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Effect of Thermal Noise on Conserved Lattice Gas
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We present a modified conserved lattice gas (CLG) model in two dimensions with a thermal noise
parameter, P = exp(−1/T ), where T is the effective temperature. In particular, we focus on the
interplay of thermal noise P and the total density of particles ρ in the CLG model. The universality
class of the case of 0 < P < 1 can be compared with P = 0 and P = 1 cases. We discuss the critical
behavior of absorbing phase transitions in the generalized CLG (GCLG) model by two well-defined
order parameters: one is the density of active particles (a pair of consecutive particles) and the
other is the density of energy-loss particles. While the former is useful at P = 1 (T = ∞) as the
typical one in nonequilibrium absorbing phase transitions, the latter is suggested as the best at
P = 0 (T = 0) due to the oscillatory behavior in the localized active phase. Based on extensive
numerical tests, we find that the density of energy-loss particles can also be a good indicator even
for finite P values. Finally, we propose a schematic phase diagram of the GCLG as P varies.
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I. INTRODUCTION

Lattice gas models have been extensively studied for
understanding dynamic phase transitions and critical
phenomena in nonequilbrium systems [1, 2]. Among
them, the conserved lattice gas (CLG) model is well
known as the simplest one that exhibits absorbing phase
transitions (APTs) with a conserved field. APTs are dy-
namic phase transitions from dynamically active phases
to absorbing (dynamically dead) phases where the ac-
tive particle density is the order parameter from nonzero
finite values to zero. For last decades, the universality
class of APTs has been intensively discussed with the-
oretical scenarios and numerical confirmations, so that
it has been well established depending on the symmetry
of absorbing states [3]. It was also discussed that the
criticality of APTs could explain the critical tuning of
the self-organized critical (SOC) [4–7] sandpile models.
Hence the CLG model can be considered as the stochas-
tic variant of a lattice gas model in the study of 1/f noise
in driven systems [8].

Since Rossi and coworkers [9] first introduced the CLG
model with short range stochastic microscopic dynamic
rules to discuss the universality class of APTs with the
conserved field, Lübeck and coworkers had continued the
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investigation of the CLG model from the critical tuning
parameter to critical exponents for various dimensions
and discussed the upper critical dimension issues [10,11].
In order to check the conjecture for the universality class
of APTs in the absence of additional symmetries [12], a
variety of stochastic models with infinite absorbing states
were suggested, where dynamical processes are coupled
to a non-diffusive conserved field (see Refs. 9–18 and ref-
erences therein).
During the relaxation process, the one-dimensional

(1D) CLG model can only minimize the total number
of particle bonds, so that the critical density is exactly
1/2. To find the same condition in two-dimensional (2D)
CLG model, the noise parameter was first suggested by
Yang and coworkers [17]. In the 2D generalized CLG
(GCLG) model, the noise parameter plays a role of an ef-
fective temperature in particle dynamics, which restricts
the movement of active particles depending on the num-
ber of the nearest neighbors before and after the change,
such as temperature in equilibrium systems. Yang and
coworker intended to design that the noiseless case of
the 2D GCLG model exhibits two symmetric absorbing
states with the half-filled checker-board type patterns.
However, for the noiseless case, any critical behaviors

cannot be detected by the order parameter of the original
CLG model at any density conditions. Through careful
inspections, it was attributed to irrelevant contributions
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of the immobility and the oscillation of particle move-
ment. To resolve this, Yang and coworkers proposed a
new order parameter in the 2D GCLG model. Based on
numerical tests for the two-limiting cases, it was found
that this new order parameter was able to identify the
criticality of two-limiting cases evenly well. The noiseless
case only becomes critical at the half-filled system and
the ordinary case does at the same critical density found
by the original order parameter. Moreover, two-limiting
cases belongs to the different universality classes. In our
earlier work [18], we studied the GCLG dynamics in un-
correlated random networks to confirm the mean-field
results of the GCLG criticality as the noise parameter
varies, with two distinct order parameters.

In this paper, we revisit the 2D GCLG model for all
levels of the thermal noise, and discuss the effect of the
thermal noise on the universality class of the 2D GCLG
model in the context of two distinct order parameters.
In particular, we focus on glassy behaviors at the inter-
mediate level of the thermal noise, which is observed in
static simulations. Based on extensive numerical tests,
we argue which order parameter can identify the critical-
ity of the 2D GCLG model better. Finally, we suggest
the schematic phase diagram with the noise parameter
and the total density of particles as well as the univer-
sality classes of the 2D GCLG model.

II. MODEL

Consider the 2D GCLG model in a periodic L × L
square lattice, where each site can be occupied by at
most one particle. Each particle can be categorized as
either active if it has at least one neighbor or inactive
one. Moreover, active ones can be colored with by of
four colors (red, yellow, blue, and black). The color in-
dexing depends on the possibility of the move and the
change before and after the particle move. Red particles
can decrease the number of active bonds Nb, blue ones
can only increase Nb, and yellow ones cannot change Nb,
while black ones are immobile and cannot move any-
where.

The configuration energy can be specified as follows:

ε(σ) = J
∑
〈i,j〉

σiσj , (1)

where J > 0 denotes the repulsive binding energy, 〈i, j〉
means the nearest neighboring pairs, and σi = 0, 1
is the occupation number at site i. The tuning pa-
rameter of the 2D GCLG model is the total density
of particles ρ =

∑
i σi/L

2 and the noise parameter is
P = exp(−1/T ). Here T is an effective temperature
from 0 (P = 0) to ∞ (P = 1). The Metropolis-Hastings
algorithm is implemented to the movement of active par-
ticles in the GCLG dynamics with the following accep-
tance (transition) probability function:

pa(Δε) = min{1, PΔε}, (2)

Fig. 1. (Color online) Schematic illustrations of three-
colored active particles, energy-gain (blue), energy-loss (red),
and the energy-conserving (yellow) ones, which can move
to an empty site with an acceptance probability pa =
min{1, PΔNb}, where P is the thermal noise parameter, and
ΔNb is the change of the number of active bonds: In the
middle panel, a red particle can be moved to either (a) the
left with ΔNb = −1 or (b) the right with ΔNb = 0.

where the configuration energy difference between two
configurations, σbefore and σafter, is exactly the same as
the number of changed active bonds, Δε = ΔNb. With
the transition probability pa, active particles move to the
targeted empty sites if the move can reduce the number
of active bonds as P decreases (T → 0). Hence the
original CLG model corresponds to the GCLG model
with P = 1.
The GCLG model dynamics with P is summarized as

follows:

1. Choose a site at random from the active list of
particles, of which the total number is Nact = N −
δ(
∑

〈i,j〉 σiσj). Here δ(x) = 1 if x = 0; 0 otherwise,

and 0 ≤ Nact(t) ≤ ρL2. This is the rejection-free
algorithm of the CLG model.

2. Unless the color of the chosen particle is black, it
moves a randomly chosen empty site among the
nearest neighboring sites with pa. After this trial,
the simulation time is updated from t to t + Δt
with Δt = 1/Nact(t), and the active list is updated
as well as Nact if the trial is accepted. The time
update is independent of the success of the trial.

3. Keep the above procedures in order until t is not
smaller than tmax (the maximum simulation time)
or there are no mobile particles in the active list of
the system, which is either empty or black colored
only. It is noted that black colored ones are counted
to the number of active particles but they cannot
move anywhere since all of the nearest neighboring
sites are already occupied by other active particles.

Figure 1 represents the GCLG model dynamics, where
we show that a red particle in the middle panel can be
either (a) blue or (b) yellow, provided that the move
is accepted. We employ two order parameters: one is
the density of active particles, ρact, and the other is the
density of red particles, ρred. In previous studies [17,18],
the latter one turns out to be the best indicator for the
zero-temperature GCLG model. In the next section, we
show how to numerically investigate the critical tuning
density as the thermal noise parameter P varies.
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Fig. 2. (Color online) For the 2D CLG model (the case
of P = 1, i.e., T = ∞), (a) the red-particle (red, from now
on) density, ρred ∼ t−δ are double-logarithmically plotted
against t as the total density of particles ρ varies, which in-
dicates ρc,∞(P=1) = 0.34715(4); (b) the effective decay expo-
nents are plotted as the function of 1/t in semi-logarithmic
scales, which implies that δ = 0.42(5); (c) the FSS theory
of the red density (below) is numerically tested by plot-
ting the scaling function F(x) = ρredL

α as a function of
x = tL−z with α = β/ν⊥ = 0.62(5) and z = 1.52(5) for
L = {200, 400, 800, 1600}. Here numerical data with sym-
bols are averaged over all samples, O(102), and the upper
data collapse correspond to F(x) of ρact.

III. NUMERICAL RESULTS

We perform Monte-Carlo simulations in the 2D GCLG
model in order to investigate its criticality as ρ and P
vary. In particular, we focus on the dynamic simulation

Fig. 3. (Color online) For the cases of (a) P = 0.75 and
(b) P = 0.5, ρred is double-logarithmically plotted against
t, which indicates critical scaling behaviors as f(x) ∼ t−δ

at ρc,P=0.75 ≈ 0.375875 with δ = 0.42 and ρc,P=0.5 ≈ 0.4750
with δ = 0.17. Numerical data are averaged over 120 samples
for L = 1600, where symbols (lines) are averaged over all
(surviving) samples.

of APTs and employ the rejection-free algorithm of the
ordinary CLG model with the active list of particles. The
system initially starts with random configurations of the
total density of particles (0 < ρ ≤ 0.5), so that ρact ≤ ρ
and ρred ≤ ρact. At the critical tuning density, we expect
either that both algebraically decay as ρact ∼ ρred ∼ t−δ.
To check out the validity of our numerical methods

and the finite-size scaling (FSS) theory before the inves-
tigation of the thermal effect on the 2D GCLG model,
we first reproduce all the results of the ordinary 2D CLG
model in terms of the red density ρred by setting P = 1,
which are presented in Fig. 2. As shown in Fig. 2, ρred
can also indicate exactly the same results of the ordinary
CLG model as those of the ordinary order parameter at
the same critical tuning density.
At the criticality (ρ = ρc), the order parameter of

APTs exhibits the FSS behaviors:

ρact(t, L) = L−αF(tL−z) =

{
t−δ if t � Lz,

L−α if t 	 Lz,
(3)

where α = β/ν⊥, δ = β/ν‖, and z = ν⊥/ν‖. The static
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Fig. 4. (Color online) The critical behaviors of (a) ρact
and (b) ρred are double-logarithmically plotted against t at
ρ = ρc,P for the cases of 0 ≤ P ≤ 1, where numerical data
are averaged over 120 samples for L = 1600.

exponent β is originated from the off-critical behavior:
ρact ∼ εβ with ε = ρ − ρc for ρ > ρc in the steady-state
limit as L → ∞. Near the criticality, the correlation time
and the correlation length satisfy the scaling relation of
τ ∼ ξz, derived from τ ∼ ε−ν‖ and ξ ∼ ε−ν⊥ . It is noted
that we only focus on the exponent δ for the cases of
0 < P < 1 in this paper.

In Fig. 3 and Fig. 4, we present extensive numerical
tests of the GCLG model with P for the indication of the
critical tuning density ρc,P , in terms of dynamic simula-
tions, where we employ both ρact and ρred as the order
parameter. In Fig. 3, we find that the GCLG model
with P = 0.75 belongs to the same university class of
the ordinary one at the different critical tuning density
ρc,P=0.75 
 0.375875 > ρc,∞. However, the critical be-
havior of the GCLG model with P = 0.5 quite different
at ρc,P=0.5 
 0.4750 from the cases of P �= 0.5 (see Fig. 3
and Fig. 4). As compared to all other cases in Fig. 4, nu-
merical data can be categorized as three-distinct scaling
behaviors at P = 0, 0.5, and 1 with the different decay-
ing exponent δ = 1, 0.17, and, 0.42, respectively.

For the 2D original CLG model [9] at ρc,∞ 
 0.34715,

Table 1. The critical tuning density of the 2D GCLG
model and its decaying exponent of the red density are sum-
marized: ρred ∼ t−δ at ρ = ρc,P .

P 1a 0.75 0.5 0.25 0b

ρc 0.34715(4) 0.375875(4) 0.4750(4) 0.499250(4) 0.5

δ 0.42(5) 0.42(4) 0.17(2) 0.42(7) 1.0(2)c

aThe original CLG model [9].
bThe zero-temperature GLCG model [17].
cIt seems to have some logarithmic corrections.

Fig. 5. (Color online) The phase diagram of the 2D GCLG
model is schematically illustrated.

critical exponents are δ 
 0.43, α 
 0.81, and z 

1.52, while for the zero-temperature GLCG model [17]
at ρc,0 = 0.5, δ 
 1.28, α 
 2.0, and, z 
 1.55. While
both ρact and ρred work well for the case of P > 0.5, ρred
seems to indicate the criticality of the system better than
ρact for the case of P < 0.5. As P → 0, the oscillation of
yellow particles becomes relevant in the active density.
Based on the extensive numerical results of P values

presented in Fig. 4 and Table 1, we suggest a schematic
phase diagram of the 2D GCLG model with P . In Fig. 5,
the lower guided line corresponds to ρ = ρc,∞(P=1) at
which the ordinary CLG model (P = 1) yields nonequi-
librium absorbing phase transitions, whereas the up-
per one corresponds to ρ = 0.5 at which the zero-
temperature GCLG model (P = 0) exhibits the critical
decay of ρred ∼ t−δ0 as δ0 ≈ 1.

To provide a comprehensive picture for the origin of
the anomalous critical behavior near P = 0.5, we nu-
merically investigate the effect of the thermal noise on
the temporal behaviors of two distinct indicators, ρact
and ρred. Overall, the critical tuning density gets larger
as the thermal noise decreases, ρc = ρc,∞ → ρc,0. For
ρ < ρc,T , the system becomes inactive (oscillating) if
P > 0.5 (P < 0.5), while for ρ > ρc,T , the system be-
comes active (oscillating) if P > 0.5 (P < 0.5).
Figure 6 shows that ρred can identify the anomalous

temporal scaling of the half-filled system (ρ = 0.5) for
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Fig. 6. (Color online) At ρ = ρc,0 = 0.5, we numerically
speculate how thermal noise affects the temporal behaviors
of ρact and ρred for the cases of 0 < P < 1, where numerical
data are averaged over 120 samples for L = 1600.

P < 0.5, compared to the temporal behavior of ρact.
This implies that the red density can be an optimal order
parameter of the GCLG model with the thermal noise,
as discussed in Ref. 18.

IV. SUMMARY WITH REMARKS

We have studied the interplay of the noise parameter
P = exp(−1/T ) by an effective temperature T and the
total density of particles ρ in the two-dimensional (2D)
conserved-lattice gas (CLG) model. As thermal noise
decreases, the critical tuning density ρc increases up to
1/2 for the noiseless case. In the small-noise (T = 0)
limit, ρc,T → 1/2, ρred ∼ t−δ0 with δ0 ≈ 1, while in the

large-noise (T = ∞) limit, ρred ∼ t−δ∞ with δ∞ ≈ 0.4.
In the intermediate level of thermal noise, we observed
anomalous scaling, which is maximized at P = 0.5 as
ρred ∼ t−δ with δ ≈ 0.17 (neither δ0 nor δ∞).
To sum up, it is found that the 2D generalized CLG

(GCLG) model exhibits three-distinct critical scaling in
temporal behaviors. A possible future work is the finite-
size scaling analysis in the presence of thermal noise,
which enables us to conclude the universality issue of
the 2D GCLG model.
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