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Social contagions have two major features: the cooperation among spreaders and the dominance
of hubs. By exactly solving the generalized epidemic process on random scale-free networks with
the power-law degree distribution pr ~ k™%, we clarify how the interplay between the two fea-
tures affects the transition between endemic and epidemic phases. Our results show that, even
if cooperation requires a large number of infected neighbors, for o < 4 the hubs can still induce
distinctive cooperative phenomena, namely mixed-order transitions with the characteristics of both
continuous and discontinuous transitions. We also find that for 2 < o < 3 an epidemic outbreak is
possible purely through cooperative infections of hubs. The changing role of hubs is manifest in the
nonmonotonic behaviors of the crossover exponent in the vicinity of the tricritical point.

There has been a growing body of literature on the
mized-order transitions (MOTs), which qualify as both
continuous and discontinuous phase transitions depend-
ing on the chosen order parameter. Such transitions ap-
pear in many different contexts, such as DNA unzip-
ping [1, 2], Ising spins with long-range interactions [3],
and various percolation models with the biased merging
of clusters [4]. A common aspect of these systems is the
existence of long-range interactions, which enhances the
probability of a large-scale avalanche over a finite fraction
of the system at criticality [5].

Recently added to the list are the epidemic models of
cooperative contagions [6-24], in which the probability
of infection (or transmission) changes according to the
number of other spreaders sharing the same target. Such
mechanisms are at work in the adoption of new behav-
iors [25] and the cooperative co-infections [26, 27]. For
simple contagions, in which every infection occurs inde-
pendently, it is well known that the transition between
the endemic and the epidemic phases is purely continu-
ous [28]. In contrast, with sufficient boost from cooper-
ations, in cooperative contagions the transition can be a
MOT: a continuous transition of the outbreak probabil-
ity coincides with a discontinuous jump of the outbreak
size [10-24]. Moreover, the lines of MOTs and purely con-
tinuous transitions join at a tricritical point (TCP) with
its own critical properties [29]. As in the other examples,
the long loops of the underlying substrate, which facili-
tate the crossing of different infection pathways at crit-
icality, plays a crucial role in the large-scale avalanches
producing the discontinuous jump [16-18].

A natural question is how the conditions for the MOTs
depend on the structure of the underlying substrate.
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Most studies have addressed the question in homoge-
neous structures, such as lattices [10-13, 17, 22] and Pois-
sonian random networks [8-10, 15-23], where a MOT re-
quires a sufficiently strong boost from the cooperation of
two neighbors [8-10]. However, contagions typically oc-
cur on heterogeneous structures: for instance, social net-
works feature a significant fraction of highly-connected
individuals called hubs, whose existence is typically mod-
eled by scale-free networks (SFNs) with a power-law dis-
tribution pg ~ k™% of the number of neighbors k (called
degree) [30, 31]. Since the large variance of k in the SFNs
leads to a large number of loops [32], it is natural to ex-
pect that the interplay of cooperativity and hubs is a
crucial factor determining the transition behaviors of co-
operative social contagions.

In this study, we show that an abundance of hubs fa-
cilitate MOTSs, even if cooperation takes effect only with
an arbitrarily large number of infected neighbors. To this
end, we study the generalized epidemic process (GEP), in
which the probability of infection depends on how many
other neighbors have unsuccessfully tried to infect the
target individual [10]. The model has been studied on
lattices [10-13] and Poissonian [10, 15] or modular ran-
dom networks [14], with the simplifying assumption that
the infection probability changes at the second attempt.
We introduce the general cooperation threshold n > 2
so that the infection probability changes at the n-th at-
tempt. Based on the exact solution of the GEP and its
near-TCP behaviors for different values of « and n, we
clarify the role of the hubs in the endemic-to-epidemic
phase transitions.

Dynamics. — In the GEP, a node can be susceptible
(S1), weakened (Sz), infected (I), or removed (R). All
nodes are initially Sy, except for one randomly chosen
I-node (the “seed”) starting the contagion. At each time
step, a random I-node attempts to infect all of its S1- or
S2-neighbors, each of the former (latter) with probability
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FIG. 1.

(a) The GEP with n = 3 on a five-node network. Each thick arrow represents a time step. (b) Examples of the

transitions of r in the GEP with n = 3 on the SFNs. Inset: a magnified view of the double phase transition for («, p) = (4.5, 1).
(¢) The a-dependence of the TCP (¢, pt) and (d) the scaling exponents in Table I. The SFNs in (b)—(d) have kn, = 4 (see

Eq. (1)).

A (). Upon success, the target becomes I. A failed at-
tempt does not affect the target unless it is the (n—1)-th
attempt on the same S;-node, in which case the node be-
comes So. After then, the attacking I-node immediately
deactivates and becomes R, permanently removing itself
from the dynamics. The process goes on until the net-
work runs out of I-nodes. The final fraction of R-nodes,
denoted by 7, quantifies the outbreak size. As a simple
example, the GEP with n = 3 on a five-node network is
illustrated in Fig. 1(a).

Substrate. — The GEP spreads on an ensemble of
infinitely large random SFNs constrained by two condi-
tions. First, the degree distribution obeys a power law

(1)

where the generalized zeta function (s ,, defined as the
analytic continuation of > °° k~* for s # 1, normal-
izes the distribution. The assumed range of « ensures
that the mean degree (k) = (o—1.,,/Ca,k,, is finite and
that the network is locally tree-like with negligible short
loops [33]. Second, there is no correlation between the
degrees of adjacent nodes. These two conditions guaran-
tee that a node and each of its neighbors have mutually
independent statistics, based on which one can exactly
calculate the transition behaviors of r.

o =k"%/Cak,, fork >k, anda>2,

Transition of outbreak probability. — First, we discuss
the transition of the probability P, that an epidemic out-
break with » > 0 occurs. On locally tree-like networks,
multiple infection pathways rarely cross at the same node
unless the contagion has already spread to a finite frac-
tion of the network. For this reason, p is completely ir-
relevant to the transition from P,, = 0 to Py, > 0: only
A controls the transition by a bond-percolation mecha-
nism. Thus one can simply apply the theory of bond
percolation on the random SFNs [34, 35] to obtain the

transition point (or the epidemic threshold)
(k)
A, = { (R(E=D)
0

which lies between 0 and 1 for sufficiently large k,,. The
percolation theory [36] also shows that the transition can
only be continuous with the universal scaling behavior
Py ~ ef“ for small positive €y (A = Xo)/ A, where
the a-dependent values of the critical exponent (. are
listed in Table I. Such equivalence has also been noted
for the GEP [10, 15] and other similar cooperative con-
tagions [16-21] on homogeneous networks.

_ Co—1,km
Ca—2,km —Ca—1,km

for a > 3,

(2)
for 2 < a < 3,

FExact outbreak size. — In contrast to P., the out-
break size r depends on p as the loop effects exist when-
ever 7 > 0. Here we present an exact calculation of the
dependence based on a standard tree ansatz for the ran-
dom SFNs [10, 15, 34, 35]. To this end, we consider the
probability ¢; that a node [ links away from the seed is
eventually infected. For simplicity, we assume k,,, > n—2,
which does not affect the main results. Then ¢; evolves

TABLE I. Scaling exponents describing tricritical properties
of the GEP on random SFNs.

5t Bc ¢
a>5 % 1 %
1 a—4
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3<a<4 1 L 4—a
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by a map ¢;+1 = f(g;) defined as

% k-1
fla@)=1— Z Dl [ Z (km 1) (1 — A)minlmn—1]

k=K m=0

X (1 — pymaxlOm=nitlgn (1 — qz)’“m] )

where p) = kpi/(k) is the degree distribution of a node
at the end of a path, weighted by k because higher-degree
nodes are more likely to be connected. Each summand
gives the probability that the node survives m infection
attempts from its neighbors. If ¢; saturates to a stable
fixed point q as | — oo, r is similarly obtained as

[eS) k
k .
-1 — _ \\min[m,n—1]
ST D oY (A ITEY
k=km m=0
% (1 _ 'u)max[o,mfnJrl]qzn(l _ ql)km] ’ (4)

where p;, appears instead of pj, because all nodes have
equal weights regardless of k in the definition of r. For
any choice of parameters, Egs. (3) and (4) provide an
exact, albeit implicit, solution for r. Examples of the
exact results are shown in Fig. 1(b) for the GEP with
n = 3 on the SFNs with k,, = 4.

Conditions for MOTs. — A MOT occurs at A = A,
when it coincides with a discontinuous jump of r. Since
Eq. (4) implies r ~ (k)\g, the transitions of r should be
of the same type as those of ¢. The latter are encoded in
the small-¢; expansion of Eq. (3), which for noninteger o
is given by (see Appendix B for the detailed derivation)

f(ql) — Ca—?,km - Ca—l,km AQI
Ca—l,k’m

a— -3 o
n << 3,km C 2,k =+ 1) gQ,n()‘HU’) ql2
2Ca71,km
(2 — o o min[3,a—

where I' is the gamma function, and g ,, is defined as
1—-A\""! 2 m—1-s

S,M >\7 =\ -t
senlon) = (1) { u+;)( )

< (1= p)m [1 - G:‘A‘)nlm] } (6)

Here qu with an integer j corresponds to the contribu-
tion from j neighbors, while qf“Z stems from the hubs.
We note that the latter gets an extra factor of Ingq; for
the special cases where « is an integer, which leads to
some complications (see Appendix C for more detail).
By standard methods, one observes that ¢ = 0 is stable
(unstable) if f/(0) < 1 (f’(0) > 1) and that the sta-

ble fixed point changes continuously (discontinuously) at
£/(0) = 1if f7(0) < 0 (f”(0) > 0) there. Whether the
map (3) meets these criteria is determined by the signs of
the two lowest-order terms of Eq. (5). Then it is easy to
check that the transition between » = 0 and r > 0 occurs
at A = A given by Eq. (2). Moreover, the transition of
r is continuous (discontinuous) if g < py (p > pt), where
ue € [0,1] is a solution of

gmin[Q,a—Q],n()‘c, ,Uft) =0 (7)

for any noninteger o > 2. In Fig. 1(c), we show examples
of A\. and p; on the SFNs with k,, = 4 satisfying this
equation. The solvability of Eq. (7) has the following
implications:

(i) If & > 4, for n = 2 the solution is pu; = lf—g\c, which
depends on a only through A.. This is because the transi-
tion type is determined by the sign of ¢7 in Eq. (5), which
is a two-neighbor effect. On the other hand, for n > 3
there is no solution because g2 ,(Ac, 1r) = —A2 < 0; in
other words, f”(0) < 0 always holds, so the transition of
r is always continuous. Here p comes into play only for
three-or-more infected neighbors, so it cannot affect the
sign of ¢7.

(i) If 3 < a < 4, Eq. (7) is explicitly dependent on «,
reflecting the dominance of the hub-induced qf“2 term.
Here the solution exists for any n > 2, implying that
cooperation requiring a large number of neighbors can
still create a large-scale avalanche at A. because many
infection pathways converge at the hubs. We note that
u: obtained from Eq. (7), depending on k,,, can still be
larger than 1 and thus impossible to achieve, as shown
for k., =4 in Fig. 1(c).

(iii) If 2 < a < 3, for any n > 2, yu; = 0 is the only
solution. This captures limy o r being positive (zero) for
p >0 (p = 0); in other words, there are so many infection
pathways crossing at the hubs that, regardless of n, u
alone can induce an outbreak with little aid from A.

Based on these results, one can interpret the transi-
tion behaviors of the GEP with n = 3 on the SFNs with
km = 4 illustrated in Fig. 1(b). For o = 3.5, both con-
tinuous and discontinuous transitions of r are possible at
Ae = 0.104 with the boundary at u; =~ 0.371, whereas for
a = 4.5 (see the inset for a magnified view) r undergoes
a continuous transition belonging to the bond percola-
tion universality class (8. = 1) at Ac = 0.203 even in the
extreme case 4 = 1. Notably, there is a secondary dis-
continuous transition (marked by dotted vertical lines)
at A > A., whose possibility is not excluded by our ar-
gument. This phenomenon seems to be related to the
double phase transitions reported in [23] and will be dis-
cussed in detail elsewhere [37].

Tricritical behaviors for o > 3. — For small and pos-
itive €y, a Taylor expansion of Eq. (5) about (A, p) =
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FIG. 2.

The near-TCP crossover behaviors for n = 2 described by Eq. (9). The lines are obtained from the fixed points of

Eq. (5), and the symbols are simulation results obtained using 10° SFNs with N = 107 and k,, = 4. The upper (lower) data
correspond to the €, < 0 (¢, > 0) regime with (a) a = 5.5, (b) a = 4.5, and (¢) @ = 3.5. To remove overlaps, all data for
€, < 0 have been divided by 10°. All plots use the same values of |e,|.

(Ae, p1r) yields

(6)\/|6u|)ﬁC if |6u| > Ci), € < 0,
if |y < ef, (8)
if e, > €2, €, > 0,

T~ g eft
eﬁt/¢

where €, = (1 — )/, the exponents 8. and §; are
shown in Table I as well as Fig. 1(d), and ¢ = 1 — 8;/fe.
The new exponent §; clearly reveals the unique critical
behavior of r near the TCP (A, u) = (Ac, ue). The ex-
ponent ¢, which governs the crossover between different
scaling regimes, exhibits nonmonotonic behaviors that
reflects the changing role of the hubs in different ranges
of o (see Fig. 1(d)). As a is reduced toward 4, the
avalanche driven by the two-neighbor infections gives way
to the many-neighbor effects of hubs more quickly (see
also Appendix D), making large-scale avalanches more
difficult. In this regime, decreasing o broadens the tri-
critical regime described by the second case of Eq. (8).
In contrast, for 3 < a < 4, decreasing a strengthens the
hub-driven avalanche and makes r more sensitive to ¢,.
Thus, in this case, the tricritical regime gets narrower
with smaller a.

To numerically verify the scaling exponents derived
above, we present the scaling form for r P, which con-
verges to the average fraction of R-nodes, (R)/N, read-
ily obtained using random SFNs of N nodes (see Ap-
pendix A for more detail) in the N — oo limit. The
scaling form is given by

. R _
rPy = lim % _ |€M|(Bt+186)/¢ I (E)\ l€,| 1/«75) ., (9)

|
N—o0
where fi (f_) is the scaling function for €, > 0 (¢, < 0).
As shown in Fig. 2, there is a good agreement between
the theory and the numerics, despite deviations due to
the finite-size effects for small |ey| and |e,,|.

Scaling behaviors for 2 < a < 3. — As discussed above
and illustrated in Figs. 3(a) and 3(b) (the latter provid-
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FIG. 3.  (a) Scaling behaviors of the outbreak size r on

the SFNs with o = 2.5 and k, = 4. (b) Comparison be-
tween the asymptotic values of r P, (solid lines) predicted by
the fixed points of Eq. (5) and the corresponding finite-size
observable (R)/N (symbols) numerically obtained from 10°
networks with N = 10°. Both (a) and (b) use n = 2 and
the same values of u. (c¢) Data collapse of ¢ with respect to
dealom A+ %72, as predicted by Eq. (10). The solid (dashed)
lines correspond to A =0 (u = 0).

ing a numerical verification), in this case the endemic
phase is simply absent and A, = pu; = 0. While it would
be misleading to call the point a TCP, one can still iden-
tify universal scaling behaviors and the crossover between
them from the leading-order terms of Eq. (5), which gives

g~ (da,km)\ 4 Iu,oc72)1/(3_0‘) , (10)

as illustrated in Fig. 3(c). For p = 0, the above equation

and r ~ Aq from Eq. (4) implies 7 ~ A% with 3; = g:—a.

Moreover, since the positive limiting values of ¢ and r as
A decreases to zero become clear only for p > )\ﬁ, we
can also write ¢ = ﬁ to describe the crossover. The
behaviors of §; and ¢ for 2 < a < 3 shown in Table I and
Fig. 1(c) should be understood in this vein.

Summary. — We examined the effects of the degree
exponent a on the endemic-to-epidemic phase transitions



of the GEP on uncorrelated random SFNs. All results,
based on the tree ansatz (3), are exact and in good agree-
ment with the numerics beyond the regime of strong
finite-size effects. It is found that the hub-driven MOTs
occur only for a < 4, which is manifest in the impossi-
bility of such transitions for a > 4 at high cooperation
thresholds (n > 3) and the changing sign of d¢/da at
«a = 4. Moreover, for 2 < a < 3, an epidemic outbreak
becomes possible whenever either A or y is nonzero via
hub infections. This is a distinct phenomenon of behav-
ioral epidemics not observed in cooperative co-infections
on the random SFNs [24], which suggests a fundamen-
tal difference between the two in typical social networks
with 2 < a < 3. These findings confirm and elaborate on
the significance of long-range interactions in mixed-order
transitions claimed in previous studies [3, 5, 16-18]. They
also lay the framework for understanding the tricritical

percolation, mostly studied in homogeneous media [11-
15, 38, 39], in a broader context including heterogeneous
structures. There still remain the questions of whether
the presence of many short loops, degree correlations be-
tween neighboring nodes, and the community structure
of realistic social networks lead to significant changes.
Moreover, the nature of the finite-size effects remains to
be clarified.
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Appendix A: Generation of scale-free networks

In our simulations of the GEP, we randomly generated the SFNs according to the following three-step scheme.

Step 1. Depending on the value of «, fix the maximum degree as

N-1
VN

kmax =

if a > 3,
(A1)
if2<a<3t

This ensures that the degrees of adjacent nodes are uncorrelated [40].

Step 2. Given the degree distribution

P =

k,—Oé

)
/—a
k' =km k

(A2)

generate a degree sequence deterministically so that the number of nodes with degree k, denoted by Ny, satisfies

{N >

k' >k

- ZNk'a

(A3)
K>k

for every integer k € [ky, kmax|. This method, used in [41], reduces the noise stemming from the sample-to-sample

fluctuations of the degree sequence at finite V.

Step 3. Randomly connect the nodes according to the given degree sequence, avoiding the creation of self-loops

and multiple links between the same pair of nodes.



Appendix B: Derivation of Eq. (5)

We first rewrite Eq. (3) of the main text as

oS} n—1 k—1
Fla)=1= % p| > (kﬂ_% 1) (L=N"g" (1 —g) "+ > <’“W_1 1) (1= X)"" Y1 — )™ "+l (1 — ql)klm‘|
k=km m=0 m=n

() 8 (Y [ (2 )

N (B1)

whose validity can be easily shown by the binomial expansion of (1 — ug)¥~!. Using a notation for the Lerch

transcendent
0o Zi
Q. (2) = — B
w(2) ; TR (52)
we can calculate the summations over k in Eq. (B1) to obtain
fla=1- —— (22 a1 )
q) = Coctpn \1— 4 H1ar a—1,kny, Hqr
n-2 n—m—1
1 (- (1—)\> dr -
) Tl —)" g (- @)™ ik, (- a)] B3
Ca—1,kpm 7nZ:O m)! [ 1—u (—a) dq" [(1—a) e (B3)

In order to expand the rhs of Eq. (B3) with respect to g;, we note that the Lerch transcendent has a series expansion [42]

IS (n2)' -
Oup(2) =273 Coin T T2 T s)(~Inz) 1 (B4)
i=0
for any complex z with |Inz| < 27 and for real numbers s and v satisfying s # 1, 2, 3,... and v # 0,—1,-2,....

Taking advantage of the generating function

In(1— ) = (“1) i3 HE (35)

puel KAVE

for the unsigned Stirling numbers of the first kind m, we can derive a useful relation

[ln(l—x)]i 1 d i1 i . e i i1
T Gl I G ‘“']_;H L’+J (=D o

This in turn can be used to rewrite Eq. (B4) in a more convenient form

Q—a) ' o,,(1—2)=)_ {Z(_l)i L i J Cs_w} (;:J_‘l)! 4 F(;—U 5) po—1 (14 O(x)]

j=1 Li=0

oo J+1 . j s
- Z {Z(1)i+1 [J -l— 1} CsiJrlvv} % + % [1 + 0(z*)], (B7)

=0



where the second equality is obtained by the change of variables j — j 4 1 and ¢ — ¢ — 1. Using the above expansion
in Eq. (B3), a tedious but straightforward calculation yields

=SS S e (2R (o [ (25 e

j=1 (=1 m=0

+m<12>n1{7§ (m%a)(l—u)’” [1 <1A>n1m} o }[q{* +0(qr7 )] (BY)

m=0

We directly obtain Eq. (3) of the main text from this result by defining g, , (A, ) as in Eq. (6) of the main text.

Appendix C: Phase transitions at integer degree exponents

If the degree exponent « is an integer, the epidemic outbreaks and their associated critical phenomena are governed

by the behavior of @, ,(z) near z = 1 for a positive integer s. The relevant series expansion is given by [42]

v S Inz)" v Inz)s~!
Boul2) =70 Y oo g 42 0e) — (o) ~ (-] ()
— ! !
for |[Inz|] < 27 and v # 0,—1,—2,..., where we have introduced the notations
- Cop if 52> 2,
Csw = , (C2)
0 ifs=1

and ¥(s) = I"(s)/T'(s) for the digamma function. Using Eq. (B5), we can recast the above expansion into a more

convenient form

oo (j+1 J
(1x)ﬂ—1@s)v(lx)—Z{Z( 1)“"1|:-7+1:|CS z+1y}$: ((81—)1 ' {xS 1111513+[ ( ) 1[)(5 s— 1}+O )

i !
=0 J

(C3)

Based on this formula, we can expand the rhs of Eq. (B3) as

o0 Jj+1 i+1 . a2
f(q Z{ ( 1 |:j+1:| COt b }g]m()\a:u)ql] _L'ga 277()\ ,LL) 2lnq;

j=1 i=1 1 Ca—l, km Ca—l,km(a_Q)

L o (1= n—l a2,
ap ey [W(k ) = (@ = 1)] ga—2,n(A 1) (1 — u) {u Inp
min[a,n]—2 B ne—l—m - .
B mZ:o (=mn [1_<1—§) < +nll )W(a—l)—w(a—l—m)l Hqﬁ 24 0(q ' Ing),

(C4)

where we have used g, (), ) defined in Eq. (6) of the main text. The main difference between Eq. (5) of the main
text and Eq. (C4) lies in the presence of ¢~ 2Inq in the latter, which is always lower-order than ¢®~2. If a > 5, the
term is simply irrelevant to epidemic outbreaks. If a € {3,4,5}, the logarithmic correction has nontrivial effects on

the transition behaviors, as discussed case by case below (see Table S1 for a summary).



Case of a = 5: here the lowest-order terms of Eq. (C4) are given by

- ~ 3Cap, +2 sn (O,
Fla) = 3.k — Gk v C2km — 3C3km + 204,k om0 ) @2+ gséci k 1)

Ca ke 2Ca k.,

@’lng +O(q), (C5)

whose form is similar to the corresponding recursive relation for a non-integer v > 4. Based on the same arguments
described in the main text, the epidemic threshold is obtained as Ac = (4 x,,./(¢3k,. — Ca.k,.), and the TCP satisfies
92.n(Ac, ) = 0, which has a physical solution p; = Ac/(1 — Ac) € (0,1) for n = 2 and sufficiently large k,,. Near the
TCP, we can approximate the above equation as

a
T O T Cakn €] — o, | 0@, (C6)

where cq 1, and ¢, , —are positive coefficients. Thus the behavior of the outbreak size in this regime satisfies

5A/|5u| if e, <0, ‘6u| > [ex 1H5A|1/27
g len/Ine|V?if e, | < lexIney|V?, (C7)
€u/|Ine,l if ¢, > 0, \€M|>>|e,\lne>\|1/2.

Case of o = 4: here the lowest-order terms of Eq. (C4) are obtained as

- n )\7
f(ql) — C27k7n <37k-m )\ql _ ng ( IU’) q12 ln ql
3 ki 23,k
1 T-2A\""" [,
- [3C2.k,, = 2C3.k, + P (km) — V(3] 920N p) = [ 7— poInp
2C3.km 1—p

min[4,n]—2

Y aewn {1 - (1:‘;)} (" %) i@~ viz—m }

m=0

qt +O0(¢tInq), (C8)

which implies that the epidemic threshold is at Ac = (3%, /(C2.k,, — (3.k,, ) and that the TCP satisfies ga (¢, pit) = 0.
As was the case for a > 4, the TCP exists only for n = 2 and sufficiently large k,,. The near-TCP properties are
described by

l
=0+ o | nal -, 47, (C9)

for positive coefficients ¢, ,, and ¢, ; . Thus the outbreak size in this regime obeys

ex/lepnex/leu )l if €4 <0, Jeu] > [Inex|™t,
T~ g ey if e,] < |Iney| ™, (C10)

e o/ (Carmen) if e, >0, |e,] > |Inex]| L.

Case of o = 3: here the lowest-order terms of Eq. (C4) are given by

L L k e () L
f(QZ)__@,Tm q nql—czikm [Cz.,k,,,,+¢( m) — ¥(2)] +<1—I~L> pmp

min[3,n]—2

- Y a-wn [1 - (H‘)m} (") e - - }

m=0

a+0(q7), (C11)

which has a nonzero stable fixed point whenever A > 0. Thus the epidemic threshold vanishes (A. = 0), and the sign



TABLE S1. Scaling exponents describing tricritical properties of the GEP (if TCPs exist) on random SFNs for integer degree
exponents a.

r o~ eft Py ~ efc €y~ ef
a=5 lex/Iney]'/? €x lex In ey |Y/2
o= I3\ lex/ In ey ] [Iney| ™t
a= A0 e ¢/A A
of the ¢; term is positive (negative) if p is greater (less) than p, satisfying
min[3,n]—2 m—9
n—1l—-m -
i = S g [1= =] (72 ) - v - ml. (C12)

m=0

We note that p; obtained from the above equation is in general not equal to lim, 3 u¢ obtained from Eq. (7) of the
main text. If u < py, the transition behaviors are described by the approximate formula
dqi

E ~ Ca’kmAql‘ In ql| + (C;7kmeu - Clclk,k‘mA) qi, (013)

where ¢4 k,,, C, i, > and ¢, , are positive coefficients. In this case, the outbreak size satisfies

m)

7~ A~ N e (g €tk A)/ (Cakm ) (C14)

As ¢, approaches zero so that |e,| < A (which can be represented as ¢ = 1), r abruptly becomes nonzero for an
arbitrary positive value of A. In contrast to the other cases, here r can be already nonzero at A = A, and p = p; in a

manner analogous to a discontinuous transition.

Appendix D: Relevant length scales

Here we show that one can understand the near-TCP crossover behaviors for a@ > 3 as originating from two
competing length scales associated with ey and €,. To this end, using dq;/dl ~ qi+1 — ¢;, we expand Eq. (5) of the
main text about the TCP to write

dqy 1+1/8 1+1
E ~exq + Ca,kp €y +1/Be _ C:X,]gmql * /ﬂt, (Dl)

where cq 1, and ciy_’km are positive coefficients, and the exponents 3. and ; have the values listed in Table I of the

main text. This equation remains invariant under the spatial rescaling [ — bl if the other variables rescale as
—Bt -1 —¢
qr —b qvl, 6)\—>b €\, EM—>b €p- (D2)
The scale invariance suggests the presence of the length scales
I~ ‘€>\|7lv Ly ~ ‘eurl/qﬁ- (D3)

One can directly observe [y and [, by examining how dg;/dl changes over different layers for €y > 0 and ¢, > 0.
According to Eq. (D1), in this regime the derivative shows an exponential decay dg;/dl ~ e !/ towards saturation,
as illustrated in the inset of Fig. S1. For ey > eim, the first and the third terms of Eq. (D1) always stay dominant,
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FIG. S1. The crossover behavior of the characteristic length scale T of the GEP with n = 2 shown in Eq. (D4). To remove
overlaps, the values of Tey for a = 4.5 (5.5) have been multiplied by 10? (10%). (Inset) The I-dependence of dg;/dl governed by
Eq. (D1) on SF networks with o = 4.5 and ky, = 4 at €x = 107> and ¢, = 5¢}. The final exponential decay determines 7.
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FIG. S2. Examples of the GEP with n = 3. (a) Entire dynamics on a five-node network. Each thick arrow represents a time
step. Central box: in the final state, the seed is colored black, the nodes infected with probability A (u) are colored orange
(red), and only the links connecting the infected nodes are shown. (b) Examples of the final state of the GEP on the SFNs
with k, =4 at A = A¢, and g = 0.5. The rods (both colored and white) on the boundary correspond to the nodes, aligned
clockwise in the order of decreasing degree. Only the infected nodes and their mutual links are shown according to the color
scheme shown in (a). Here the seed is located at the node of the highest degree (the black rod).

and the characteristic scale 7 satisfies 7 ~ e;l ~ Ix. Thus Iy gives the length scale of a region where A is dominant.
Meanwhile, for ), < ell/ ¢, the second and the third terms of Eq. (D1) eventually dominate the dynamics before
saturation. In this case, one observes 7 ~ 6;1/ L~ l,,, which indicates the length scale of the y-dominant region. In
this sense, the decrease (increase) of ¢ with decreasing « for o > 4 (3 < a < 4) can be interpreted as reflecting the

decreasing (increasing) depth of the p-dominant growth regime.

The two different scaling regimes of 7 yields yet another crossover phenomenon, which is described by
T=ULg(x/ly) = €X1§(€A€;1/¢)- (D4)

In Fig. S1, we check this scaling form based on numerical solutions of Eq. (B3) for each sub-interval of a > 3.
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Appendix E: Illustrations of actual outbreaks

The importance of hubs in the MOTs for 3 < a < 4 is more directly illustrated in Fig. S2. Using the color
scheme described in Fig. S2(a), each circular diagram of Fig. S2(b) shows the final state of the GEP with n = 3
at A = A\; and ¢ = 0.5 on the random SFNs with N = 360 nodes and k,, = 4. More specifically, each rod on
the periphery corresponds to a node, aligned clockwise in the order of decreasing degree (nodes of equal degree are
randomly ordered). The seed node (chosen to be the node of the highest degree) is black, the nodes infected in the
Si-state are orange, and those infected in the Sp-state are red. The uninfected nodes are left as vacancies. The links
are drawn with grey lines only if they connect two infected neighbors. By comparing these two examples of epidemic
outbreaks at a« = 3.5 and 4.5, it is clear that the S; — I infections (red nodes) are especially frequent among the
high-degree nodes in the case of @ = 3.5. This reflects the dominant role played by the hubs in the system-wide
avalanche for 3 < a < 4 (note that g = 0.5 > u; =~ 0.371 in this case). In contrast, for o = 4.5, the high cooperation
threshold n = 3 and the dominance of two-neighbor effects reduce the significance of cooperative infections among the
hubs at the transition, which is bound to be purely continuous. Consequently, the nodes infected by the cooperative

mechanism are more evenly distributed among different degrees in the latter case.
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