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I. GENERATION OF SCALE-FREE NETWORKS

In our simulations of the generalized epidemic process (GEP), we randomly generated the scale-free networks (SFNs)
according to the following three-step scheme.

Step 1. Depending on the value of «, fix the maximum degree as

N—-1 ifa>3,
kmax = (Sl)
|VN| if2<a<3.

This ensures that the degrees of adjacent nodes are uncorrelated [S1].

Step 2. Given the degree distribution

kfa

kmax /—a ’
k'=km k

PE = (S2)
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TABLE S1. Unsigned Stirling numbers of the first kind m for small non-negative integers j and 1.

U 0 1 2 3 4 5 6 7

j
0 1 - - - - - - -
1 0 1 - - - - - -
2 0 1 1 - - - - -
3 0 2 3 1 - - - -
1 0 6 11 6 1 - - -
5 0 24 50 35 10 1 - -
6 0 120 274 225 85 15 1 -
7 0 720 1764 1624 735 175 21 1

generate a degree sequence deterministically so that the number of nodes with degree k, denoted by INj, satisfies
|- T g
k' >k K>k

for every integer k € [k, kmax|. This method, used in [S2], reduces the noise stemming from the sample-to-sample

fluctuations of the degree sequence at finite N.

Step 3. Randomly connect the nodes according to the given degree sequence, avoiding the creation of self-loops

and multiple links between the same pair of nodes.

II. DERIVATION OF EQ. (4)

We first rewrite Eq. (2) of the main text as

00 n—1 k—1
fo=1- 3 s [ > (" a-wrea-gm e (ot wretena —q>k—1—m]
k=FKn, m=n

m=0

=1- ki;mpk{ G_;)nl (1 — pg)™t + nzzz (km 1) (1=xm [1 - G_i)nml] (1 — q)klm}
(S4)

1

whose validity can be easily shown by the binomial expansion of (1 — ug)*~'. Using a notation for the Lerch

transcendent

D, ,(2) = Z a (S5)

=0 ('U + Z)S ’



we can calculate the summations over k in Eq. (S4) to obtain

1 1—A\""
— 1_ 1_ knz_l@ai 1_
f(a) . (1 — u) (1 — pug) Lk (1= 11q)
n—2 n—m-—1
1 (1 — /\)m 1—A m dm km—1
T DR [1 (=) ] 0P [0 =0 b, (0] (56)

In order to expand the rhs of Eq. (S6) with respect to ¢, we note that the Lerch transcendent has a series expansion [S3]

—v - (lnz)z —v S—
D, ,(2) =2 ZCS_WT +27T(1 — 8)(—Inz)** (S7)
i=0
for any complex z with |lnz| < 27 and for real numbers s and v satisfying s # 1,2, 3,... and v # 0,—1,-2,....

Taking advantage of the generating function
i e [4]
In(l— )] = (=1)"-al -y M 5 (S8)
j=i '

for the unsigned Stirling numbers of the first kind m (whose values for small j and 7 are listed in Table S1), we can

derive a useful relation

a1 — 2 , , > ] ai !
@ -z 1 i[ln(l — )]t = (=1)F -l Z [ J } : . (S9)
j=i+1 '

1—=x i+ 1ldx

This in turn can be used to rewrite Eq. (S7) in a more convenient form

o (-1 . j—1 — s
(1—2)" ' (1—2) =) {Z(—l)i L j 1] csm} (;Cf it F(; - ) 111 1 0(2)]

=1 \i=0

o J+1 . j g
= {Z(_l)i+1 |:] * 1:| Cs—i+1,’u} % + M [1‘871 + O(xs)] s (SIO)

sl G i oo

where the second equality is obtained by the change of variables 7 — j 4+ 1 and ¢ — ¢ — 1. Using the above expansion

in Eq. (S6), a tedious but straightforward calculation yields

=S (S TEs )T {E e [T e

j=1 li=1 m=0
r2-—a) (1-A\\""'"[EZ /m+1-a 1—p\" ™ 5 9 1
1—pw)™ |1 - ——= —p” * O(q* S11
M CO‘_Lkm (l_l’(‘) 7;) m ( ,u) 1—)\ M l:q + (q )] ’ ( )
where ('::L/) is a generalized Binomial coefficient defined as

m m)!

<m,> _ /(! = 1) (! —m 4 1) (S12)



for any integer m’ and a non-negative integer m. The definition implies (”ﬂg) =(-1nm ('m/‘;"nm_l) for any negative m’

and (Tn/) = 0 whenever m > m' > 0. Using these properties and Table S1, the order ¢ component of f(q) is given by

o — (o 1— )\ n—1 n—2 _9 1_ nel—m
: “2:115 = <1 —,u> {Z (mm )(1 — )™ |1 - (1_/;) 1 H} q

m=0

a— - Sa— ].—>\ n-l 1 - nt 1 — T
s G o2 e

_ Sa—2kn = Ca—1ky, AL (S13)
Cafl,km

where 6, = 1 (6, = 0) for any integer m > 0 (m < 0). Then Eq. (4) of the main text is obtained by defining
gsn(A 1) as in Eq. (5) of the main text.

III. PHASE TRANSITIONS AT INTEGER DEGREE EXPONENTS

If the degree exponent « is an integer, the epidemic outbreaks and their associated critical phenomena are governed

by the behavior of @ ,(z) near z = 1 for a positive integer s. The relevant series expansion is given by [S3]

— v — = (ln Z)n —v (hlZ)Sil
D, ,(2) = 2 ;c_nT £ ) — )~ In(= ) (S14)
for |Inz| < 27 and v # 0,—1,—2,..., where we have introduced the notations
- (oo if s> 2,
Csw = (S15)
0 ifs=1

and ¥(s) = I''(s)/T'(s) for the digamma function. Using Eq. (S8), we can recast the above expansion into a more

convenient form

]

[ee} Jj+1 . 7 _1\s—1
(1)~ @0 =) {Z(—lwl s <+} e e+ (o) - (o)) + 0.

j=0 li=1
(S16)
Based on this formula, we can expand the rhs of Eq. (S6) as
oo (J+1 (_1)i+1 j+1 éafi,km i (_1)04—2 o
fla) = ; l:zl fi [ ; :|Co/—1km 9in (A1) ¢ — mgaﬁ,n(}uﬂ)q Ing
—1)e—2 1— )\ n—1
- M [W(k’m) —Y(a—1)] ga—2,n(A ) — <1H> {HO‘_Q In p
min[a,n]—2 1—u n—1—m mal—a
— Z (1 — )™ [1— (1)\) ] ( . ) [W(a—1)—¢(a—1—m) }]qa_Q—i—O(qa_llnq),
m=0
(S17)

where we have used g, (A, ) defined in Eq. (5) of the main text. The main difference between Eq. (4) of the main
text and Eq. (S17) lies in the presence of ¢~ 2?In ¢ in the latter, which is always lower-order than ¢®~2. If o > 5, the



term is simply irrelevant to epidemic outbreaks. If a € {3,4,5}, the logarithmic correction has nontrivial effects on

the transition behaviors, as discussed case by case below (see Table S2 for a summary).

Case of a = 5: the lowest-order terms of Eq. (S17) are given by

) = (3,km — G4,k A+ G2,k — 33,k + 2Ca ki,

n A?
n % G20\ 1) @® + gan (A 1) ¢Ing+0(q*), (s18)

6C4,k,,

whose form is similar to the corresponding recursive relation for a non-integer a > 4. Based on the same arguments
described in the main text, the epidemic threshold is obtained as Ac = (4 k., /((3,k,, — Ca,k,, ), and the tricritical point
(TCP) satisfies g2 5 (Ac, ) = 0, which has a physical solution p; = A./(1—A¢) € (0,1) for n = 2 and sufficiently large

k.. Near the TCP, we can approximate the above equation as
0 2 €xq + Cakp €00° — Chy g, 0" In gl (S19)

where cq ,, and ¢, are positive coefficients. Thus the behavior of the outbreak size in this regime satisfies

ex/€ul if €, <0, |eu] > |ex Iney |2,
re~ g e/ Inen 2 fe,| < JexIney |2, (S20)
€/l Ine, if €, >0, €, > |exlney|'/2.

Case of a = 4: the lowest-order terms of Eq. (S17) are obtained as

G2k — 3,k go.n( A, 1)
— y'vm k) m A _ b
/@ (3,km, 1 23k,
7 1
2(3,k,,

min[4,n]—2

D S [1 - (ﬂ)m] (%) ) - v - m }

m=0

¢*Ing

n—1
[[342,,% — 2k, + (k) — B(3)] gn (A 1) — G_:) { 2

7> +0(¢*Ing), (s21)

which implies that the epidemic threshold is at A. = (3.1, /(C2.k,, — (3.k,,,) and that the TCP satisfies g2 n(A¢, pte) = 0.
As was the case for a > 4, the TCP exists only for n = 2 and sufficiently large k,,. The near-TCP properties are
described by

0~exg+ ca,kme#q2| Ing| — cfl’kmq2, (S22)

for positive coefficients cqk,, and ¢, , . Thus the outbreak size in this regime obeys

ex/lepIn(ex/leu])| if e, <O, |eu| > [Iney|t,
T~ g g e if e, < |Iney| 71, (523)

efc;,km/(ca,kmﬁu) lf 6!’« > 0’ ‘G,U«| > |1n€)\|71.



TABLE S2. Scaling exponents describing tricritical properties of the GEP (if TCPs exist) on random SFNs for integer degree
exponents a.

Py ~ efc T~ eft €u ~ ef
a=5 €x lex/Inex|'/? lex Iney|!/?
a=4 lex/Iney] €x |Iney|~?
a=3 YR A0 A

Case of a = 3: the lowest-order terms of Eq. (S17) are given by

n—1
Fl@) =~ ——alng - —— [[@,km ) =02+ (1) {ulnu
2 km €2,k

min[3,n]—2

-y - [1 - (U)m] (%) v - vz - m) }

m=0

q+0(¢%). (524)

At the vanishing epidemic threshold (A, = 0), ¢ = f(¢) has (cannot have) a positive root if the sign of the ¢ term on
the rhs is positive (negative). Thus pu; is given by

pnp = >0 (1= )™ 1= (1= )"

m=0

min[3,n]—2 m—9
m

) WB(2) — (@ —m). (525)

We note that p; obtained from the above equation is in general not equal to lim, 3 p; obtained from Eq. (6) of the

main text. If u < pq, the transition behaviors are described by the approximate formula
0~ ok, Al ngl+ (chp, € — oy N) 45 (S26)
where ¢ k,,, €, 1, » and ¢, ;. are positive coefficients. In this case, the outbreak size satisfies
T~ g~ A et en etk A)/ (CarkmA) (S27)

As €, approaches zero so that |e,| < A (which can be represented as ¢ = 1), r abruptly becomes nonzero for an
arbitrary positive value of A. In contrast to the other cases, here r can be already nonzero at A = A, and g = p; in a

manner analogous to a discontinuous transition.

IV. ILLUSTRATIONS OF ACTUAL OUTBREAKS

The importance of hubs in the MOTs for 3 < a < 4 is more directly illustrated in Fig. S1. Using the color
scheme described in Fig. S1(a), each circular diagram of Fig. S1(b) shows the final state of the GEP with n = 3
at A = A\, and p = 0.5 on the random SFNs with N = 360 nodes and k,, = 4. More specifically, each rod on
the periphery corresponds to a node, aligned clockwise in the order of decreasing degree (nodes of equal degree are
randomly ordered). The seed node (chosen to be the node of the highest degree) is black, the nodes infected in the
Si-state are orange, and those infected in the Sa-state are red. The uninfected nodes are left as vacancies. The links
are drawn with grey lines only if they connect two infected neighbors. By comparing these two examples of epidemic
outbreaks at o = 3.5 and 4.5, it is clear that the So — I infections (red nodes) are especially frequent among the

high-degree nodes in the case of a = 3.5. This reflects the dominant role played by the hubs in the system-wide
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FIG. S1. Examples of the GEP with n = 3. (a) Entire dynamics on a five-node network. Each thick arrow represents a time
step. Central box: in the final state, the seed is colored black, the nodes infected with probability A () are colored orange
(red), and only the links connecting the infected nodes are shown. (b) Examples of the final state of the GEP on the SFNs
with kn = 4 at A = A, and g = 0.5. The rods (both colored and white) on the boundary correspond to the nodes, aligned
clockwise in the order of decreasing degree. Only the infected nodes and their mutual links are shown according to the color
scheme shown in (a). Here the seed is located at the node of the highest degree (the black rod).

avalanche for 3 < a < 4 (note that g = 0.5 > p; ~ 0.371 in this case). In contrast, for « = 4.5, the high cooperation
threshold n = 3 and the dominance of two-neighbor effects reduce the significance of cooperative infections among the
hubs at the transition, which is bound to be purely continuous. Consequently, the nodes infected by the cooperative
mechanism are more evenly distributed among different degrees in the latter case.

V. NEAR-TCP CROSSOVER FOR a =5.5

In Fig. S2, we show the near-TCP crossover behaviors for the GEP with n = 2 on the SFNs with a = 5.5 and
k., = 4, supplementing Fig. 2 of the main text.
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FIG. S2. The near-TCP crossover behaviors for « = 5.5 and n = 2 described by Eq. (8) of the main text. The lines are
obtained from the roots of Eq. (4) of the main text, and the symbols are simulation results obtained using 10° SFNs with

N = 10" and k., = 4. The upper (lower) data correspond to the ¢, < 0 (e, > 0) regime. To remove overlaps, all data for
€, < 0 have been divided by 10°.



VI. COMPARISON BETWEEN THEORY AND NUMERICS

In Fig. S3, we show that deviations of the numerical data from the theoretical predictions of (R) converge to zero

as the network size N increases to infinity.
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FIG. S3.  (Left) Error ratio of (R) (i.e. ;‘;‘;‘iim — 1) for scale-free networks with @ = 2.5 and k,, = 4 at A = 0.11 and

p = 0.08. The dashed line indicates a power-law decay N~%27. (Right) Error ratio of (R) for scale-free networks with o = 3.5
and k,, = 4. The error bars indicate the range of sampling error.
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