open setup(ρr |t→∞ < ρ0 , i.e., ρp 6= 0) and the periodic-like setup(ρr |t→∞ = ρ0 , i.e., ρp = 0).As p increases, it promotes clustering and coarsening to-wards a phase-ordered state. The p = 0 case corre-sponds to the original parking garage model consistingof three disordered phases where cars on the road areuniformly distributed with or without macroscopic car con-densation in the parking garage. In another trivial limit,
p = 1, all conventional phases become unstable and even-tually reach only one segregated state, namely the Fully-Condensed (FC, equivalently, Empty-Road, ER) phase,where the road is empty with a complete condensation inthe parking garage. We observe that the system under-goes nonequilibrium phase transitions from the FC(ER)phase to the conventional C, MC, and N phases at thenontrivial instability threshold pc .As is well known, the exact mapping exists between theSEP and the ZRP, where the particle of the SEP repre-sents the site of the ZRP and the number of consecutiveholes in front of the chosen particle, the headways of theSEP, represents the mass of the chosen site, the occupan-cies of the ZRP. Such a mapping is shown in Fig. 1 (a) and(b), where we use the number indices (from 1 to 10) for thereader. Under the well-known mapping of the local hop,the skid move (nonlocal hop) in the SEP-type model corre-sponds to a movement of all mass on the chosen site in theZRP-type model (namely, the diffusion process, comparedto the chipping process in which the topmost mass only

moves to the target site). Due to the fact that the totalnumber of particles in the SEP-type model correspondsto the total number of sites in the ZRP-type model, themapping between two models is only straightforward forthe SEP-type model with periodic boundary conditions,
i.e., translational invariance. In our model, with the bro-ken translational invariance due to the site defect (parkinggarage), it no longer goes straightforwardly. In particular,the macroscopic occupancy of the parking garage ρp 6= 0plays a role as particle reservoirs, so the total number ofparticles on the road fluctuates. It means that the sys-tem size of the ZRP-type model also fluctuates when ourmodel is mapped onto it. Thus, we only consider such amapping in the case ρp = 0 (almost the PBC-like setup)at p = 0. For further connections to earlier studies [24–31]we here note two more possible mappings. As shown inFig. 1 (c), the particle in the SEP-type model is mappedto the down step and the vacancy (hole) is the up step.Similarly, as a spin configuration, Fig. 1 (d), the particleis the - spin and the hole is the + spin. The local hoprepresents the exchange between two consecutive oppo-site steps/spins, while the nonlocal hop represents theexchange between the leftmost/rightmost up step (+ spin)in the same step/spin cluster and its left/right down step(- spin). To help the readers’ understanding, three pos-sible dynamic events are illustrated with three differentcolors.

Figure 2. (a) A MF-based phase diagram of (p, α) at constant ρ0 ,
where the type of lines indicates first order (dashed line)
and second order (solid line). (b) The extended 3D phase
diagram of the parking garage model with nonlocal hop-
ping.

3. Mean-field approach

In order to understand qualitatively the effect of nonlo-cal hopping on the parking garage model, we may firstconsider single-site mean-field (MF) approximations. Byrequiring that the averaged occupation number remainsunchanged (d〈ni〉/dt = 0) as t → ∞, i.e., the steady-state current should be the same everywhere:
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〈α̃(1− n1)〉 = 〈n1(1− n2)〉 , (1a)
〈ni(1− ni+1)〉+ p

〈 i−1∑
j=1 nj

 i∏
k=j+1(1− nk )

 (1− ni+1)〉 = 〈ni+1(1− ni+2)〉+ p
〈 i∑

j=1 nj
 i+1∏
k=j+1(1− nk )

 (1− ni+2)〉 ,
(1b)

〈nNs−2(1− nNs−1)〉+ p
〈Ns−3∑

j=1 nj
Ns−2∏
k=j+1(1− nk )

 (1− nNs−1)〉 = 〈nNs−1〉 , (1c)
〈nNs−1〉+ p

〈Ns−2∑
j=1 nj

Ns−1∏
k=j+1(1− nk )

〉 = 〈α̃(1− n1)〉 , (1d)

with α̃ ≡ α(1− δnp,0) and 2 ≤ i ≤ Ns − 2. Thus, Eq. (1c)means the steady-state “bulk” current, J ≡ Ji,i+1. It is quitedifficult to solve exactly for J analytically from Eq. (1). So,taking single-site MF approximations as ignoring spatialcorrelations and assuming a uniform bulk density profileof ρ̄ = f(p, α, ρo) in the thermodynamic limit, Ns → ∞,then, Eq. (1) can be rewritten as
JMF(p) = ρ̄

[(1− p) + 1̄
ρp
] (1− ρ̄). (2)

This MF current-density relation has a single maximum at
ρ̄max = (1−2p)2(1−p) as Jmax = 14(1−p) for a given value of p. Setting
ρ̄max ≥ 0 (physical range), we get the stability conditionof the conventional MC phase with nonzero ρ̄ against p.The single-site MF result says that the conventional MCphase is stable as long as p ≤ pc|MF = 1/2, provided that
ρo ≥ ρ̄max. For p > pc|MF , Jmax of the system is located atsome negative value of ρ̄ (unphysical), so the conventionalMC phase is no longer stable since clustering and coars-ening dynamics by nonlocal hopping becomes dominant.This MF threshold pc|MF = 1/2 is quite different fromwhat we numerically observe. However, the single-siteMF result implies that the instability caused by nonlocalhopping indeed yields some new phase transitions at thefinite p value.Another evidence for the possibility of such instabilitytransitions can be simply argued with the dynamics ofthe defect cluster and its stability conditions. Suppose acluster of density ρ is located in the bulk at a distanceon either side of the garage. The dynamics of this defectcluster can be characterized by the movement direction ofthe cluster which can be indicated by the sign of its ve-locity v , and its lifetime τ. Either v < 0 or τ <∞ meansthat the defect cluster would become unstable and vanisheventually, so we estimate the competition of these twostability conditions quantitatively.

Firstly, we discuss the movement of the defect cluster. Itwould only depend on the probability to attach one carto this cluster at the left side (front of the garage exit),
PL ≡ γp, and the probability for the front car of thiscluster to move forward (or to escape from the cluster) atthe right side (toward the garage entrance), PR ≡ 1−p (or
p). Therefore, v = 0 means that its positive term, (1− p),is exactly canceled out by its negative term, ( 1

ρp+ γp
),so that we get pc ' 13 . Here we assume that γ ' 1 (onecar always behind the defect) and ρ ' 1 (almost compact).Secondly, We check the stability condition of the defectcluster and determine when its lifetime becomes finite.The change of the number of cars on the road increasesand is directly related to the change of the size of thedefect cluster since only one cluster is assumed in thesystem. The condition of τ < ∞ means that the size ofthe defect cluster starts shrinking, i.e., the probability forone car to leave the road and to enter the garage, roughly

p, becomes equal to or greater than the probability α toadd one car to road from the garage, which gives pc = α .Whichever arises first, it becomes dominant and allows thesystem to attain the instability threshold, pc = min [α, 13 ].It is claimed that that two instability thresholds exhibit thedifferent nature of phase transitions. Figure 2 (a) showsthat in the region of τ = ∞ and v > 0 the system isonly active with the conventional phases and in all otherregions it reaches a phase-segregated state (kind of in-active phase with trivial fluctuations) in the steady-statelimit, see Fig. 2 (b) for the extended 3D schematic phasediagram with three possible control parameters.In the next section, our intuitive arguments are numericallyconfirmed and the single-site MF results are improvedby the so-called cluster analysis with free and motherclusters [32], which will be compared and discussed withnumerical results.
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4. Numerical results and cluster
analysis
To check the validity of our intuitive arguments and theMF-based phase diagrams with numerical simulation datausing the finite-size scaling (FSS) technique, we performthe following Monte Carlo simulations in two different ini-tial conditions:

1. Stationary simulationsWe take a finite lattice with size Ns and start withthe initial condition that the particles (cars) arerandomly distributed on roads with the road den-sity ρr(0) = 1/2 and the reservoir (garage) has theremaining ones, ρp(0) = ρ0 − ρr(0). After sometransient time, we measure the stationary averageof various physical quantities such as the current J,the road density ρr |t→∞ , the 2nd, 3rd, 4th momentsof density fluctuations, χm, the Binder’s cumulants
U4, and the density profile ρ(x) = 〈n(x)〉, where theFSS is employed to analyze the data.

2. Dynamic simulationsWe start with a localized seed (actually no roadparticle or just one near the reservoir) in the limit
Ns → ∞ and observe the time-dependent proper-ties of various quantities such as the total numberof particles N(t), the spreading distance R(t). Itis known in nonequilibrium absorbing transitionsthat this method is usually better than, or at leastcomparable with, the static one to locate the phasetransition point. The critical exponent values arealso obtained through dynamic scaling and hyper-scaling relations. In our case, the stationary simu-lation data for the current provide the most accuratelocations of the transition points.

Before analyzing the numerical data, we note the follow-ing analytic results.First, we find the ER (FC) phase where the density profileis characterized by the exponential decay from the reser-voir, so that the steady-state current far from the reservoir(garage) (where the exponential tail does not reach) canbe written rigorously as
JER = p (1− P(0)) , (3)

where P(0) is the probability that the road is completelyempty, i.e., P(Nr = 0). This tells us that the maximalcurrent in the ER phase, JER |max ≤ p, which can be real-ized only along the ER-C and ER-MC phase boundarieswhere we expect P(0) = 0. Therefore, J = p at the transi-tion point. This condition turns out to be very useful and

effective to locate the phase boundaries accurately in sta-tionary Monte Carlo simulations. In fact, P(0) may servesas another order parameter which becomes nonzero in theER phase, while it vanishes in the C and the MC phases(both continuously). The critical behavior of P(0) is stillunder investigation and will be discussed independentlyelsewhere1.
Second, one can derive the upper and lower bound of thecurrent analytically. Since the current J should increasewith p, it should be constrained between J(p = 0) and
J(p = 1), where the lower bound J(p = 0) = α(1 − α) for
α < 1/2; J = 1/4 for α > 1/2, and the upper bound
J(p = 1) = α/(1 + α). In the steady state, only twostates are allowed: completely empty state |0〉 and sin-gle particle state |1〉 at site x = 1. From the masterequation Ṗ(0) = pP(1) − αP(0), we find the steady-state probabilities satisfy the relation P(1) = (α/p)P(0).The normalization constraint P(0) + P(1) = 1 gives us
P(0) = p/(p + α) = 1/(1 + α). This upper bound is ex-actly the same as that found previously for the current byrequiring the positiveness of the vacancy-vacancy corre-lation, 〈(1− n(1))(1− n(2))〉 ≥ 0. The exact bounds forthe current combining with the requirement J = p at thephase boundaries confine the ER-C and ER-MC transi-tion lines in the region of α(1 − α) ≤ p ≤ α/(1 + α) for
α < 1/2 and 1/4 ≤ p ≤ α/(1 + α) for α > 1/2.
Third, we may further restrict the current value in the ERphase. The relation P(1) = (α/p)P(0) is true for any p(even though P(1) now represents the probability that thesystem contains one particle anywhere on the road), butthe normalization constraint yields an inequality P(0) ≤
p/(p + α) for any p. This leads to the lower bound of
JER ≥ αp/(p+ α), which further restricts JER for p > 1/3.However, unfortunately, we cannot find any use for thisinformation presently within our results.
Finally, one may simply try improved MF approximations,which consider intrinsic spatial inhomogeneities system-atically. We indeed test such approximations by consider-ing inhomogeneity in only a few sites near the reservoir,because the inhomogeneity is expected to be importantonly nearby the reservoir, and find that they still fail toexplain the phase diagram obtained by our numerical sim-ulations. Ultimately, that is why we develop the clusteranalysis.
For more precise analysis near the transition lines and thescaling properties of the new continuous C-FC(or FC-C)transition, we use the following techniques:
1 M. Ha, H. Park (unpublished)
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(a) C-ER

(b) MC-ER

(c) N-ER

Figure 3. Numerical data for the road density ρr and the averaged
current J for various system sizes: (a) the C-FC transition,
(b) the MC-FC transition, and (c) the N-FC transition. Here
FC represents ER in [32].

In static simulations, one can estimate the values of criticalexponents by exploiting conventional FSS relations as
ρr = L−β/νf(∆N1/ν

s ),
χ2 = Lγ/νg(∆N1/ν

s ), (4)
U4 = h(∆N1/ν

s ),
where ∆ = (pc − p) or (α − αc) is a measure of the dis-tance from the transition and ν is the correlation lengthexponent. The functions f , g, and h are scaling functions.Elementary scaling ansatz yields the hyperscaling rela-tion such as (2β+γ)/ν = d = 1. Here we take the systemsize Ns = 256 (250 in some case)×2n with n = 1, 2 · · · , 6and discard data up to t ' N2

s for equilibration and col-lect data up to t = 108 ∼ 109 at every Monte Carlo step(one sweep over the lattice). Next, our data are averagedover 10 ∼ 200 independent Monte Carlo runs.In dynamic simulations, we start with no particle and ob-serve the evolution of the number of particles on the road
N(t) and the position of the rightmost particle R(t). Weexpect that these quantities scale at criticality as

N(t) = tθ,
R(t) = t1/z , (5)

Figure 4. ∆J/∆p versus p for various system sizes: MC-FC transi-
tion (left) and N-FC transition (right), which tell us that the
transitions are first order.

(a) C-ER

(b) MC-ER

(c) N-ER

Figure 5. Decomposition of J to local and nonlocal portions for vari-
ous system sizes: (a) the C-FC transition, (b) the MC-FC
transition, and (c) the N-FC transition.

where θ is the growth exponent and z is the dynamicexponent. One can easily derive the dynamic hyperscalingrelation as θz+β/ν = d = 1. Our data are averaged over104 ∼ 105 independent runs up to t = 105 for Ns = 106.Among our numerical results summarized in Table 1, Ta-ble 2, and Table 3, we show only two specific cases indetail: (
ρ0 > 12 , α, p) as the open setup and (ρ0 =1/4, α = 1, p) as the periodic-like setup, respectively.It is noted that other cases are similar to those two.We consider two major physical quantities as possible in-dicators of dynamic instability transitions: the road den-sity, ρr(≡ ρr |t→∞ ), and the averaged current, J, in thesteady-state limit up to Ns = 8192 (8000 in some cases).

The FSS effect of numerical data is shown in Fig. 3. Atthe C-FC transition (α < α∗, ρ0 = 1), ρr plays a crucialrole as the indicator of a new continuous phase transition,see Fig. 3 (a), where J has no singular point, while both ρr
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Table 1. Critical values and exponents (C-ER).

α 0.1 0.2 0.3 0.4
pc 0.09008(8) 0.16125(5) 0.21553(8) 0.25521(4)(U4)c 0.01(5) 0.08(3) 0.07(2) 0.15(4)1/ν 0.50(5) 0.50(2) 0.50(3) 0.50(2)
β/ν 0.49(1) 0.48(2) 0.47(3) 0.45(5)
γ/ν 0 (log(Ns) also works.)
pc 0.0900(2) 0.16120(5) 0.2156(1) 0.25515(5)
θ 0.52(2) 0.508(8) 0.505(5) 0.510(5)1/z 0.98(2) 0.97(3) 0.95(5) 0.90(5)
R ∼ t/(log(t))a<0.5 0.5(1) 0.6(2) 1.2(2)

Table 2. First-order transition values and exponents (MC-ER).

α 0.7 0.75 0.85 1.0
pc 0.2990(5) 0.2990(4) 0.2990(2) 0.2990(3)(ρr )c 0.17(1) 0.16(1) 0.16(1) 0.16(1)(U4)c 0.46(8) 0.47(2) 0.47(3) 0.45(7)1/ν 0.9(1) 0.8(2) 0.9(1) 0.85(15)
pc 0.2990(2) 0.2989(1)
θ 0.500(5) 0.485(5)1/z 0.55(1) 0.545(5)
R 0.6(1) 0.5(1)

and J play a role of good indicators for new discontinuousphase transitions as ρr → 0 and J becomes singular atthe MC-FC transition (α > α∗, ρ0 > ρ∗0 ) and the N-FCtransition (α = 1, ρ0 < ρ∗0 ) as shown in Fig. 3 (b) and (c),respectively. Up to the C-MC transition point α∗, thevalue of pc does depend on α (the larger α , the larger
pc), while for α > α∗, the system undergoes another in-stability threshold, whose value is the same as that at
α = 1 (pc ' 0.3). It is observed that two second-ordertransition (C-ER and C-MC) lines merge into a first-ordertransition line at the same end point (see Fig. 4). Thefirst-order transition line, MC-ER, seems to be almost flat.The total current J starts to increase linearly with α andslowly saturates to a p-dependent value. The ER-C tran-sition point identified by requiring J = p is in excellentagreement with that obtained by other numerical tech-niques. For better understanding the critical behavior, wedecompose J to the local and nonlocal portions, which areshown in Fig. 5.Combining all results, we conjecture that the C-ER transi-tion is characterized by the MF exponents such as β = 1,
γ = 0 (log), ν = 2, θ = 1/2 and z = 1. Similarly, the MC-ER transition occurs at the same p values independent of

Table 3. At constant p, continuous and Discontinuous transition val-
ues and exponents (ER-C and ER-C/MC).

p 0.25 0.27 0.299
αc 0.385(5) 0.450(3) 0.64(1)

U4(pc) 0.197(9) 0.20(2) 0.33(1)
β/ν 0.51(1) 0.51(1) 0.10(1)
γ/ν 0.21(1) 0.23(2) 0.83(2)(χ2)m ∼ log(Ns) log(Ns) Ns/ log(Ns)1.4(1)1/ν (U4 data) 0.50(4) 0.50(4) 0.50(4)1/ν (ρr data) 0.50(5) 0.50(5) 0.50(5)
αc 0.385(3) 0.630(4)
θ 0.50(3) 0.475(9)1/z 0.94(6) 0.536(5)
R ∼ t/(log(t))0.6(2) t1/2(log(t))0.4(1)

Figure 6. At p = 0.25 and ρ0 = 1, data collapse plots of (a) ρr and
(b) U4 with αc = 0.385, β/ν = 0.51, and 1/ν = 0.50, and
effective exponent plots in dynamic simulations: (c) θ and
(d) 1/z. Based on the effective exponent plots, we can
determines the value of αc as well as the values of z and
θ at the same time, which are shown in Table 3.

α ≥ 0.7. Across the transition, there is a discontinuousjump in ρr with the exponents as β = 0 (jump), γ = 1(with 1/log(Ns) corrections), ν = 1, θ = 1/2 and z = 2(some log corrections). Our complete lists for numericalresults for the C-ER transition and the MC-ER transi-tion are tabularized in Table 1 and Table 2, respectively.When we fix p and vary α in the open setup (ρp 6= 0),we can observe the ER-C and C-MC transitions, or theER-C/MC transition, which depends on the value of p. Asshown in Table 3 and Fig. 7, we encounter two transi-tions, ER(FC)-C and C-MC, for p < 0.3 as α increases.The latter (C-MC) transition has also been studied in theoriginal parking garage model [10], so we here focus onthe former (ER-C) transition only. The critical behavior
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Figure 7. The 2D α − p phase diagram from our numerics in the
open setup.

of the order parameter ρr at and near the ER-C transitionobeys the same FSS relation with the same exponent set,so
ρr(∆, N−1

s ) = N−β/νs Ψ(N1/ν
s ∆), (6)where ∆ = α−αc . Based on inflection criteria for succes-sive slopes of ρr , we estimate the FSS exponent β/ν and

αc at the same time, which are consistent with those in Ta-ble 1. Our numerical data collapse very well (see Fig. 6).Note that the instability threshold αc seems to be inde-pendent of the total car density ρ0 . As long as p < 0.3,the system exhibits a new continuous phase transition be-sides two conventional phase transitions in the (ρ0 , α)phase diagram at fixed p values. We numerically investi-gate the locations of the C-N and MC-N transition linesat nonzero p and find that the location of the conventionaltransition lines depends on p. Since it turns out that theiruniversality class remains the same as before in the orig-inal parking garage model [10], we will not present themin detail.Our numerical data correct the MF phase diagram asFig. 7, which can be also argued by the so-called clusteranalysis. We adopt the clustering point of view for thesteady-state configurations in the C-type and MC-typephases once p 6= 0, where two kinds of clusters exist.One is the free cluster that is located in the bulk far fromthe reservoir (garage), and the other is the mother clus-ter that is attached to the reservoir. Since the detailedcluster analysis can be found in Sec. III and Sec. IVof Ref. [32], we briefly recall its basic concept and mainresults. By definition, the steady state has the same cur-rent everywhere, so the current of the free cluster shouldbe the same as that of the mother cluster. Let us con-sider that each cluster consists of three parts, the frontpart, the rear, and the bulk (the center of mass for a givencluster), write down the corresponding currents in terms

of MF-type approximations and find the conditions whenthey have the same values as the maximal current value.As a result, we can find the following results: the C-ER(or ER-C) transition occurs due to the instability of themother cluster by the small value of α , while MC-ER tran-sition eventuates due to the instability of the free clusters.Moreover, we have argued the nature of phase transitionsand scaling properties as well as the locations of pc . Thesimilar cluster analysis has been applied to the symmetriccase [33], where the ensemble equivalence issue has alsobeen discussed.
5. Conclusions

We have addressed how nonlocal dynamics affect one-dimensional (1D) nonequilibrium driven diffusive flow, incontext of the modified parking garage model by the to-tally asymmetric simple exclusion process (TASEP) withnonlocal hopping. By which, large-scale clustering andcoarsening in conserved systems are promoted. It wouldbe an especially interesting possibility for the behavior oftwo coupled systems: one of which evolves autonomouslybut influences the dynamics of the other. Unlike the con-densed (C) to fully condensed (FC) transition, the maximalcurrent (MC) or normal (N) to FC (or Empty Road, ER)transition is very sharp. The reasonable answer for theorigin of this discontinuous transition is the long-rangedcharacter of the interaction, which is responsible for phaseseparation. This phenomenon is reminiscent of colloidalsedimentation in suspending flows, resulting from the bal-ance between gravity and viscosity. In both cases, macro-scopic phase separation is observed, which is robust aslong as the instability exists. This kind of phase separa-tion might be understood in terms of barriers to remixingwhich grow with system size and result in a somewhatslow approach to the steady state. In addition, we needto figure out how the result of the periodic-like setup isdifferent from that of the periodic setup in order to dis-cuss the ensemble equivalence issue for the asymmetriccase, compared to earlier studies that do not exhibit anyphase transitions (neither clustering nor condensation) inthe thermodynamic limit1 [20–23].In the experimental point of view, it would be interest-ing to discuss a dramatic clumping transition as all carsform a condensate in the garage, namely the N-FC tran-sition. This implies that 1D naturally driven diffusive flowwill do so as well. Such transitions can be observed inmany real physical systems, such as the sedimentationof charged/uncharged colloidal crystals [5, 6], where themain issue is how to reduce the repulsion between poly-balls. Therefore, one may mimic realistic interactions be-
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tween balls besides on-site repulsion. However, it firstneeds to manifest the most general case (analytically moretractable). One can also find the relationship of our workto earlier work on related models where nonlocal hop-ping can be mapped to local diffusion in mass dynamicsas, for instance, in Ref. [18, 19], which contained a mass-conserving coalescence process with p = 1; in Ref. [20–22], which focused on steady-state mass distribution in theconserved-mass model with aggregation (nonlocal hoppingrate: 1) and fragmentation (local hopping rate: w) with-out spatial bias; in Ref. [23], which discussed the biasedconserved-mass model. The detailed relationship of ourresults to earlier results is in preparation1.
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