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We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple
exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out
that a local defect is always relevant to the system as jamming, so that phase separation occurs
in the 1D TASEP. However, crossover scaling behaviors are also observed as finite-size effects. In
order to check if the SB can be irrelevant to the system with particle interaction, we employ the
idea of condensation in the zero-range process (ZRP), which is a mapping of the periodic TASEP.
The hopping rate in the modified TASEP depends on the interaction parameter and the distance
up to the nearest particle in the moving direction, besides the SB factor. In particular, we focus
on the interplay of jamming and condensation in the current-density relation of 1D driven flow.
Based on mean-field calculations, we present the fundamental diagram and the phase diagram of
the modified SB problem, which are numerically checked. Finally, we discuss how the condensation
of holes suppresses the jamming of particles and vice versa, where the partially-condensed phase is
the most interesting, compared to that in the original SB problem.

PACS numbers: 02.50.-r, 05.40.-a, 64.60.-i, 89.75.Da

I. INTRODUCTION

Driven diffusive systems are ubiquitous in real-world
phenomena with various scales, from active transport in
cell proteins [1–3] to large traffic networks [4–7]. As the
simplest modeling of such system, the stochastic (noisy)
Burger’s equation [8] is often employed, which is also
known as the Kardar-Parisi-Zhang (KPZ) equation [9].
Most recently, the detailed statistical properties of the
one-dimensional (1D) KPZ equation has been exactly
solved by mathematicians, in terms of the random ma-
trix formalism [10, 11]. The simplest one of the models
that belong to the 1D KPZ university class, is the totally
asymmetric simple exclusion process (TASEP) [12]. It
is well-established that the TASEP is a prototype model
of nonequilibrium driven flow, and its stationary solu-
tions with various boundary conditions is presented by
matrix-product ansatz [12, 13].

In the ordinary TASEP, the current-density relation
is symmetric with a single maximum in the 1D TASEP,
which is due to the particle-hole symmetry. When the
hopping rate is modified with particle interaction, the
symmetry is broken in the fundamental diagram of flow
(the current-density relation). Similarly, a local defect
indeed also changes the shape of the fundamental dia-
gram. Such an example is the slow-bond (SB) prob-
lem [14–17]. In the SB problem, the driven flow in
the middle of the system becomes slow as the hopping
rate at the SB is reduced, compared to that at normal
bonds. The most interesting question of the SB prob-
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lem is “whether the SB effect is always relevant to the
system so that the fundamental diagram is changed”.
This has also been speculated in various studies, such
as slow combustion of paper with a local columnar de-
fect [18], the modified KPZ growth models in random
media [19, 20], directed polymer in random media [21],
last passage percolation [22], and junctional defect of net-
works with TASEP links [23, 24].

The possibility of the SB-irrelevant phase was proposed
in the ordinary TASEP by numerical simulations [14] and
experiments [18], but it was hardly proven since nontriv-
ial crossover scaling behaviors exit as well as boundary
effects. As the SB strength get close to 1, the localiza-
tion of the queue occurs in finite system. However, it
turns out that such a phenomenon is attributed to the
finite-size effect [17], consistent with analytic arguments
proposed by Costin and coworkers [15].

In this paper, we employ the hopping rate of the zero-
range process (ZRP) [25–27] as particle interaction in the
TASEP with a SB at the middle of the system. The ZRP
is an exact mapping of the periodic TASEP, which deals
with mass transport. Each mass at a site in the ZRP
corresponds the number of holes (vacant sites) up to the
nearest particle (toward the preferred hopping direction)
of the chosen particle in the TASEP. The hopping rate
only depends on the mass at the chosen site.

The most interesting phenomenon in the ZRP is the
condensation of mass at a single site, which occurs when
the interaction parameter gets positively larger than the
certain value under the circumstances. In the TASEP
language, the condensation of holes is the particle-hole
segregation. The SB induces the queue of particles so
that the bulk density is not single-valued anymore even
far away from the SB.
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In particular, we investigate the interplay of the SB
effect and particle interaction in the current-density re-
lation, in terms of the modified TASEP with periodic
boundary conditions. Considering modified ZRP-type
hopping rates at all bonds, we pose the following question
in the modified SB problem: “Is it possible that the con-
densation can suppress the queue by the SB effect and/or
vice versa?”.

To answer this question, we focus on the fundamen-
tal diagram of current-density relations as well as the
phase diagram. Based on the mean-field (MF) calcula-
tions of the current-density relation, we suggest a pos-
sible “bulk” density and propose the phase diagram in
the modified SB problem, which is compared to numer-
ics. In the regime where the correlation length does not
globally diverge, our numerical results also show that the
system separates into two homogeneous subsystems with
the same current but different bulk densities.

However, due to the particle conservation of the peri-
odic TASEP, the system may not be well-separated when
all of the allowed densities are even lower (higher) than
the total density of the system. Applying MF approxi-
mations, we seek the marginal phase boundaries as the
function of the SB factor and the interaction parameter,
which are numerically checked. Moreover, we discuss the
partially-condensed phase in the strong SB regime with
possible physical arguments.

The rest of the paper is organized as follows: In Sec. II,
we describe the modified SB problem, in terms of the
TASEP with ZRP-type modified hopping rates as well
as the SB, where physically relevant quantities are de-
noted as two control parameters vary. In Sec. III, we
present the MF approximations of the phase diagram
and its marginal phase boundaries, in the context of
the fundamental diagram of the modified SB problem,
where we present four different phases. Extensive Monte-
Carlo (MC) numerical simulation results are provided for
the comparison with MF results in Sec. IV, where finite-
size effects are also carefully tested. Finally, in Sec. V,
we summarize our finding with some remarks. In Ap-
pendix A, we provide detailed mathematical formula to
explain current-density relations for homogeneous sys-
tems in the steady-state limit, and extra check-up plots.

II. MODEL

We consider the modified TASEP in a one-dimensional
(1D) lattice of even L sites as shown in Fig. 1, where each
site is either occupied by at most one particle or vacant
only at time t, nx(t) = {0, 1} (1 ≤ x ≤ L). The hopping
rate depends on the distance from the chosen particle
up to the nearest particle in the hopping direction. Em-
ploying periodic boundary conditions, n

L+1
= n

1
and the

total number of particles, N = ρ0L, where ρ0 is fixed as
the total density of the system. Finally, we place the
SB to be between x = L/2 and x = L/2 + 1, where the
hopping probability is suppressed as a factor r ∈ [0, 1).

Without loss of generality, the case of ρ0=1/2 is chosen
and compared with the original one [17] as the modified
SB problem.

The lower panel of Fig. 1 represents the mapping of the
modified TASEP onto the ZRP, where the inter-particle
distance distribution P (`) is a key observable of the con-
densation of holes. However, the mapping is not exact
due to the SB, which corresponds to a slow particle in the
ZRP. The dynamics of the slow particle is appropriately
considered to keep the mapping.

By definition, the average occupancy and the average
inter-particle distance has the following relation if the
system is homogeneous:

[nx] ≡
L∑

x=1

nx
L
, [`y]

N
≡

N∑

y=1

`y
N

; [nx] =
1

1 + [`y]
N

. (1)

At each time step, particle configurations in the modi-
fied TASEP are updated as follows: (See the upper panel
in Fig. 1)

• Choose one among N particles at random, say the
i-th particle at site xi.

• The i-th particle hops to the next site, xi + 1, with
probability q(`i), where `i = xi+1 − xi − 1 (the
distance up to the site of the nearest particle in the
target direction):

q(`i) =

{
0 (`i = 0),

u(`i)/umax (`i ≥ 1),
(2)

where u(`i) =
(

1 + b
`i

)
, b is an interaction param-

eter, and u
max

is the maximum hopping rate.

• If xi = L/2, the particle has to get through the
SB, so that the hopping is suppressed by a factor
r(< 1), namely the SB factor.
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FIG. 1. The modified TASEP is schematically illustrated
with its mapping to the ZRP. The numbers above the arrows
indicate hopping rates, and the site indices are shown at the
bottom. The hopping is forbidden due to hard-core repulsion,
which is shown as a red cross and the hopping at the SB is
highlighted as the different color (red) arrow. Note that for
the case of r = 1 with periodic boundary conditions, the
mapping is exact.
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For the modified TASEP with the hopping rates of
Eq. (2), u

max
rescales hopping rates into probabilities by

the maximum rate to 1, which depends on the sign of b.

u
max

=

{
1 + b for b > 0 (attractive),

1 + b/L(1− ρ0) for b < 0 (repulsive).
(3)

Note that the case of b = 0 corresponds the ordinary
TASEP, and the meaning of q(`i = 0) = 0 implies hard-
core repulsion (exclusion). When b < 0, particles prefer
to be equally spaced, which drives the system to have
almost the same value of `i, irrespective of i. In the pe-
riodic system with the fixed density, this force acts par-
ticles effectively to repel each other. On the other hand,
when b > 0, particles prefer to close each other. When
this attractive force is greater than the critical strength,
b > bc, the system segregates particles and holes (vacan-
cies) to form macroscopic condensate of holes.

The most relevant physical quantities of driven flow
are the bulk density ρ and the current of the system J .
It is because the current-density relation is the funda-
mental diagram of driven flow J(ρ; b) that determine the
detailed phase structure of the model-dependent phase
diagram. The local current at the bond (x, x + 1) due
to the movement of the y-th particle located at site x,
Jx,x+1, is denoted as follows:

Jx,x+1 = 〈nxu(`y)〉, (4)

where u(`y) = (1 + b/`y) is the hopping rate of the y-th
particle with `y. In the stationary state of the homoge-
neous system (Jx,x+1 ≈ J, 〈nx〉 ≈ ρ, `y ≈ `), the current
J of the modified TASEP can decouple with the bulk
density and the average hopping rate as J

MF
= ρ〈u(`)〉,

where the mean-field (MF) approximations are valid as
described in Appendix A. It is worthwhile to mention
that J is distinguished from the conventional TASEP

current J̃
MF

= J
MF
/u

max
= ρ〈q(`)〉.

However, the SB leads to jamming, so that the system
becomes inhomogeneous. The case of b = 0 is the well-
known SB problem [14–17, 22, 28], where the main issue
was the possibility of the homogeneity if the SB effect
is weak enough to be irrelevant in the fundamental di-
agram. Although it looks possible in finite systems due
to crossover scaling caused by finite-size effects, the SB
effect is always relevant [17].

In this paper, we pose the following question: Can
particle interactions suppress the SB effect, so that the
queue by the SB can be localized in the thermodynamic
limit, unlike the original SB problem?

III. PHASE DIAGRAM

We present a phase diagram in the modified TASEP
with a SB, where we categorize four phases, namely
separated (S), non-separated (NS), condensed (C), and
partially-condensed (PC). The definition of each phase

can be identified by density profiles and inter-particle
distance distribution functions. While both NS and C
phases are described by a bulk density, S and PC phases
are categorized by two bulk densities. Despite this simple
concept, density separation is indentified with some cau-
tion. Unlike previous studies [14, 17] used density profile
〈nx〉 directly, we cannot use it since the broken particle-
hole symmetry is not guaranteed for the functional shape
of density profile and the location of bulk boundaries.

A suitable indicator of density separation, the density
difference, denotes ∆ = ρ+ − ρ− . Thus, S/PC phase
(∆ > 0) can be distinguished from NS/C phase (∆ = 0),
without loss of generality. Figure 2 represents (a) the
detailed phase diagram of the modified SB problem in the
space of the interaction parameter b and the SB factor
r, density profiles and the local-density distributions are
also presented at (b) (b = 2.75, r = 0.5) in the NS phase
and (c) (2.75, 0.2) in the PC phase. For the C phase,
the SB is irrelevant as shown at the rightmost plot of the
middle panel in Fig. 3 (b = 4.00, r = 0.50), while, for the
PC phase, holes in the low-density region form multiple
macroscopic condensates as shown at two rightmost plots
of the bottom panel in Fig. 3 (b = 4.00, r = 0.20).

In order to quantify ∆, we employ the local density dis-
tribution P (〈nx〉) measured from density profiles. In the
thermodynamic limit, the contribution by bulk bound-
aries vanish and local densities fluctuate around the high-
density (HD) value ρ

+
(> 1/2) and the low-density (LD)

one ρ−(< 1/2) (see Fig. 2 (b) and (c)),

P (〈nx〉) = c+F (ρ+) + c−F (ρ−),

where F (x) is a sharp-peaked distribution function at
x = ρ±. Furthermore, vacancies (holes) can form one or
more macroscopic condensates. If the size of the conden-
sate scales with the system size as Lα, the value of the
exponent α ∈ (0, 1] determines C and PC phases.

In the TASEP language, condensation of holes occurs
when the average hopping rate becomes 1, which is re-
stricted by the front particle in the queue of particles.
We denote the NS phase with condensation and α = 1
as the C phase, and the S phase with partial conden-
sate and 0 < α < 1 as the PC phase. For both S and
PC phases with ∆ > 0, the SB still let the system al-
low to has only two bulk densities at most. It is because
the current-density relation still is a single-peaked func-
tion at arbitrary b. Accordingly, in the thermodynamic
limit, the system with density-separated phases has a fi-
nite correlation length, and it can be simplified as two
homogeneous subsystems in contact. This is quite differ-
ent from the maximal-current phase in the open TASEP,
where the divergent correlation length disturbs the sys-
tem to have a homogeneous bulk density. As long as
the correlation length is finite, density-separated phases
are composed of homogeneous subsystems with the equal
current. On the other hand, the total density conserva-
tion restricts the system not to be split into subsystems
with both greater or lesser than the total density, say
ρ0 = 1/2 in this paper.
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FIG. 2. (a) In the b− r plane, the phase diagram of the modified SB problem is drawn as a heatmap, in terms of the density
difference ∆ = ρ+ − ρ− . MF phase boundaries are drawn for the NS-S from Eq. (11) (red, solid lines) up to 0 < b < 3, and the
C-PC from Eq. (12) (red, solid line) for b > 3, and the S-PC from Eq. (14) (black, solid line). The NS-C boundary is obtained
from Eq. (15) (grey, long-dashed line). Around b = 0, the NS-S-NS boundaries are drawn from Eq. (17) (green, solid and
dotted lines). The shaded region presents with J/ρ− > 0.999, which denotes condensation of holes in numerical measurement.
For a couple of examples, we show the NS phase at (b) (b = 2.75, r = 0.5) with ∆ = 0 and the PC phase at (c) (2.75, 0.2) with

∆ > 0. Numerical data are obtained for L = 216 at T � 2L3/2, averaging over 108 samples with 104 different configurations
and 104 different times.

r
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r
=
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x
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FIG. 3. Snapshots of spatiotemporal patterns of L = 210 (horizontal length of each box) and T = 768 (vertical length of each

box) are plotted at every consecutive ∆t = 4 MC time steps in the steady states (t� 2L3/2) for various cases. Dots represent
particles and the SB is highlighted for the case of r < 1 as the vertical line in the middle of the pattern with a different color
(red). In each pattern, time elapses from top to bottom and the direction of particle hopping is to the right. Each column
represents the different type of particle interaction; repulsive (b = −0.75), neutral (b = 0), attractive (b = 2.75), and strongly
attractive (b = 4.00), respectively. Each row is classified by the different SB factor; r = 1.0, 0.5, and 0.2, respectively. For the
PC phase, typical configuration are presented as two rightmost in the bottom panel.

When the total density ρ0 is given, the marginal
high/low-density ρ∗

±
should suffice the following relation:

J(ρ0) = J(ρ∗
±

). (5)

Note that there is the “forbidden” density region caused
by the conservation of both the total density and the
current, where some HD/LD counterpart is not allowed.

Once the SB is considered in the system, the critical SB
factor r∗(b) can determine the boundary between S and

NS phases as a function of the interaction parameter b.
At the S-NS phase boundary, we can discuss the queuing
transition in the modified SB problem with particle inter-
action, similar to the original SB problem. The transition
between S and NS phases is not simply characterized. As
described in the two-bulk picture, particle correlations
near the SB competing with density separation leads to
the essential singularity-like density jump at r∗(b), which
is numerically verified in ordinary TASEP [17] (r∗(0) = 1
at b = 0).
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FIG. 4. Density profiles are shown as b varies from repulsive
to attractive interactions, b ∈ {−0.75, 0.00, 2.75, 4.00}, where
we set r = 0.2 in (a) and r = 0.5 in (b). Numerical data
are obtained in the system of L = 212 with the SB that is
located at the bond of (L

2
, L

2
+ 1) (the middle of the system)

and averaging over 108 samples with 104 configurations and
104 different times, in the steady-state limit (t� 2L3/2).

Approaching the maximal current by r → r∗(b), the
correlation length grows, and the system deviates from
the two-bulk picture, smoothly transit into the NS phase
(see Fig. 2). However, it is not clear if the system has
an essential singularity because the density profile decays
algebraically at only one side of the SB.

In Fig. 3, we show spatiotemporal patterns as snap-
shots, where twelve different settings of (b, r) are chosen
for b ∈ {−0.75, 0.00, 2, 75, 4.00} (from left to right) and
r ∈ {1, 0.5, 0.2} (from top to bottom). The ordinary
TASEP corresponds the case of (b = 0, r = 1), where the
condensation of holes occurs as b→ 3 at ρ0 = 1/2; thus,
the pattern of (b = 4.00, r = 1) represents the C phase.
However, the C phase is shrunk by the PC phase that
appears as r gets smaller. Condensation suppressed by
jamming of particles behind the SB as long as b is large
enough to make partial condensate of holes.

In Fig. 4, we present density-profile patterns for various
phases, where (a) r = 0.2 (NS/PC) and (b) r = 0.5
(S/C). As b varies from negative to positive, the phase
of the system is changed from the NS/S to the PC/C,
respectively. This corresponds four cases in the middle
and bottom panels of Fig. 3.

0.25 0.5 0.75 1
ρ

0

J1

0.25

J2

0.5

J

(a)

0 0.2 0.4 0.6 0.8 1
r

0.1

0.3

0.5

0.7

0.9

ρ −
,

ρ +

(b)

b =−0.75
0.00
2.00

FIG. 5. For various b ∈ {-0.75, -0.5, -0.25, 0, 0.25, 0.5,
1, 2, 3, 4} (from blue to red) that are drawn as different
colors, (a) the fundamental diagram by MF approximations
is presented with numerical results. Numerically obtained
high/low-density ρ± (or ρ = 1/2 in the NS phase) is plotted
with different symbols (+/◦) for various r. Solid lines are
drawn by Eq. (7) as b varies, and the dashed line represents
the ordinary TASEP (b = 0). The forbidden-density regions
(see the main text for the detailed discussion) are shown with
shaded patterns. (b) Possible high/low densities are plotted
as r varies: the case of b = −0.75 and the case of b = 2.00.
The dashed guidelines are shown: (b = −0.75, r = 0.25) with
J = J1 and (b = 2.00, r = 0.40) with J = J2, respectively.

Based on the analytic results of the SB-free ZRP and
the original SB problem with physical arguments, we de-
velop MF approximations for the modified SB problem in
the following subsection. Such approximation are valid
if interaction range is short enough to be ignored cor-
relations of the system. As long as a two-bulk picture
is valid in the strong SB regime (r � 1), because two-
particle correlations can be ignored.

Mean-field (MF) approach

In this subsection, we focus on MF approximations
to find the guidelines of phase boundaries in Fig. 2 (a).
They are based on physical arguments for current-density
relations and density-profile patterns.
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For the original SB problem, such MF treatments can
be exact in the system of a single site with two particle
reservoirs of ρ

+
(left) and ρ− (right), respectively, where

the hopping rate between two is controlled by the SB
factor r. Based on the current conservation, the local
current has to satisfy the following relation:

J
MF

= ρ
+

(1− ρ
+

) = ρ−(1− ρ−) = rρ
+

(1− ρ−), (6)

so that ρ− = rρ
+

. When the higher-order correlations are
regarded in the system with more sites, ρ−/ρ+

= r∗ < r
because higher-order terms decrease density separation
to maximize the global current of the system. There-
fore, r∗ acts as the upper limit of the density ratios. We
use this relation, together with Eq. (5) and the current-
density relation to find a functional form of r∗(b) for the
S-NS phase boundary. However, there are no closed-form
expressions of the current-density relation for arbitrary
values of b and MF approximations of J(ρ, b) are used
just as the guideline of the phase boundaries. We com-
pare them with numerical results (see Fig. 5 and Fig. 6).

The current of the system under the influence of the
small SB factor increases linearly with b. This is due
to the current of high-density parts that is usually in-
fluenced by single-site hopping rate, and leads that the
current is linearly proportional to b, see Fig. 6 (a). Based
on numerical observations and physical arguments, we es-
timate current J(b; r) around the limit of |b| → 0. Using
the MF equation of the original SB problem, the current
and the high/low bulk density can be expressed by the
expansion up to the first-order of b:

J(b; r) =
r

(1 + r)2
+ bg(r),

ρ
+

=
1

1 + r
+ bf

+
(r),

ρ− =
r

1 + r
+ bf−(r).

The MF current of the modified TASEP is simply

JMF = ρφ(ρ), (7)

where φ(ρ) = 〈u(`x)〉 (see Appendix A for the details).
The average hopping rate (the phase velocity) φ± = J/ρ±

also has asymmetry in the presence of b. The current-
density relation up to the first order of b is (see Eq. (A18)
in Appendix A),

J
NS

(b; r = 1) =
ρ(1− ρ)

1− bρ ,

which is drawn in Fig. 5 (a). Applying the steady-state
current conservation across the SB,

ρ+φ+ = ρ−φ− = rρ+φ− .

As a result, we estimate the results of Fig. 5 and Fig. 6
(a) as follows:

JS(b; r) =
r

(1 + r)2
+ b

2r2

(1 + r)4
, (8)

and

ρ
+

=
1

1 + r

{
1 + b

r

(1 + r)2

}
, (9)

ρ− =
r

1 + r

{
1 + b

r

(1 + r)2

}
. (10)

Using the conservation of the current, we estimate the
boundary between density-separated phases (both S and
PC) and the uniform density phases (both NS and C). As
b gets larger, the SB effect becomes weaker and weaker,
so that the difference between the current without the
SB and that with the SB gets smaller and smaller. Even-
tually, the SB effect is completely suppressed as if r = 1
due to the role of b. The criterion leads r∗(b) far from
b = 0:

JS(b; r∗(b)) = JNS(b; 1), (11)

where J(b; 1) is the current of the modified TASEP with-
out the SB. Since the closed-form expressions of Eq. (11)
doesn’t exist, we draw its numerical solutions as different
colored (red) lines for 0 < b < 3 in Fig. 2 (a). Similarly,
when J(b > 3; 1) = Jmax and Jmax = ρ0 = 1/2, together
with Eq. (8), the C-PC phase boundary is shaped as

b(r) =
(1 + r)2(1 + r2)

4r2
. (12)

Moreover, the PC phase can be distinguished from the S
phase. Since we observe the partial condensate of holes
only in the low-density part of the PC phase, so φ− = 1.
As a result,

J
PC

= ρ− =
b− 2

b− 1
, (13)

which can be obtained from the special case of Eq. (A12)
in Appendix A. Therefore, at the S-PC phase boundary,
Eq. (13) is equal to Eq. (8), which is implicitly expressed
as

b
S/PC
− 2

b
S/PC
− 1

=
r

(1 + r)2
+ b

S/PC

2r2

(1 + r)4
. (14)

As b is larger than the critical value b
C

for a given
value of r, vacancies (holes) are condensed and formed
as a macroscopic cluster, namely the full condensation.
The critical value bc depends on the density of the system
when the number of particles is conserved, which was
calculated in the ZRP study by Grosskinsky et al. [29]
(see Appendix A for the detail).

1

b
C
− 2

= 〈`〉 =
1− ρ0
ρ0

. (15)

It implies that the ordinary ZRP condensates at b
C

= 3
for ρ

C
= ρ0 = 1/2. Using this criterion of Eq. (15), we

find the NS-C phase boundary at b
C

= 3, which works
well as long as the SB effect is weak enough to be ignored.
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FIG. 6. The average current J(b; r) and related quantities are shown as a function of b. Each line represents the different values
of r. The color scale from bright to dark is from r = 1 to r = 0.1: (a) The ZRP-type current J with Jmax = ρ0 = 1/2, (b) the

conventional TASEP current J̃(≡ J/umax) with the maximal current J̃mc = 1/4, and (c) the relative-current difference between
the current without the SB and that with the SB. Symbols represent different system sizes: L = 210(�), 212(×), 214(�), 216(+).
In (c), the splitting lines in the small value of current difference are caused by finite size effects at the NS-S boundary (see
Sec. IV for detailed discussions).

As r gets smaller, it should be compared to the criterion
of the PC phase, where φ− = 1 and ρ

PC
= ρ−(r) < ρ0,

so that we get the C-PC phase boundary as follows:

1

b
PC/C

− 2
=

1− ρ−

ρ−

, (16)

where ρ− is obtained from Eq. (10).

When r → 0, ρ− → 0 lead to b
PC
→ 2, denoting the

left endpoint of the S-PC phase boundary at r = 0 and
b = 2. On the other hand, the right endpoint of the S-PC
phase boundary is obtained when the J

PC
= ρ

PC
= ρ−

and ρ− = ρ0 = 1/2, which coincides with the PC-C phase
boundary at b = 3. Moreover, the location of r

S/PC/C
is

the specific value from the solution of J(r, 3) = 1/2, so
that it ends at r

S/PC/C
≈ 0.475 and b = 3.

In the neutral (|b| → 0) regime, we are able to use
the marginal density relation Eq. (5) and the current-
density relation up to the first order b (see Eq. (A18)
for the details). From Eq. (9) and Eq. (10), we observe
ρ− = rρ+ . This is the limit when all correlations other
than sites next to the SB is neglected. The resulting MF
approximations around r = 1 and b = 0 provide both
NS-S and S-NS phase boundaries as follows:

b±(r) = 2
(
r∓1 − 1

)
(17)

where the sign corresponds to the sign of b, so b− is the
NS-S phase boundary for b < 0 and b+ is the S-NS phase
boundary for b > 0. We draw these NS-S-NS boundaries
as different colored (green, solid and dashed) lines up to
|b| < 1 in Fig. 2 (a).

In the next section, we present extensive Monte-Carlo
(MC) simulation results, compared with MF predictions
that are discussed so far, where we explain all the figures
and some interesting features as well as some discrepan-
cies between numerical results and MF ones.

IV. NUMERICAL RESULTS

Our numerical data are taken from the modified
TASEP with a SB for various system sizes of L ∈
{210, 212, 214, 216}. The SB is located in the middle of
the system at the bond (L2 ,

L
2 + 1) with the SB factor

r. Initially, the system is prepared with the alternative
particle-hole configuration for ρ0 = 1/2. The system is
relaxed to reach the stationary state after t = 2L3/2 MC
steps from the initial condition.

Figure 4 shows typical patterns of density profiles. The
fundamental diagram with numerical data are shown as
symbols in Fig. 5, and MF predictions as lines. To distin-
guish four phases accurately, we measure both the ZRP-

type current J and the conventional TASEP current J̃
as a function of b for various r in Fig. 6.

The jamming of particles caused by the SB can be
directly observed from density profiles. In the strong
SB regime, the density behind the SB contains the non-
vanishing extra density than the average global density as
the macroscopic queue (S phase), while in the relatively
weak SB regime, there is no extra density (NS phase).

However, it is a difficult task to precisely measure the
bulk density from density profiles [30].

Using the distribution of the average occupation per
site, P (〈nx〉), we measure the density difference ∆ =
ρ+ − ρ− . We assume P (〈nx〉) to be a Gaussian as fol-
lows: In general, the functional form of P (< nx >) is not
rigorously proven as a Gaussian, but it is a reasonable
assumption to find the location of the peak without loss
of generality.

P (〈nx〉) =

{
N (ρ, σ) (NS)

c+N (ρ+, σ+) + c−N (ρ−, σ−) (S)
(18)

whereN (µ, σ) is the normal distribution with the average
µ and the standard deviation σ.
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phases: (a) The NS phase at (b = 0.75, r = 0.80) shows P (`;L) ∼ exp(−`/`NS), where `NS is independent of L; (b) the S

phase at (1.5, 0.15) shows P (`;L) ∼ L−1/2 exp(−`/L1/4); (c) the PC phase at (6.00, 0.10) shows P (`;L)L ∼ fPC(x1, x2), where

fPC,1(x1) = x−4
1 for x1 < 1, fpc,1−2(x) = constant for x1 < x < x2, and fpc,2(x2) ∼ exp(−x2) for x2 > 1 with x1 ≡ `/L1/4 and

x2 ≡ `/L1/2. In particular, scaling collapses are tested in the inset of (b) and (c).

In Fig. 2, we also numerically provide phase diagram.
In Fig. 3, snapshots of typical spatiotemporal patterns
are presented for various phases. In Fig. 4 at (a) r = 0.2
and (b) r = 0.5, we show typical patterns of density pro-
files, which are analyzed P (〈nx〉). Unlike the ordinary
TASEP (b = 0) where the excess bulk density is sym-
metric, the modified TASEP (b 6= 0) exhibits particle-
hole asymmetry. It is because exchanging a particle as a
hole ρ→ (1− ρ) and the hopping directions x→ −x do
not reproduce the same result anymore. In the separate
phase, two bulks are separated by the SB and have dif-
ferent densities, while, in the NS phase, the SB effect is
localized and the bulk is uniform: 〈nx〉 ≈ 1/2.

Using the results of P (〈nx〉), we can identify the bulk
density ρ. In Fig. 5 (a), we plot the current J as a
function of ρ, where both J and ρ are measured from
MC simulations as well as the current-density relation
by MF approximations for the homogeneous system with
b ∈ {−0.75,−0.5,−0.25, 0, 0.25, 0.5, 1, 2, 3, 4} from bot-
tom to top. At the same b, the system may be in the NS
phase if ρ− = ρ

+
= 1/2. As the SB effect becomes strong,

the system is split into two subsystems with nonzero den-
sity separation. This process is shown for b < 0 in (b)
and b > 0 in (c). Due to the total-density conserva-
tion, the high (low) density jumps suddenly when the
density separation happens in b > 0 (b < 0), with the
inaccessible gap in-between them. This gap is numeri-
cally obtained by using Eq. (5). For the detailed descrip-
tion of the current-density relation, we also provide Ap-
pendix A. In the presence of the SB from r = 0.1 to r = 1,
we provide a specific example of b = 2.50 in Fig. A.1.
Two bulks lie on the homogeneous current-density rela-
tion since separated bulks behave as independent homo-
geneous systems with the same current. When 2 < b < 3,
ρ(φ = 1) = (b−2)/(b−1). When the ρ− < (b−2)/(b−1),
the ρ− lies on φ = 1 line, which denotes the partial con-
densation of holes in the low-density part.

In Fig. 6, we redraw the current as a function of b for
various r: (a) The ZRP-type current is maximized up to

ρ0 = 1/2 and b(r) can be found as the NS-C boundary if r
is large enough to see the flat region; (b) the conventional

TASEP current is maximized up to J̃
mc

= ρ0(1 − ρ0) =
1/4 and the peak is located at b = 0. Whether the SB is
localized or not can be measured, in the context of the
relative-current difference between the system without
and with the SB, J(b; r = 1)−J(b; r). When the jamming
of particles is globally expanded, the current difference is
finite. In the other limit, the relative-current difference is
strictly nonzero but inversely proportional to the system
size as the SB effect is localized. The detailed values
are shown in (c), where the relative-current difference
converges to zero rapidly as b → −1 and b � 0. It is
noted that as in the smaller difference, the system size
dependence comes in and the relative-current difference
is shown by splitting lines by different symbols. This is
analogous to the crossover scaling found in the ordinary
SB problem [17].

Finally, we discuss the interesting scaling features of
inter-particle distance distributions P (`;L) with Fig. 7,
where three different phases are compared with the char-
acteristic length ξ for various system sizes: (a) The NS
phase at (b = −0.75, r = 0.8), (b) the S phase at (1.50,
0.15), and (c) the PC phase at (6.00, 0.10). As b increases
but still for b < b

S/PC/C
, ξ gets longer but it is indepen-

dent of L. However, passing the NS-S phase boundary, it
becomes power-law as a function of L, say ξ ∼ L1/4. Even
further, another length scale comes in as the size of the
partial condensate in the low-density part, `

PC
∼ L1/2.

Scaling collapses are also tested in Fig. 7 as the inset
of (b) and (c). In the NS phase,

P (`;L)L1/2 = f
NS

(`/ξ
NS

), (19)

where ξ
NS
∼ constant, depending on b and r only, and

f
NS

(x) ∼ exp(−x/ξNS). In the S phase,

P (`;L)L1/2 = f
S
(`/L1/4), (20)
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where ξ
S
∼ L1/4, depending on b and r as well, and

f
S
(x) ∼ exp(−x/ξS). In the PC phase,

P (`;L)L =

{
f
PC,1

(`/L1/4), (normal);

fPC,2(`/L1/2), (PC).
(21)

As approaching from the NS phase to the S phase, the
characteristic inter-particle distance becomes longer but
still finite as a constant independent of L. Passing the
NS-S phase boundary, it eventually depends on L and
follows specific power-law scaling in the S phase. More-
over, in the PC phase, the condensate of holes develops,
which scales as ` ∼ L1/4 up to ` ∼ L1/2 in the low-density
part. Up to ` < L1/4, P (`;L) ∼ `−4, independent of b as
long as the system in the PC phase. The origin of scaling
in the large ` regime mostly depends on the low-density
part, as in the high-density part mostly contributes to
the small ` regime.

For the low-density part in the PC phase, particles
randomly inject and have the geometric distribution of
`, very near to the SB. Then, as particles travel forward,
vacancies (holes) form a cluster from the random initial
cluster. Even this process is in the stationary state, the
condensation process along the spatial axis is equivalent
to the dynamic cluster formation of the ordinary ZRP.
Therefore, in the condensate region, the phase velocity is
equal to unity; the spatial position x is equivalent to the
coarsening time t from the random initial condition (see
Fig. 3 at b = 4.00 and r = 0.2). As a result, the inter-
particle distance distribution in the low-density part is
the same as the integrated cluster-size distribution from
t = 0 to t = cL, where c is the fraction of the low-density
bulk (1/2 < c < 1). Therefore, that average cluster size
for the totally asymmetric ZRP scales as 〈`〉t ∼ t1/2 ∼
L1/2 [29], where the number of the condensed cluster is
the order of unity, and the time scales as L, leading to
`PC,C ∼ L1/2.

For the additional information with the comparison
of the ZRP-type condensation in the C phase with other
phases, we provide more plots of P (`;L = 216) as Fig. A.2
in Appendix A: In the upper panel, at r = 0.10 (left), r =
0.40 (middle) and r = 0.95 (right) as b varies from -0.75
to 6.00, we find that P

C
(`) ∼ `−b for b ≥ 3 in the C phase,

while, in the PC phase, P
PC

(`) ∼ `−4 for b� b
PC

(r). In
the lower panel, at b = 2.50 (left), b = 3.00 (middle),
and b = 6.00 (right) as r varies from 0.10 to 0.95, we
confirm that the functional shape of P (`) corresponds to
the phase identity.

V. SUMMARY AND DISCUSSION

We have studied the interplay of particle interaction
and local defect in the current-density relation under the
conservation of particles and the global current through
the entire system. In our study, we considered the
modified slow-bond (SB) problem with two well-known
nonequilibrium models, the totally asymmetric simple

exclusion process (TASEP) and the zero-range process
(ZRP). In the modified SB problem, the interaction pa-
rameter b and the SB factor r are two main control pa-
rameters.

As b ∈ (0,∞) and r ∈ (0, 1] vary, the phase diagram
was suggested with marginal phase boundaries that are
obtained from mean-field (MF) approximations for the
SB problem, which were also numerically checked. In
particular, we found that the particle-hole asymmetry
due to the ZRP-type hopping rates allows the system
to have the non-separated (NS) density profiles, which
is called as the NS phase, i.e., the SB-free phase. As
a result, in the modified SB problem, jamming caused
by the SB can be localized in the thermodynamic limit,
which is different from the original SB problem. However,
in this paper, finding exact boundaries of the SB-free
phase and the scaling relations near transitions are out
of scope, which will be discussed elsewhere as one of the
future studies.

On the other hand, the modified SB problem would
shed light on the similar issue in real-world traffic and
transport problems, such as a localized blockage in high-
ways and metabolic systems. The correlated dynamics in
driven flow is closely related to the inter-particle distance
dependent hopping rate. Real-world traffic and trans-
port problems are often treated as cellular automata and
biased random-walk type models with correlated phys-
ical quantities. This is quite similar to b ≤ 0, where
our results imply that particle interaction can suppress
the jamming of particles. Moreover, it would be inter-
esting to test the rich and robust scaling behaviors of
the partially-condensed phase, obtained from the inter-
particle distance distribution function in the open system
as well, which would be another challenging task, in the
context of the ensemble equivalence.
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Appendix A: Current-Density Relation
for Homogeneous Case

The totally asymmetric simple exclusion process
(TASEP) with N particles and L sites, represents the
zero-range process (ZRP) with L particles and N sites.
Thus, it can be described as the stationary process of
{`x}:

PN,L{`x} =
1

Z(N,L)

N∏

x=1

W (`x)δ

(∑

L

{`x}, N
)
, (A1)
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where the weight W is given by

W (`) =
∏̀

i=1

1

u(i)
, (A2)

and the normalizing partition function Z is given by

Z(N,L) =
∑

{`i}

L∏

x=1

W{`x}δ
(∑

L

{`x}, N
)
. (A3)

The equivalence of canonical and grand-canonical ensem-
bles [29] defines the grand-canonical measure as follows:

PLφ {`i} =

L∏

x=1

Pφ(`x), (A4)

with the single-site measure and its normalization

Pφ(`x) =
1

ZW (`x)φ`x , (A5)

Z(φ) =

∞∑

`x=0

W (`x)φ`x . (A6)

In the grand canonical ensemble, the average particle
density 〈`〉(φ) as a function of φ is given by

〈`〉(φ) =

∞∑

nx=0

`xPφ(`x) = φ
∂

∂φ
lnZ. (A7)

The average velocity (jump rate) is the expectation value
of hopping rates:

〈u(`x)〉 =

∞∑

`x=0

u(`x)Pφ(`x) = φ. (A8)

As a result, for u(`x) studied in [31], the stationary weight
for the process with b is given by

W (k) =

k∏

i=1

1

1 + b/i
=

Γ(k + 1)Γ(1 + b)

Γ(1 + b+ k)
. (A9)

The grand-canonical partition function can be written in
terms of the hypergeometric function [32],

Z = 2F1(1, 1; 1 + b;φ) =

∞∑

k=0

Γ(k + 1)Γ(1 + b)

Γ(1 + b+ k)
φk,

(A10)

as well as the average particle distance

〈`〉(φ) =
φ

(1 + b)
2F1(2, 2; 2 + b;φ)

2F1(1, 1; 1 + b;φ)
, (A11)

which leads to ρ as,

ρ =
1

1 + 〈`〉 =
2F1(1, 1; 1 + b;φ)

2F1(1, 2; 1 + b;φ)
, (A12)

where the latter relation is from the hypergeometric iden-
tity. The value of hypergeometric function for φ = 1
when c− a− b > 0,

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) . (A13)

This gives us ρ at given b with φ = 1 as

ρ(1) =
b− 2

b− 1
. (A14)

Neutral limit: |b| → 0

In the case of small b, the current-density relation can
be obtained from the perturbation of the partition func-
tion. Using the Euler hypergeometric transformation,
the partition function Z is expanded in terms of b,

Z = 2F1(1, 1; 1 + b;φ) =
2F1(1, b; 1 + b; φ

φ−1 )

1− φ ,

=
1−∑∞k=1(−b)kLik( φ

φ−1 )

1− φ , (A15)

where Lik(z) is the polylogarithmic function. Using the
polylogarithmic identity, ρ is expressed in the simple
terms,

ρ(φ) =
1

1 + 〈`〉 =
1− φ

1 + b
(
1
Z − 1

) . (A16)

By the series inversion, we get φ(ρ) up to the several
orders of b,

φ = (1− ρ) + bρ(1− ρ) + b2ρ2 [(1− ρ) + ln ρ]

+ b3ρ2
[
Li2(1− ρ) + (2ρ− 1) ln ρ− 1

2
ln2 ρ− (1− ρ)2

]

+O(b4), (A17)

as well as the current J = ρφ(ρ), which we retrieve the
original TASEP current ρ(1−ρ) as b→ 0. This expansion
does not have the closed form, we approximate up to the
first order of b in Eq. (A15). As a result,

φ =
1− ρ
1− bρ . (A18)



11

0.25 0.5 0.75 1
ρ

0

1/4

1/2

J

φ = 1

b = 2.5b = 2.50
ρ+

ρ−

0.1

1.0

r

FIG. A.1. A specific example of the current-density relation: J(ρ; b = 2.50) as well as ρ+ and ρ− for various r from r = 0.1
(violet) to r = 1.0 (grey). The black solid line is drawn by Eq. (7) for b = 2.50, where the left-side endpoint coincides with
φ = 1 as shown the different colored (red, dotted) line. As r decreases, ρ = 1/2 (NS), ρ+ and ρ− are also marked.

10
−12

10
−9

10
6

10
3

P
(`

)

r = 0.10 r = 0.40 r = 0.95

100 101 102 103 104

`

10
−12

10
−9

10
6

10
3

P
(`

)

b = 2.50

100 101 102 103 104

`

b = 3.00

100 101 102 103 104

`

b = 6.00

-0.75

0

6

b

0.1

1.0

r

FIG. A.2. Inter-particle distance distributions for L = 216: In the upper panel, at r = 0.10 (left), r = 0.40 (middle) and
r = 0.95 (right) as b varies from b = −0.75 (black) to b = 6.00 (yellow), we find that PC(`) ∼ `−b for b ≥ 3 in the C phase,
while, in the PC phase, PPC(`) ∼ `−4 for b � bPC(r). In the lower panel, at b = 2.50 (left), b = 3.00 (middle), and b = 6.00
(right) as r varies from r = 0.10 (black) to r = 0.95 (yellow), we confirm that the functional shape of P (`) corresponds to the
phase identity. The guidelines of slopes are provided: In the upper panel, the long-dashed lines are -4.0 (black), -3.0 (green),
and -6,0 (blue), respectively. In the lower panel, the black long-dashed lines are -4.0, while the red long-dashed lines correspond
to −b.

[1] D. Chowdhury, A. Schadschneider, and K. Nishinari,
Phys. Life Rev. 2, 318 (2005).

[2] P. C. Bressloff and J. M. Newby, Rev. Mod. Phys. 85,
135 (2013).

[3] I. Neri, N. Kern, and A. Parmeggiani, Phys. Rev. Lett.
110, 098102 (2013).

[4] D. Helbing, Rev. Mod. Phys. 73, 1067 (2001).
[5] D. Chowdhury, L. Santen, and A. Schadschneider, Phys.

Rep. 329, 199 (2000).
[6] B. Embley, A. Parmeggiani, and N. Kern, Phys. Rev. E

80, 041128 (2009).
[7] A. Schadschneider, Physica A: Statistical Mechanics and

its Applications 285, 101 (2000).

[8] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev.
Lett. 36, 867 (1976).

[9] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.
56, 889 (1986).

[10] I. Corwin, Rand. Mat. 01, 1130001 (2012).
[11] J. Quastel, Curr. Dev. Math. 2011, 125 (2011).
[12] B. Derrida, E. Domany, and D. Mukamel, J. Stat. Phys.

69, 667 (1992).
[13] R. A. Blythe and M. R. Evans, J. Phys. A 40, R333

(2007).
[14] M. Ha, J. Timonen, and M. den Nijs, Phys. Rev. E 68,

056122 (2003).

http://www.sciencedirect.com/science/article/pii/S1571064505000321
http://link.aps.org/doi/10.1103/RevModPhys.85.135
http://link.aps.org/doi/10.1103/RevModPhys.85.135
http://link.aps.org/doi/10.1103/PhysRevLett.110.098102
http://link.aps.org/doi/10.1103/PhysRevLett.110.098102
http://link.aps.org/doi/10.1103/RevModPhys.73.1067
http://www.sciencedirect.com/science/article/pii/S0370157399001179
http://www.sciencedirect.com/science/article/pii/S0370157399001179
http://link.aps.org/doi/10.1103/PhysRevE.80.041128
http://link.aps.org/doi/10.1103/PhysRevE.80.041128
http://dx.doi.org/ http://dx.doi.org/10.1016/S0378-4371(00)00274-0
http://dx.doi.org/ http://dx.doi.org/10.1016/S0378-4371(00)00274-0
http://dx.doi.org/10.1103/PhysRevLett.36.867
http://dx.doi.org/10.1103/PhysRevLett.36.867
http://link.aps.org/doi/10.1103/PhysRevLett.56.889
http://link.aps.org/doi/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1142/S2010326311300014
http://dx.doi.org/10.4310/CDM.2011.v2011.n1.a3
http://dx.doi.org/10.1007/BF01050430
http://dx.doi.org/10.1007/BF01050430
http://stacks.iop.org/1751-8121/40/i=46/a=R01
http://stacks.iop.org/1751-8121/40/i=46/a=R01
http://link.aps.org/doi/10.1103/PhysRevE.68.056122
http://link.aps.org/doi/10.1103/PhysRevE.68.056122


12

[15] O. Costin, J. L. Lebowitz, E. R. Speer, and A. Troiani,
Bull. Inst. Math., Acad. Sin. (New Series) 8, 49 (2013).

[16] J. Schmidt, V. Popkov, and A. Schadschneider, Euro-
phys. Lett. 110, 20008 (2015).

[17] H. Soh, Y. Baek, M. Ha, and H. Jeong, Phys. Rev. E
95, 042123 (2017).

[18] M. Myllys, J. Maunuksela, J. Merikoski, J. Timonen,
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