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Abstract. We compute the fundamental class (in the extended Bloch group) for rep-
resentations of fundamental groups of 3-manifolds to SL(4, R) that factor over SL(2, C),
in particular for those factoring over the isomorphism PSL(2, C) = SO(3, 1). We also
discuss consequences for the number of connected components of SL(4, R)-character va-
rieties, and we show that there are knots with arbitrarily many components of vanishing
Chern-Simons invariant in their SL(n, C)-character varieties.

1. Introduction

Given a finitely generated group Γ and a connected Lie group G, it is a natural and
fruitful question to understand the topology of its representation variety Hom(Γ, G) and
its character variety X(Γ, G) = Hom(Γ, G)//G, in particular to distinguish the connected
components of these varieties.1

This question has been studied mostly for Γ = π1Σg, the fundamental group of a closed,
orientable surface of genus g ≥ 2. For compact Lie groups G it is known since the work of
Atiyah and Bott that the components of the character variety X(π1Σg, G) can be distin-
guished by the values of characteristic classes (of the flat bundles associated to the respective
representations). This is however in general not true for noncompact Lie groups. It is known
from work of Hitchin that for n ≥ 3 the character variety X(π1Σg, PSL(n, R)) has 3 or 6
components, according to whether n is odd or even, and not all of these components can be
distinguished by characteristic classes. On the other hand, X(π1Σg, PSL(2, R)) has 4g − 3
components distinguished by the possible values of the Euler class, according to Goldman.

Not much is known for the case that Γ = π1M is the fundamental group of a (closed
or cusped) hyperbolic 3-manifold. In this case, an invariant which can distinguish different
components of Xbup(Γ, SL(n, C)) is the Cheeger-Chern-Simons invariant of the flat bundle
associated to a representation. This is a complex-valued invariant and it has become common
to denote its imaginary part by the ”volume” and the negative of its real part by the ”Chern-
Simons invariant” of the representation. These names stem from the case of hyperbolic
metrics (more precisely, the lifts of their monodromy representation to SL(2, C)), where
these invariants yield indeed the volume and the Chern-Simons invariant of the hyperbolic
metric.

It was proved in [12] that the Cheeger-Chern-Simons invariant can be computed from the

”fundamental class of ρ” in the so-called extended Bloch group B̂(C), namely that it is the

1For a manifold with boundary, we will consider the character variety of characters of boundary-unipotent
representations Xbup(Γ, G) only, which frequently has more connected components than X(Γ, G), see e.g.

[21].
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result of applying the Rogers’ extended dilogarithm to that fundamental class. The group

B̂(C) is isomorphic to H3(SL(2, C); Z) and to a direct summand of H3(SL(n, C); Z) for
n ≥ 3. One of the main results in [12] is to give a formula which computes that fundamental
class from the naturally defined class (Bρ)∗ [M ] ∈ H3(SL(n; C); Z), which is the image of the
fundamental class [M ] ∈ H3(M ; Z) under the classifying map Bρ : M → BSL(n, C)δ. In the
cusped case one has to consider (Bρ)∗ [M, ∂M ] ∈ H3(SL(n, C), N ; Z) for N ⊂ SL(n, C) the
subgroups of upper triangular matrices with 1’s on the diagonal and [12] also computes the
fundamental class in the extended Bloch group from this. Because of this close connection
we will denote the ”fundamental class of ρ” in the extended Bloch group by

ρ∗ [M, ∂M ] ∈ B̂(C).

In this paper we are going to consider finite-volume hyperbolic 3-manifolds M and repre-
sentations ρ : π1M → SL(4, C) of their fundamental groups which factor over a representa-
tion SL(2, C) → SL(4, C). The main part of the paper will be devoted to the computation
in the case of the 2-fold covering SL(2, C) → SO(3, 1) because this is the only irreducible
SL(2, C)-representation for which the computation does not already follow easily from the
results in [12].

Behaviour of fundamental classes under the isomorphism PSL(2, C) → SO(3, 1).

Theorem 1. Let M be a compact, orientable 3-manifold. Let τ be the isomorphism τ : PSL(2, C) →
SO(3, 1) and let ρ : π1M → PSL(2, C) any boundary-unipotent representation. Then

(τ ◦ ρ)∗ [M, ∂M ] = 2ρ∗ [M, ∂M ] + 2ρ∗ [M, ∂M ] ∈ B̂(C)

if ρ lifts to a boundary-unipotent representation π1M → SL(2, C) (in particular if M is
closed) and2

(τ ◦ ρ)∗ [M, ∂M ] = 2ρ∗ [M, ∂M ] + 2ρ∗ [M, ∂M ] ∈ B̂(C)PSL

otherwise.

This will be proved in Section 3. Rather than computing (τ◦ρ)∗ [M, ∂M ] for τ : PSL(2, C) →
SO(3, 1) it turns out to be more convenient to consider the equivalent representation ρ⊗ρ ∼
τ ◦ ρ. (The problem with considering τ ◦ ρ would be that a simplex with an in the
sense of Definition 7 generic PSL(2, C)/N -decoration need not have a generic SO(3, 1)/N -
decoration, so further subdivision of the triangulation would be necessary to obtain generic
SO(3, 1)/N -decorations. )

Direct applications of the formulas from [12] to ρ ⊗ ρ will a priori yield some apparently
unmanageable formula for

(τ ◦ ρ)∗ [M, ∂M ] = (ρ ⊗ ρ)∗ [M, ∂M ] ∈ B̂(C).

However, in the end almost everything in this formula will cancel out to yield the simple
formula in Theorem 1. The reason behind this will be cancellations in the extended pre-

Bloch group3, using the 5-term relation and some symmetries in P̂(C) that we describe in
Section 2.4.

Our original motivation for computing the fundamental class of these representations
was to compute their Chern-Simons invariants. Namely, it follows from Theorem 1 that

2The notation bB(C)PSL will be explained in the last paragraph of Section 2.1.
3Remarkably all of our computations will work in the extended pre-Bloch group bP(C) and the fact that

the fundamental class actually belongs to the subgroup bB(C) ⊂ bP(C) will not be needed.
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V ol(τ ◦ ι) = 0 and4 CS(τ ◦ ι) = 4CS(M). It turns out, however, that this equality can be
proved by an easier (and well-known) argument, which we will give in Lemma 1.

Geometric SL(n, C)-representations of 3-manifold groups. Recall that for an
oriented, hyperbolic 3-manifold M , its fundamental group π1M is a discrete subgroup of
Isom+(H3) = PSL(2, C). If M is closed, then by [6, Corollary 2.2] it lifts to a discrete sub-
group Γ ⊂ SL(2, C). (If M has cusps, then this lift is in general not boundary-unipotent,
see Section 3.6 for a discussion of this case.) We call ι : π1M → SL(2, C) (the lift of) the
hyperbolic monodromy.

For each natural number n, the irreducible representation ρn : SL(2, C) → SL(n, C) cor-
responding to the unique n-dimensional C-linear representation of the Lie algebra sl(2, C),
can be composed with ι to yield a representation ρn ◦ ι that is called a ”geometric repre-
sentation”. Garoufalidis-D.Thurston-Zickert used their methods to give a short and elegant
proof for the formula

(ρn ◦ ι)∗ [M, ∂M ] =

(
n + 1

3

)
ι∗ [M, ∂M ] ∈ B̂(C),

which implies the equalities

V ol(ρn ◦ ι) =

(
n + 1

3

)
V ol(ι), CS(ρn ◦ ι) =

(
n + 1

3

)
CS(ι),

see [12, Theorem 11.3]. Actually also these equalities can be derived from properties of
invariant polynomials, see Lemma 1.

In Conjecture 1 we propose that the natural generalization of Theorem 1 should be an
equality

(ρn ⊗ ρm)∗ [M, ∂M ] = m [M, ∂M ] + n[M, ∂M ]

for all n, m ≥ 2.
4-dimensional representations of 3-manifold groups. The classification of repre-

sentations of the Lorentz group implies that with the exception of ρ2 ⊗ ρ2 all 4-dimensional
representations of SL(2, C) are, up to conjugacy in GL(4, C), obtained as direct sums of
the geometric representations and their complex conjugates. The exceptional case ρ2 ⊗ ρ2

is equivalent to the 2-fold covering SL(2, C) → SO(3, 1).
The Cheeger-Chern-Simons invariant is additive under direct sum and takes the com-

plex conjugate upon complex conjugation of the representation, see Section 2.3. From these
principles and the computation of volumes and Chern-Simons invariants for the ρn’s and
ρ2 ⊗ ρ2 we obtain the following table of volumes and Chern-Simons invariants for the rep-
resentations ρ ◦ ι : π1M → GL(4, C), where ι : π1M → SL(2, C) is a lift of the monodromy
of a hyperbolic structure and ρ runs over all representations ρ : SL(2, C) → GL(4, C).

4If M has cusps, then this is of course to be understood as an equality modulo π2 because CS(M) is
only defined up to this ambiguity.
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representation ρ Volume of ρ ◦ ι Chern-Simons invariant of ρ ◦ ι
ρ4 10 Vol(M) 10 CS(M)
ρ4 -10 Vol(M) 10 CS(M)
ρ2 ⊗ ρ2 0 4 CS(M)
ρ3 ⊕ 1 4 Vol(M) 4 CS(M)
ρ3 ⊕ 1 -4 Vol(M) 4 CS(M)
ρ2 ⊕ ρ2 2 Vol(M) 2 CS(M)
ρ2 ⊕ ρ2 0 2 CS(M)
ρ2 ⊕ 1 ⊕ 1 Vol (M) CS (M)
ρ2 ⊕ 1 ⊕ 1 -Vol (M) CS(M)
1⊕4 0 0

For a hyperbolic 3-manifold with nonvanishing Chern-Simons invariant CS(M) 6= 0 this
implies that we can distinguish 10 components of the SL(4, C)-character variety by volume
and Chern-Simons invariant.5

We remark that in the above list the three representations of vanishing volume can be
conjugated into SL(4, R). Indeed, ρ2 ⊗ ρ2 is equivalent to the well-known 2-fold cover-
ing map SL(2, C) → SO(3, 1) ⊂ SL(4, R), while ρ2 ⊕ ρ2 is equivalent to the embedding

SL(2, C) → SL(4, R) coming from (a1 + a2i) →

(
a1 a2

−a2 a1

)
, see Section 4.1. So we

obtain the following corollary.

Corollary 1. For finite-volume hyperbolic, orientable 3-manifolds with nonvanishing Chern-
Simons invariant there are at least 3 connected components in their SL(4, R)-character va-
riety.

More components. The ptolemy module [13] in SnapPy [7] computes the SL(2, C)-
representations for 3-manifolds built from up to 9 ideal tetrahedra and the SL(3, C)-representations
for many 3-manifolds built from up to 4 tetrahedra6, but at the time of writing can compute
SL(4, C)-representations only for 3-manifolds composed of two ideal tetrahedra, that is for
the figure eight knot complement and its sister. (For them it detects only irreducible repre-
sentations because the reducible ones would need more than two simplices to allow a generic
decoration.) It turns out that for the figure eight knot complement the only computed
irreducible SL(4, C)-representations are those coming from ρ4 ◦ ι, ρ4 ◦ ι and (ρ2 ⊗ ρ2) ◦ ι.
(There are however more PSL(4, C)-representations, see [12, Example 10.2].) So in this case
one should actually have no more than 3 components in the SL(4, R)-character varieties of
the figure eight knot complement. For general knots, however, there will be more than 3
components and in Section 4 we discuss some methods for constructing some of them.

Concerning SL(n, C)-character varieties we use a construction of Ohtsuki-Riley-Sakuma
to show the existence of knot complements having arbitrarily many components with van-
ishing Chern-Simons invariant in their SL(n, C)-character variety.

5One obtains an analogous table of volumes and Chern-Simons invariants for ρ ◦ κ whenever κ : π1M →

SL(2, C) is any given representation. So, when the SL(2, C)-character variety already has several compo-
nents, then in most cases one will find accordingly more components in the SL(4, C)-character variety.

6Another approach to the computation of SL(3, C)-representations for 3-manifold groups uses the Fock-
Goncharov coordinates, it is explained in [10] and at the time of writing it computes them for a similar range
than the ptolemy module.
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Theorem 2. For any natural numbers N and m there exist 2-bridge knots whose SL(m, C)-
character variety has more than N connected components and such that the Chern-Simons
invariant vanishes on N different components.

The paper is organised as follows. Section 2 recollects known facts, especially the results
from [12]. Section 3 is the heart of the paper, it computes the fundamental class (Theorem 1)
for representations of the form ρ⊗ρ with ρ : π1M → SL(2, C). In Section 4 we discuss some
facts and conjectures about SL(4, C)- and SL(4, R)-character varieties and in particular the
proof of Theorem 2.

I thank Matthias Görner and Sebastian Goette for answering some questions about [13]
and [14], respectively, and Neil Hoffman for contributing the proof of Proposition 5 on
mathoverflow. The computations in the paper have been done with the help of the Sage
mathematical software ([29]).

2. Recollections

This section recollects the definition of the fundamental class of a representation and also
the definition and properties of Cheeger-Chern-Simons invariants. We are going to use the
recent approach of Garoufalidis-D.Thurston-Zickert which (in the case of flat bundles over
triangulated 3-manifolds) gives a practical approach to the computation of a fundamental

class of the holonomy representation as an element in the extended Bloch group B̂(C). (The
Cheeger-Chern-Simons invariant of the flat bundle is then obtained by applying the extended

Rogers’ dilogarithm to that element of B̂(C).) We describe their approach in Section 2.1 in
some detail because our proof of Theorem 1 depends on this construction.

In Section 2.2 we state the general definition of CCS-invariant according to Cheeger and
Simons and we explain in Lemma 1 the (apparently well-known) fact that their pull-backs
under the geometric representations ρn and their tensor products can be computed by using
invariant polynomials.

In Section 2.3 we discuss some properties of the CCS-invariants (which follow easily from
[4] and [12] and are likely to be well-known).

In Section 2.4 we derive some symmetries in the extended pre-Bloch group (reflecting
symmetries of the extended Rogers’ dilogarithm) which do not appear in the literature, but
which will turn out to be crucial for the proof of Theorem 1.

Finally, Section 2.5 discusses the example of the figure eight knot complement and de-
scribes in this computationaly easy case the computations that in generality will be per-
formed in the following Section 3.

Conventions: Throughout the paper log(z) will mean the branch of the logarithm of z ∈ C

with imaginary part

−π < Im(log(z)) ≤ π.

For a manifold M we will always assume to have fixed a basepoint m0 ∈ M and a lift

m̃0 ∈ M̃ , and hence an action of π1M := π1(M, m0) on the universal covering space M̃ .

2.1. Definition of the fundamental class of a representation. The group H3(SL(2, C); Z)
has an explicit description (by the work of Neumann) as the so-called extended Bloch group7

7Following [9] and [14] we define the extended pre-Bloch group as what Neumann in [23] calls the more
extended pre-Bloch group.
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B̂(C), which is a certain subgroup of the extended pre-Bloch group P̂(C). Together with
the Suslin-Sah isomorphism

H3(SL(n, C); Z) ∼= H3(SL(2, C); Z) ⊕ KM
3 (C) ∀n ≥ 3

one obtains for n ≥ 3 a decomposition

H3(SL(n, C); Z) ∼= B̂(C) ⊕ KM
3 (C)

It is a classical fact (probably first appearing in the work of Dupont-Sah) that the volume
of a hyperbolic 3-manifold can be computed by applying the Bloch-Wigner dilogarithm to
a fundamental class in the Bloch group B(C). However the Chern-Simons invariant can
not be computed from that fundamental class and this is one reason why Neumann in [23]

defined the extended Bloch group B̂(C) and showed that the volume and Chern-Simons
invariant can be computed by applying the extended Rogers’ dilogarithm to a fundamen-

tal class in B̂(C). In [12], Garoufalidis, D.Thurston and Zickert extended this approach to
SL(n, C)-representations of 3-manifold groups, i.e., to such a representation they associated

a fundamental class in B̂(C) such that again application of the Rogers’ extended dilogarithm
computes volume and Chern-Simons invariant of the representation (that is, of the flat bun-
dle whose holonomy is that representation). In this subsection we will review the definitions
and results from [12].

Definition 1. The extended pre-Bloch group P̂(C) is the free abelian group on the set

Ĉ =
{
(e, f) ∈ C2 : exp(e) + exp(f) = 1

}

modulo the relations

(e0, f0) − (e1, f1) + (e2, f2) − (e3, f3) + (e4, f4) = 0

whenever the equations

e2 = e1 − e0,

e3 = e1 − e0 − f1 + f0, f3 = f2 − f1,

e4 = f0 − f1, f4 = f2 − f1 + e0

hold.

One should pay attention that [z; 2p, 2q] in the notation of [23], [9] and [14] corresponds
to

(e, f) = (log(z) + 2pπi, log(1 − z) − 2qπi)

and hence to [z; 2p,−2q] in the notation of [12]. (Here z ∈ C \ {0, 1} and p, q ∈ Z.)

Definition 2. The extended Rogers’ dilogarithm

R : P̂(C) → C/4π2Z

is defined on generators of P̂(C) by

R((log(z) + 2pπi, log(1 − z) + 2qπi)) := Li2(z) +
1

2
(log(z) + 2pπi)(log(1 − z) − 2qπi) −

π2

6
,

where Li2(z) denotes the classical dilogarithm.
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It is proved in [23] and [14] that R is well-defined and a homomorphism. The relation to
the Rogers’ dilogarithm R is given by the equality

R((log(z) + 2pπi, log(1 − z) + 2qπi)) = R(z) + (p log(1 − z) − q log(z))πi − 2pqπ2.

Definition 3. A closed 3-cycle is a cell complex K obtained from a finite collection of
ordered 3-simplices by order preserving simplicial gluing maps between pairs of faces. We
call K a generalized ideal triangulation of a compact 3-manifold M if it is homeomorphic to

the space M̂ obtained from M by collapsing each boundary component to one point.

Definition 4. Let G be a Lie group, N ⊂ G a subgroup and M a 3-manifold. A (G, N)-
representation is a representation π1M → G which sends each peripheral subgroup to a
conjugate of N .

Definition 5. Let M be a compact 3-manifold (possibly with boundary) and K a generalized
ideal triangulation. Then L denotes the corresponding generalized triangulation of the space

obtained from the universal covering M̃ by collapsing each boundary component of M̃ to a
point.

We remark that the action of π1M on M̃ extends to an action of π1M on L.

Definition 6. Let M be a compact 3-manifold (possibly with boundary) and K a generalized
ideal triangulation. A decoration of a (G, N)-representation ρ : π1M → G is a ρ-equivariant
assignment

L0 → G/N,

i.e., associating an N -coset to each vertex of L such that if α ∈ π1M and the coset gvN is
associated to v, then the coset ρ(α)gvN is associated to αv.

We will say that a simplex σ = (v0, v1, v2, v3) from K is decorated by the tuple (g0N, g1N, g2N, g3N).

In what follows G will be a subgroup of GL(n, C) and N ⊂ G will be the subgroup of
upper triangular matrices with all diagonal entries equal to 1.

Definition 7. Let K be a generalized ideal triangulation of a compact 3-manifold M and
let ρ : π1M → G be a decorated (G, N)-representation.

The Ptolemy coordinates {ct}t of a decorated 3-simplex

(g0N, g1N, g2N, g3N)

are the assignment

t = (t0, t1, t2, t3) → ct := det(

3⋃

i=0

{gi}ti
)

for each 4-tuple t = (t0, t1, t2, t3) of nonnegative integers with

t0 + t1 + t2 + t3 = n.

Here {gi}ti
means the (ordered) set of the first ti column vectors of gi ∈ GL(n, C) and⋃3

i=0 {gi}ti
means the matrix whose (ordered) column set is composed by the {gi}ti

.
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c2100

c1200

c1110

c2010 c1020

c0111

c0021

c0021

c0210

One visualizes the Ptolemy coordinates (of a simplex) by fixing some identification of the
simplex with

∆3
n :=

{
(x0, x1, x2, x3) ∈ R4 : xi ≥ 0, x0 + x1 + x2 + x3 = n

}

and by attaching ct to the point (t0, t1, t2, t3). The picture above shows ∆3
3 with some of

the ct attached.

Definition 8. A decoration is called generic if all Ptolemy coordinates are nonzero:

ct 6= 0 ∀t ∈ Z≥0, t0 + t1 + t2 + t3 = n.

One can always obtain generic decorations by performing a barycentric subdivision on
simplices with nongeneric decorations.

Next we describe some 3-simplices embedded in ∆3
n. For each

α ∈ ∆3
n−2 ∩ Z4

one can consider the 3-simplex with vertices corresponding to

α + ei, i = 0, 1, 2, 3.

Each of its edges

(α + ei, α + ej)

has one Ptolemy coordinate attached to it, namely

cαij
:= cα+ei+ej

.

Definition 9. Let K = ∪r
k=1Tk be a generalized ideal triangulation of a compact, orientable

3-manifold M and let ρ : π1M → G be a generic decorated (G, N)-representation, with
Ptolemy coordinates ck

t for each simplex Tk.
For each simplex T and each α ∈ ∆3

n−2 ∩ Z4 define

λ(cα) = (log(cα03
) + log(cα12

) − log(cα02
) − log(cα13

),

log(cα01
) + log(cα23

) − log(cα02
) − log(cα13

)) ∈ P̂(C).

Then define

λ(K, ρ) =

r∑

k=1

ǫk

∑

α∈∆3
n−2

∩Z4

λ(ck
α) ∈ P̂(C),

where ǫk is ±1 according to whether the orientation of Tk agrees with the orientation of M
or not.
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It is known (but it will actually play no role for our calculations) that

λ(K, ρ) ∈ B̂(C) := ker(ν̂)

for the extended Dehn invariant ν̂(e, f) := e ∧ f ∈ C ∧Z C. The element λ(K, ρ) does not
depend on the triangulation and we will denote it by

ρ∗ [M, ∂M ] ∈ B̂(C).

In fact for G = SL(2, C) it corresponds to the image of the fundamental class under the

epimorphism H3(SL(2, C)δ, N δ; Z) → H3(SL(2, C)δ; Z) ∼= B̂(C).
The following result from [12] will be useful to avoid too many case distinctions in our

arguments.

Proposition 1. ([12, Proposition 7.7]) Under the assumptions of Definition 9 let c be the
Ptolemy coordinates of the generic decorated representation on K. For any lift c̃ of c we
have

λ(K, ρ) =

r∑

k=1

ǫk

∑

α∈∆3
n−2

∩Z4

λ̃(ck
α) ∈ P̂(C).

Here, a lift c̃ of c means a choice of logarithm for each ck
α (i.e., of a complex number whose

difference with log(ck
α) is an integer multiple of 2πi) such that the choices agree whenever

coordinates correspond to glued faces in K, and λ̃(cα) is then defined as

λ̃(cα) = (c̃α03
+ c̃α12

− c̃α02
− c̃α13

, c̃α01
+ c̃α23

− c̃α02
− c̃α13

) ∈ P̂(C).

So, in the formula of Definition 9 one can replace log by any choice of logarithm as long as
we make the same choice on common faces or edges of different simplices.

pSL(n, C)-representations ([12, Section 6.3]). For boundary-unipotent representations
to

pSL(n, C) = SL(n, C)/ {±1}

the ptolemy coordinates are only well-defined as elements of C∗/ {±1} and thus λ(cα) takes

value in P̂(C)PSL, the free abelian group over
{
(e, f) ∈ C2 : ± exp(e) ± exp(f) = 1

}

modulo the 5-term relation.

2.2. Definition of CCS-invariants. For a flat complex vector bundle V : E → X Cheeger-
Simons ([4, Section 4]) define8 Chern characters ĉk(V) ∈ H2k−1(X ; C/4π2Z). In this paper
we will be interested in the character ĉ2(V) for flat SL(n, C)-bundles over 3-manifolds. For
a closed, orientable 3-manifold M and a representation ρ : π1M → SL(n, C) we consider its
Cheeger-Chern-Simons invariant

CCS(M, ρ) =

∫

M

ĉ2(Vρ),

where Vρ means the flat n-dimensional complex vector bundle over M with holonomy ρ. An
explicit formula is

CCS(M, ρ) =
1

2

∫

M

s∗(Tr(θ ∧ dθ +
2

3
θ ∧ θ ∧ θ)) mod 4π2Z,

8In their normalization the Chern character is an element of H2k−1(X; C/Z).
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where θ is a flat connection and s a section of Vρ, which exists because SL(n, C) is 2-
connected.

The universal Cheeger-Chern-Simons class ĉ2 of flat SL(n, C)-bundles is defined in [4]
as an element in H3(SL(n, C); C/4π2Z). To get a Cheeger-Chern-Simons invariant also for
cusped manifolds one lets N ⊂ SL(n, C) be the subgroup of upper triangular matrices with
1’s on the diagonals and uses the map H3(SL(n, C), N ; C/4π2Z) → H3(SL(n, C); C/4π2Z)
to consider ĉ2 as a relative class

ĉ2 ∈ H3(BSL(n, C)δ, BN δ; C/4π2Z),

see [12, Section 6.1]. Then for a flat bundle with boundary-unipotent holonomy (i.e. the
restriction of the holonomy to ∂M having image in conjugates of N) one defines the Cheeger-
Chern-Simons invariant via the pullback9 of ĉ2 under the classifying map M → BSL(n, C)δ.

As C/4π2Z is divisible, one may consider ĉ2 as a homomorphism

ĉ2 : H3(SL(n, C); Z) → C/4π2Z.

The group H3(SL(2, C); Z) has an explicit description (by the work of Neumann) as the

so-called extended Bloch group10 B̂(C), which is a certain subgroup of the extended pre-

Bloch group P̂(C) described in Section 2.1. Together with the Suslin-Sah isomorphism
H3(SL(n, C); Z) ∼= H3(SL(2, C); Z) ⊕ KM

3 (C) (for n ≥ 3) one obtains a decomposition

H3(SL(n, C); Z) ∼= B̂(C) ⊕ KM
3 (C)

and it turns out that ĉ2 vanishes on the Milnor K-theory KM
3 (C) (see [12, Section 8]),

thus ĉ2 depends only on its values on B̂(C). As explained in Section 2.1, Garoufalidis,
D. Thurston and Zickert associate to each flat SL(n, C)-bundle over a 3-manifold (with
unipotent holonomy at the boundary) a ”fundamental class”

(Bρ)∗ [M, ∂M ] ∈ B̂(C)

and they exhibit an explicit method for computing ĉ2 on this element, see Proposition 2
below. This yields a computable formula for the Cheeger-Chern-Simons invariant of the
associated flat bundle.

Using the Cheeger-Chern-Simons invariant, the volume and Chern-Simons invariant of a
representation are defined as follows.

Definition 10. ([12, Definition 2.11]): For a compact, orientable, aspherical 3-manifold M
and a boundary-unipotent representation ρ : π1M → SL(n, C) one defines the volume11 and
Chern-Simons invariant of ρ by

−CS(ρ) + iV ol(ρ) = 〈ĉ2, (Bρ)∗ [M, ∂M ]〉,

where

(Bρ)∗ : H3(M, ∂M ; Z) → H3(BSL(n, C)δ, BN δ; Z)

9Although the induced homomorphism π1M → SL(n, C) sends the fundamental groups of different
boundary components to possibly different conjugates of N , nonetheles one has a well-defined homomorphism
H3(BSL(n, C)δ, BNδ; C/4π2Z) → H3(M, ∂M ; C/4π2Z).

10Following [9] and [14] we define the extended pre-Bloch group as what Neumann in [23] calls the more
extended pre-Bloch group.

11This is not the same as the volume of representations defined via pulling back the volume form of the
symmetric spaces.
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is induced by the classifying map Bρ : M → BSL(n, C)δ of ρ (i.e., of the associated flat
bundle).

The motivation for this naming is Yoshida’s theorem (see [12, Theorem 2.8]) which implies
that for a closed hyperbolic 3-manifold and a lift ι : π1M → SL(2, C) of its geometric
representation, V ol(ι) (as defined above) is the hyperbolic volume V ol(M) and CS(ι) is
the Chern-Simons invariant CS(M) of the Levi-Civita connection for the hyperbolic metric.
(The analogous result for cusped hyperbolic 3-manifolds is true modulo π2 and is proved in
[23, Corollary 14.6].)

The following lemma seems well-known, although we were not able to locate a reference
in the literature. For the proof we will need the universal approach to CCS-classes from [4],
which is as follows. For a Lie group G, let I∗(G) be its invariant polynomials over C, BG
its classifying space, CWk : Ik(G) → H2k(BG; C) the Chern-Weil isomorphism and

K2k(G; Z) =
{
(P, u) ∈ Ik(G) × H2k(BG; Z) : CWk(P ) = uC

}
.

Then, for each principal G-bundle with flat connection θ and base B, there is a natural map

S(P,u)(θ) : K2k(G; Z) → H2k−1(B; C/Z).

The Cheeger-Chern-Simons class ĉ2 of the flat bundle equals 4π2SP,u(θ) with P ∈ I2(SL(n, C))
the invariant polynomial P (A) = − 1

4π2 Tr(A2) and u ∈ H4(BSL(n, C); Z) the universal sec-
ond Chern class.

Lemma 1. Let M be a compact, orientable 3-manifold and ρ : π1M → SL(2, C) any rep-
resentation. For n ≥ 2 let ρn : SL(2, C) → SL(n, C) be the irreducible representation corre-
sponding to the unique n-dimensional C-linear of the Lie algebra sl(2, C). Then
a)

CCS(M, ρn ◦ ρ) =

(
n + 1

3

)
CCS(M, ρ),

b)

CCS(M, (ρn ⊗ ρm) ◦ ρ) = mCCS(M, ρ) + nCCS(M, ρ).

Proof: By the previous paragraph CCS is defined via the invariant polynomial P (A) =
−tr(A2) ∈ I2(SL(n, C)). Naturality of S(P,u)(θ) means

S(ρ∗

nP,ρ∗

nu)(θ) = S(P,u)(πnθ)

(see [4, Theorem 2.2]), when

πn = Deρn : sl(2, C) → sl(n, C)

is the induced homomorphism of Lie algebras, and it implies that CCS(M, ρn ◦ ρ) can be
computed by integrating the invariant polynomial ρ∗nP instead of P .

In view of naturality and of ρ∗nP (A) = P (πn(A)) we then just have to show that

P (πn(A)) =

(
n + 1

3

)
P (A)

and

P (πn(A) ⊗ 1m + 1n ⊗ πm(A)) = mP (A) + nP (A),

where we have used that the Lie algebra homomorphism induced from the Lie group homo-
morphism B → B ⊗ B is A → A ⊗ 1 + 1 ⊗ A.
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In the first equality we have a C-linear map, so it suffices to check the equality on the

C-basis of sl(2, C) given by X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
. One easily

checks that πn(X) is an upper triangular matrix and πn(Y ) is a lower triangular matrix
(both with 0’s on the diagonal), so we have P (πn(X)) = 0 and P (πn(Y )) = 0 as desired.
Moreover, πn(H) is the diagonal matrix diag(n − 1, n − 3, . . . ,−n + 1), from which one

obtains Tr(πn(H))2 = 2

(
n + 1

3

)
.

For the second claim it suffices by symmetry, additivity and compatibility with complex
conjugation to show that P (πn(A) ⊗ 1m) = mP (A) and again to consider the C-basis. For
A = X and A = Y one again obtains triangular matrices with 0’s on the diagonal, so
P (πn(X)⊗ 1m) = 0 and P (πn(Y )⊗ 1m) = 0. For A = H one observes that πn(H)⊗ 1m has
the same eigenvalues as πn(H) but each occuring with multiplicity m, so

Tr(πn(H)2 ⊗ 1m) = mTr(πn(H)2)

which yields the claim.
QED

The previous lemma suggests the following conjecture.

Conjecture 1. Under the assumptions of Lemma 1 we have

(ρn ⊗ ρm)∗ [M, ∂M ] = m [M, ∂M ] + n[M, ∂M ].

In this paper we will handle the case n = m = 2.

2.3. Properties of CCS-invariants. In this subsection we recollect some properties of
the CCS-invariant. The following is the main result of Garoufalidis-D.Thurston-Zickert in
[12]. It shows that the Cheeger-Chern-Simons invariant (see Definition 10) can be computed
from ρ∗ [M, ∂M ].

Proposition 2. ([12, Theorem 1.3]) Let K = ∪r
k=1Tk be a generalized ideal triangulation

of a compact, orientable 3-manifold M (possibly with boundary) and let ρ : π1M → G be a
generic decorated (SL(n, C), N)-representation, with ptolemy coordinates ci

t for each simplex
Ti. Then

R(λ(K, ρ)) = −CS(ρ) + iV ol(ρ) ∈ C/4π2Z,

where R denotes the extended Rogers’ dilogarithm from Definition 2 and λ(K, ρ) ∈ P̂(C)
was defined in Definition 9.

For boundary-unipotent representations to pSL(n, C) we have the fundamental class in

P̂(C)PSL (see the last paragraph of Section 2.1) and the extended Rogers’ dilogarithm is then
well-defined modulo π2Z. The ptolemy coordinates in Definition 8 are defined as elements of
C∗/ {±1}, so λ(K, ρ) in Definition 9 can (by taking imaginary parts of logarithms between

0 and π) be defined as an element in P̂(C)PSL and Proposition 2 holds as an equality in
C/π2Z, see [12, Section 9.2].

While the Cheeger-Chern-Simons invariant is in general not additive for direct sums of
GL(n, C)-bundles, additivity holds for SL(n, C)-bundles.

Lemma 2. Let ρ1, ρ2 be boundary-unipotent representations from π1M to SL(n, C), for a
compact manifold M . Then

CCS(M, ρ1 ⊕ ρ2) = CCS(M, ρ1) + CCS(M, ρ2)
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Proof: From Cheeger-Simons ([4, Theorem 4.6]) follows

ĉ2(V ⊕W) = ĉ2(V) + ĉ2(W) + ĉ1(V) ∗ ĉ1(W)

for a certain multiplication ∗ defined in [4, page 56].
It is well-known that ĉ1 vanishes for all flat SL(n, C)-bundles. Indeed,

ĉ1 ∈ H1(BGL(n, C); C/2πiZ)

is represented by the cocycle g → log(det(g)). The claim follows. QED

A direct consequence of the explicit formula in [12] is the compatibility of CCS with
complex conjugation.

Lemma 3. For any boundary-unipotent representation ρ : π1M → SL(n, C) we have

CCS(M, ρ) = CCS(M, ρ).

Proof: Going through the formulas in [12] one sees that a decoration for ρ can be obtained
by applying complex conjugation to a decoration for ρ, and that the Ptolemy coordinates of
these decorations are related by complex conjugation. According to Proposition 1 the value
of CCS(M, ρ) does not depend on the lifts of the Ptolemy coordinates, so one may choose
the lifts of the Ptolemy coordinates for ρ to be exactly the complex conjugates of the lifts of
the Ptolemy coordinates for ρ. (For example one may choose c̃ = log(c) whenever c 6∈ R<0,

and for all c ∈ R<0 one may choose c̃ = log(c) for ρ, but c̃ = log(c) − 2πi = log(c) for ρ.)

The formula in Definition 9 then implies λ(K, ρ) = λ(K, ρ) and now the claim follows from

Proposition 2 and the equality R(e, f) = R(e, f) which is immediate from Definition 2.QED

An immediate consequence is that a boundary-unipotent representation which can be
conjugated to a representation in SL(n, R) must have vanishing volume. It is perhaps worth-
mentioning that the ptolemy coordinates of such a representation are not necessarily real,
basically because the peripheral subgroups are conjugate to N ∩ SL(n, R) inside SL(n, C)
but not necessarily inside SL(n, R). The computations in Section 3 actually provide an
example of this phenomenon.

For the proof of Proposition 4 and hence Theorem 2 we will also need the following
straightforward equality.

Lemma 4. If f : (M1, ∂M1) → (M2, ∂M2) has mapping degree deg(f), then

CCS(M2, ρ) =
1

deg(f)
CCS(M1, ρ ◦ f∗)

for any boundary-unipotent representation ρ : π1M2 → SL(n, C) and the induced homomor-
phism f∗ : π1M1 → π1M2.

Proof: This is immediate from

CCS(M2, ρ) = 〈ĉ2, (Bρ)∗ [M2, ∂M2]〉

and

[M2, ∂M2] = deg(f) [M1, ∂M1] .

QED
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2.4. Symmetries of the extended Rogers’ dilogarithm. The aim of this subsection is

to prove some relations in the extended pre-Bloch group P̂(C), which are more complicated
than the well-known relations in the pre-Bloch group P(C). These relations will play a
central role in the proof of Theorem 1 in Section 3.

Definition 11. For e ∈ C define χ(e) ∈ P̂(C) by

χ(e) = (e, f + 2πi) − (e, f)

where f ∈ C is some complex number satisfying exp(e) + exp(f) = 1.

In the following lemma, R : P̂(C) → C/4π2Z denotes the extended Rogers’ dilogarithm
from Definition 2.

Lemma 5. i) χ is a homomorphism C/4πiZ → P̂(C) with respect to the additive structures

on C and P̂(C).
ii) R(χ(e)) = −πie mod 4π2 for all e ∈ C.

iii) R is injective on the image of χ, and im(χ) = ker(P̂(C) → P(C)).

iv) For (e, f) ∈ P̂(C) and p, q ∈ Z we have

(e + 2pπi, f + 2qπi) − (e, f) = χ(2pqπi + qe − pf).

Proof: i)-iii) are (in a slightly different language) proved in [14, Theorem 3.12]. (There
is a different sign in ii) because of the notational difference explained in the remark before
Definition 2.) Equation iv) follows from i)-iii), for general fields F it is also proved as a
consequence of the 5-term relation in [32, Lemma 3.16]. QED

The following relations will be crucial for the computations in Section 3, in particular
they will be used in the proof of Corollary 5 and thus Theorem 1.

Lemma 6. The following relations hold whenever Im(z) > 0 and p, q ∈ Z

i) (log(1
z
) − 2pπi, log(1 − 1

z
) + 2(q − p)πi)

= −(log(z) + 2pπi, log(1 − z) + 2qπi) + χ(−
1

2
log(z) + (2p2 + p)πi)

ii) (log(1 − z) + 2qπi, log(z) + 2pπi)

= −(log(z) + 2pπi, log(1 − z) + 2qπi) + χ(−
πi

6
)

iii) (log( 1
1−z

) − 2qπi, log( −z
1−z

) + 2(p − q)πi)

= (log(z) + 2pπi, log(1 − z) + 2qπi) + χ(
1

2
log(1 − z) + (2q2 − q +

1

6
)πi)

iv) (log(1 − 1
z
) + 2(q − p)πi, log(1

z
) − 2pπi)

= (log(z) + 2pπi, log(1 − z) + 2qπi) + χ(
1

2
log(z) + (2p2 − p −

1

6
)πi)

v) (log(− z
1−z

) + 2(p − q)πi, log( 1
1−z

) − 2qπi)

= −(log(z) + 2pπi, log(1 − z) + 2qπi) + χ(
1

2
log(1 − z) + (2q2 − q −

1

3
)πi
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Proof:
i) From Definition 2 we get

R(log(z), log(1 − z)) + R(log(
1

z
), log(1 −

1

z
)) =

Li2(z) +
1

2
log(z) log(1 − z) −

π2

6
+ Li2(

1

z
) +

1

2
log(

1

z
) log(1 −

1

z
) −

π2

6
mod 4π2.

From [30, Section 2] we have

Li2(z) + Li2(
1

z
) −

π2

3
= −

π2

2
−

1

2
log2(−z).

Moreover we have log(1
z
) = − log(z), log(1− 1

z
) = log(z−1)− log(z) because of | arg(z−1)−

arg(z) |< π, and for Im(z) > 0 we have log(1−z) = log(z−1)−πi and log(−z) = log(z)−πi.
Thus the above expression simplifies to

−
1

2
(log(z)− πi)2 −

π2

2
+

1

2
log(z) log(1− z)+

1

2
(− log(z))(log(1− z)− log(z)+ πi) mod 4π2

=
1

2
πi log(z) = R(χ(−

1

2
log(z))) mod 4π2,

thus

(log(z), log(1 − z)) + (log(
1

z
), log(1 −

1

z
)) = χ(−

1

2
log(z)).

Then we apply Lemma 5, iv) to get

(log(z) + 2pπi, log(1 − z) + 2qπi) + (log(
1

z
) − 2pπi, log(1 −

1

z
) + (2q − 2p)πi) =

(log(z), log(1 − z)) + χ(2pqπi + q log(z) − p log(1 − z)) + (log(1
z
), log(1 − 1

z
))

+χ(2p(q − p)πi + (q − p) log(1
z
) + p log(1 − 1

z
)

= χ(−
1

2
log(z)) + χ(2p2πi + (q − (q − p)) log(z) − p log(1 − z) + p log(1 −

1

z
))

We are assuming Im(z) > 0, which implies log(z − 1)− log(1 − z) = πi. Moreover z and
z − 1 have positive imaginary parts, which implies that their arguments differ by less than
π, so log( z−1

z
) = log(z − 1) − log(z). So the above sum simplifies to

= χ(−
1

2
log(z) + (2p2 + p)πi)

ii) We have from [30, Section 2] that

Li2(z) + Li2(1 − z) =
π2

6
− log(z) log(1 − z),

hence

R(log(z), log(1−z))+R(log(1−z), log(z)) =
π2

6
−log(z) log(1−z)+2

1

2
log(z) log(1−z)−2

π2

6
= −

π2

6
,

so

(log(z), log(1 − z)) + (log(1 − z), log(z)) = χ(−
πi

6
).

Then we apply Lemma 5, iv) to get

(log(z) + 2pπi, log(1 − z) + 2qπi) + (log(1 − z) + 2qπi, log(z) + 2pπi) =
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(log(z), log(1−z))+χ(2pqπi+q log(z)−p log(1−z))+(log(1−z), log(z))+χ(2pqπi+p log(1−z)−q log(z))

= (log(z), log(1 − z)) + (log(1 − z), log(z)) = χ(−
πi

6
).

because of χ(4pqπi) = 0. (For equation ii) one actually does not need the asumption
Im(z) > 0.)

iii) Because of Im( 1
1−z

) > 0 one can apply i) to 1
1−z

and get

(log(
1

1 − z
) − 2qπi, log(

−z

1 − z
) + 2(p − q)πi)

= −(log(1 − z) + 2qπi, log(z) + 2pπi) + χ(−
1

2
log(

1

1 − z
) + (2q2 + q)πi)

= (log(z) + 2pπi, log(1 − z) + 2qπi) + χ(
1

2
log(1 − z) + (2q2 − q)πi +

πi

6
).

iv) Application of ii) to 1 − 1
z

yields

(log(1−
1

z
)+2(q−p)πi, log(

1

z
)−2pπi) = −(log(

1

z
)−2pπi, log(1−

1

z
)+2(q−p)πi)+χ(−

πi

6
)

= (log(z) + 2pπi, log(1 − z) + 2qπi) + χ(
1

2
log(z) + (2p2 − p)πi −

πi

6
).

v) Because of Im(1 − z) > 0 one can apply iv) to 1 − z and use 1 − 1
1−z

= − z
1−z

to get

(log(−
z

1 − z
) + 2(p − q)πi, log(

1

1 − z
) − 2qπi)

= (log(1 − z) + 2qπi, log(z) + 2pπi) + χ(
1

2
log(1 − z) + (2q2 − q −

1

6
)πi)

which by ii) equals to

−(log(z) + 2pπi, log(1 − z) + 2qπi) + χ(
1

2
log(1 − z) + (2q2 − q −

1

3
)πi).

QED
Remark: Other relations have been proved in [23, Proposition 13.1] and [14, Proposition

5.1], but they appear not to be correct.

Corollary 2. For Im(z) < 0 and p, q ∈ C we have:
i) (log(1

z
) − 2pπi, log(1 − 1

z
) + 2(q − p)πi)

= −(log(z) + 2pπi, log(1 − z) + 2qπi) + χ(
1

2
log(z) − (2p2 + p)πi)

ii) (log( 1
1−z

) − 2qπi, log( −z
1−z

) + 2(p − q)πi)

= (log(z) + 2pπi, log(1 − z) + 2qπi) + χ(−
1

2
log(1 − z) − (2q2 − q −

1

6
)πi)

iii) (log(1 − 1
z
) + 2(q − p)πi, log(1

z
) − 2pπi)

= (log(z) + 2pπi, log(1 − z) + 2qπi) + χ(
1

2
log(z) − (2p2 + p +

1

6
)πi)
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Proof: We can apply Lemma 6 to 1
z

or 1 − z, respectively. QED

We will also use some elementary facts about sums of (imaginary parts of) logarithms,
i.e. sums of arguments of complex numbers. Recall that we use the convention that −π <
arg(z) ≤ π for z ∈ C \ {0}. In particular, log(1

z
) = − log(z) for all z 6= 0. Whenever

Im(z) > 0 holds, one has the equality log(z) = log(−z) + πi. The following lemma collects
some further elementary facts which we will use especially in the proof of Lemma 9.

Lemma 7. For all z ∈ C \ R we have the following identities.

i) log(z) − log(z) =





log( z
z
) Re(z) > 0 or (Re(z) = 0, Im(z) > 0)

log( z
z
) + 2πi Re(z) < 0, Im(z) > 0

log( z
z
) − 2πi Re(z) ≤ 0, Im(z) < 0





ii) log(z) − log(z − z) = log(
z

z − z
), log(z) − log(z − z) = log(

z

z − z
)

iii) log(1 − z) − log(z) = log(
1 − z

z
), log(1 − z) − log(z) = log(

1 − z

z
)

iv) log(z − z) − log(z − 1) = log(
z − z

1 − z
) = log(z − z) − log(z − 1)

v) log(z) − log(1 − z) = log(
z

1 − z
), log(z) − log(1 − z) = log(

z

1 − z
)

vi) log(z) + log(1 − z) = log(z(1 − z)), log(z) + log(1 − z) = log(z(1 − z))

vii) log(z(1−z))− log(z−z) = log(
z(1 − z)

z − z
), log(z(1−z))− log(z−z) = log(

z(1 − z)

z − z
)

viii) log(1−z)−log(1−z) =





log 1−z
1−z

Re(z) < 1 or (Re(z) = 1, Im(z) < 0)

log 1−z
1−z

+ 2πi Re(z) > 1, Im(z) < 0

log 1−z
1−z

− 2πi Re(z) ≥ 1, Im(z) > 0





ix) log(z(1 − z)) − log(z(1 − z)) =

{
log( z(1−z)

z(1−z) ) + 2πi Im(z) < 0

log( z(1−z)
z(1−z) ) − 2πi Im(z) > 0

}

Proof: i) is obvious and ii) follows from the fact that the imaginary parts of z and z−z
have the same sign, so the difference of their arguments must be smaller than π. Similarly
iii) follows because the imaginary parts of 1 − z and z have the same sign and iv) follows
because the imaginary parts of z − z and 1 − z have the same sign.

From | arg(z) − arg(−z) |= π one can easily conclude | arg(z) − arg(1 − z) |< π, which
implies v). Similarly from | arg(z)+arg(−z) |= π one can easily conclude | arg(z)+arg(1−
z) |< π, which implies vi).

For vii), one can check by explicit computation that Im(z(1 − z)) = Im(z), hence the
imaginary parts of z(1 − z) and z − z have the same sign and the claim follows.

viii) follows from i). For ix), assume w.l.o.g. Im(z) > 0 and let α = arg(z) and β =
arg(1− z). From arg(1− z) > arg(−z) we get α+β < π. Then arg(z(1− z)) = −α−β and
arg(z(1 − z)) = α + β, so the difference is −2(α + β) which is smaller than −π but bigger
than −3π. QED
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2.5. Example: the figure eight knot complement. As the computations in the next
section will be rather lengthy it shall be helpful to have an explicit example at hand to check
correctness of the calculations at each step.

Consider the figure eight knot complement with its well-known ideal triangulation by two
ideal simplices, let L be the lift of this triangulation to the universal cover. A fundamen-
tal domain for the action of π1M on L has 5 vertices v0, . . . , v4, where (v1, v2, v4) is the
common face and the (order-preserving) gluing sends (v0, v1, v2) to (v1, v3, v4), (v0, v2, v4)
to (v1, v2, v3) and (v0, v1, v4) to (v2, v3, v4), see [20, Section 4.4.2].

With [11, Example 3.1.1] and the algorithm in [12, Section 9] we obtain the PSL(2, C)/N -
valued decoration (with the N -cosets of course depending only on the first column) given
by

gv0
N = N and

gv1
N =

(
0 −1
1 0

)
N, gv2

N =

(
−ω −ω2

−ω 0

)
, gv3

N =

(
−1 0

ω2 − 1 −1

)
N, gv4

N =

(
−ω 1
−1 0

)
N.

Let ∆ω = (v0, v1, v2, v4) and ∆ω = (v1, v2, v3, v4), then the fundamental class for the
hyperbolic monodromy ρ (see Definition 9) is

ρ∗ [M, ∂M ] = λ(∆ω , ρ) − λ(∆ω , ρ) = (log ω, log ω) − (log ω, log ω) ∈ B̂(C)

with ω = 1
2 +

√
3

2 , see [23, Section 15].
The Ptolemy coordinates of a PSL(2, C)-representation are defined only up to sign. An

obstruction cycle (for lifting a boundary-unipotent PSL(2, C)-representation to a boundary-
unipotent SL(2, C)-representation, cf. [11, Section 1.3]) is given by σ = (v0, v1, v2)+(v0, v1, v4).
With that obstruction cycle given, we can choose the signs of the ptolemy coordinates such
that the equation σ0σ3c03c12 + σ0σ1c01c23 = σ0σ2c02c13 from [11, Definition 3.5] is satisfied
for both simplices. We obtain so for the simplex ∆ω (with σ2 = σ3 = −1)

c01 = 1, c02 = ω, c03 = 1, c12 = c13 = ω, c23 = 1,

and for the simplex ∆ω (with σ0 = σ1 = −1)

c01 = ω, c02 = 1, c03 = ω, c12 = c13 = 1, c23 = ω.

Now, even though this is only a PSL(2, C)/N -decoration, the ±1-ambiguity will disappear
when we consider ρ⊗ ρ. So (denoting by abuse of notation N ⊗N ⊂ SL(4, C) again by N)
we obtain an SL(4, C)/N -decoration for ρ ⊗ ρ by

gv0
N = N and

gv1
N =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 N, gv2

N =




1 ω ω 1
1 0 ω 0
1 ω 0 0
1 0 0 0


N,

gv3
N =




1 0 0 0
1 − ω2 1 0 0
1 − ω2 0 1 0

3 1 − ω2 1 − ω2 1


N, gv4

N =




1 −ω −ω 1
ω 0 −1 0
ω −1 0 0
1 0 0 0


 N.

One can check that for both simplices ∆ω and ∆ω this is in the normal form from
Section 3.1, but for ∆ω with b and c replaced by −b and −c. (And for ∆ω one has of course
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to multiply by

(
−1 1
−1 0

)
⊗

(
−1 1
−1 0

)
from the left to bring it in normal form.) Then

one may use the above Ptolemy coordinates to go through the computations in the next
section and this yields (in analogy to the computations leading to the proof of Corollary 5):

λ(∆ω , ρ ⊗ ρ) = 2(log(ω), log(ω)) + 2(log(ω), log(ω))

λ(∆ω , ρ ⊗ ρ) = 2(log(ω), log(ω)) + 2(log(ω), log(ω))

and so (ρ ⊗ ρ)∗ [M, ∂M ] = λ(∆ω , ρ ⊗ ρ) − λ(∆ω , ρ ⊗ ρ) = 0 in B̂(C).
We will take up this example in Section 3.6.

3. Computations

In this section we will compute the fundamental class in the extended Bloch group for
representations of the form ρ ⊗ ρ when ρ : π1M → PSL(2, C) is a representation of some
3-manifold group.

These representations are equivalent in GL(4, C) to those coming from the composition
of ρ with the isomorphism PSL(2, C) = SO(3, 1) and it might, at first glance, have seemed
more natural to compute the fundamental class directly for that representation. It turns
out however that that would have been much harder because a simplex with an (in the
sense of Definition 7) generic PSL(2, C)/N -decoration need not have a generic SO(3, 1)/N -
decoration: in general some of the ptolemy coordinates may be zero. (One can check that
the canonical triangulation of the figure eight knot complement from Section 2.5 yields an
instance of this phenomenon.)

So further subdivision of the triangulation would be necessary to obtain generic SO(3, 1)/N -
decorations and this would of course vastly hamper computations. For this reason we will
work with the representation ρ ⊗ ρ : π1M → SL(4, C).

3.1. Standard form for simplices in G/N. The proof of Theorem 1 will work by a
simplexwise computation, so for most of this section we will consider one simplex and try to
compute its contribution to the fundamental class and hence the Chern-Simons invariant.
At first we describe a standard form for SL(2, C)/N -decorated simplices in the sense of
Definition 6.

Consider G = SL(2, C) and N ⊂ G the subset of upper triangular matrices with 1’s on
the diagonal. There is a G-equivariant bijection G/N = C2 \{0}. A 4-tuple (v0, v1, v2, v3) of
pairwise distinct elements in C2\{0} is in the SL(2, C)-orbit of some 4-tuple with v0 = (1, 0)
and v1 = (0, a), a ∈ C\{0}. This implies that each decorated 3-simplex ∆ is in the SL(2, C)-
orbit of a decorated simplex

((
1 0
0 1

)N, (
0 − 1

a

a 0
)N, (

− d
a

− 1
b

b 0
)N, (

− e
a

− 1
c

c 0
)N).
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a

b

c

d

e

f
(

1 0
0 1

)
N

(
0 − 1

a

a 0

)
N

(
− d

a
− 1

b

b 0

)
N

(
− e

a
− 1

c

c 0

)
N

One may check that the Ptolemy coordinates (in the sense of Definition 7) of the edges
are

c1100 = a, c1010 = b, c1001 = c, c0110 = d, c0101 = e, c0011 = f

with af + cd = be, and thus

λ(c0000) = (log(c) + log(d) − log(b) − log(e), log(a) + log(f) − log(b) − log(e)).

When ∆ ⊂ H3 ∪ ∂∞H3 is the ideal hyperbolic simplex whose ideal vertices are the
projections of v0, v1, v2, v3 to CP 1 = ∂∞H3, then one can easily check that z = cd

be
is the

cross ratio of the vertices of ∆ and it is well-known that ∆ is non-degenerate if and only if
z 6∈ R and that the ordering of ∆ agrees with the orientation of H3 if and only if Im(z) > 0.

We remark for later use that λ(c0000) = (log(z)+2pπi, log(1−z)+2qπi) for some integers
p and q.

We will see in the next subsection that our computations will only work for z 6∈ R, i.e.,
for non-degenerate simplices (although in the definition of the Bloch groups only z 6∈ {0, 1}
is required). At the time of writing it is not known whether every hyperbolic 3-manifold
admits an ideal triangulation with no degenerate simplex. However the methods of [12] do
not require ideal triangulations but allow interior vertices, so upon performing barycentric
subdivision and suitably decorating the interior vertices we can always assume to have
simplices with cross ratios z 6∈ R throughout. (See [12, Proposition 5.4].)

3.2. Toy case: computations in the (non-extended) Bloch group. Because the fol-
lowing computations in the extended (pre-)Bloch group might seem a bit unmotivated at
first glance, we start this section with explaining the proof of a considerable simpler fact,
namely the equality

(ρ ⊗ ρ)∗ [M, ∂M ] = 2ρ∗ [M, ∂M ] + 2ρ∗ [M, ∂M ] ∈ B(C)

in the (non-extended) Bloch group B(C). (In terms of the Cheeger-Chern-Simons invariant
this means the vanishing of its imaginary part V ol(ρ), which of course is already implied
by the complex conjugacy invariance from Lemma 3.) We hope that these computations
in the (pre-)Bloch group prepare the reader for the more complicated computations in the
extended (pre-)Bloch group which will be performed in the remainder of this section.

So let ∆ be an ideal simplex in a triangulation of a 3-manifold. (Let us stick to ideal
triangulations for simplicity of exposition, although this restriction is not necessary for
the argument.) The boundary-parabolic representation ρ : π1M → SL(2, C) comes with
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an equivariant map M̃ → H3 which maps a lift of ∆ to a hyperbolic ideal simplex. Its
cross ratio defines an element [z] ∈ P(C) in the pre-Bloch group and the fundamental class
ρ∗ [M, ∂M ] is the sum of these elements over all simplices in the triangulation.

Similarly one can compute the contribution of ∆ to the fundamental class ρ⊗ ρ [M, ∂M ]
from [z] ∈ P(C) alone. Namely, Proposition 2 tells us that we have to formally consider
10 subsimplices of ∆ and look at their contribution. The computations for this are in
principle the same as in the following Section 3.3, but they are simpler because we do not

need to know the elements λ(cijkl) ∈ P̂(C), but rather only their associated cross ratios

cr(λ(cijkl)) ∈ P(C). Those are with z = cd
be

= 1 − af
be

easily computed as follows:

cr(λ(c2000)) = cr(λ(c0200)) = cr(λ(c0020)) = cr(λ(c0002)) = [z]

cr(λ(c1100)) = cr(λ(c0011)) =
[z

z

]

cr(λ(c1010)) = cr(λ(c0101)) =

[
z(1 − z)

z − z

]

cr(λ(c1001)) = cr(λ(c0110)) =

[
z − z

1 − z

]
,

and so we obtain the contribution of this simplex to the fundamental class of ρ⊗ ρ in B(C)
to be

4 [z] + 2
[z

z

]
+ 2

[
z(1 − z)

z − z

]
+ 2

[
z − z

1 − z

]
.

Now in P(C) a direct application of the 5-term relation yields an equality
[
z − z

1 − z

]
− [z] +

[
z(1 − z)

z − z

]
−

[
z

z − z

]
+

[
1

1 − z

]
= 0,

which we can simplify by using the following relations, which actually are consequences of
well-known functional equations for the Bloch-Wigner dilogarithm D2:

[
1

1 − z

]
= [z] ,

[
z

z − z

]
=

[
1

1 − z
z

]
=

[
z

z

]
= −

[z

z

]
,

so that we obtain [
z − z

1 − z

]
− [z] +

[
z(1 − z)

z − z

]
+

[z

z

]
+ [z] = 0.

Plugging twice of this in the above formula we obtain that the contribution of the simplex
to the fundamental class of ρ ⊗ ρ simplifies to

2 [z] + 2 [z] ,

and this implies the claimed equality in B(C).
To carry through an analogous computation in the extended pre-Bloch group we will have

to replace the cross ratios by the elements λ(cijkl) ∈ P̂(C). This will lead to considerably
more complicated computations, but we will in an analogous way as above use the extended
5-term relation and the symmetries of the extended Rogers’ dilogarithm which we derived in
Lemma 6, to simplify the formulas and will so in the end obtain the equality of Theorem 1

also in B̂(C).
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3.3. Ptolemy coordinates of the tensor product. For a representation

ρ : π1M → SL(2, C)

we consider its tensor product with its complex conjugate

ρ ⊗ ρ : π1M → SL(4, C).

Triangular matrices with 1’s on the diagonal are sent to triangular matrices with 1’s on the
diagonal.

Given an SL(2, C)/N -decoration for ρ, we obtain a decoration for ρ ⊗ ρ in the obvious
way, replacing A by A ⊗ A on each vertex.

So we fix again one simplex ∆, then the normal form decoration from the previous
Section 3.1 is mapped to the N -cosets of







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,




0 0 0 1
|a|2

0 0 −a
a

0
0 −a

a
0 0

| a |2 0 0 0


 ,




| d
a
|2 d

ab

d
ba

1
|b|2

− db
a

0 − b
b

0

− bd
a

− b

b
0 0

| b |2 0 0 0


 ,




| e
a
|2 e

ac
e
ca

1
|c|2

− ec
a

0 − c
c

0
− ce

a
− c

c
0 0

| c |2 0 0 0







From this and af + cd = be we compute the ptolemy coordinates of ∆ as follows

c3100 =| a |2, c3010 =| b |2, c3001 =| c |2

c2200 = a2, c2110 = abd, c2101 = ace

c2020 = b2, c2011 = bcf, c2002 = c2

c1300 = − | a |2, c1210 = −abd, c1201 = −ace

c1120 = abd, c1111 = 2Im(bcde)i, c1102 = ace

c1030 = − | b |2, c1021 = −bcf, c1012 = bcf

c1003 = − | c |2, c0310 =| d |2, c0301 =| e |2

c0220 = d2, c0211 = def, c0202 = e2

c0130 = − | d |2, c0121 = −def, c0112 = def

c0103 = − | e |2, c0031 =| f |2, c0022 = f2, c0013 = − | f |2

(It should have sufficed to compute c3100, c2200, c2110, c1111 and then proceed by symmetry,
however to be safe we doublechecked all computations with [29].)

We note that these coordinates are nonzero (i.e., the decoration is generic in the sense of
Definition 8) if and only if the Ptolemy coordinates a, . . . , f of ρ are nonzero and if moreover
bcde 6∈ R. The latter condition is in view of bcde =| be |2 cd

be
equivalent to the condition

that the cross ratio z = cd
be

is not a real number and as argued in Section 3.1 above this can
always be assumed.

We plug the ptolemy coordinates of ∆ into the formula from Definition 9 and obtain the
following.

λ(c2000) = (log | c |2 + log abd − log | b |2 − log ace, log | a |2 + log bcf − log | b |2 − log ace)

λ(c1100) = (log ace + log(−abd) − log abd − log(−ace), log a2 + log 2Im(bcde)i − log abd − log(−ace)

λ(c1010) = (log bcf + log abd − log b2 − log 2Im(bcde)i, log abd + log(−bcf) − log b2 − log 2Im(bcde)i

λ(c1001) = (log c2 + log 2Im(bcde)i − log bcf − log ace, log ace + log bcf − log bcf − log ace)

λ(c0200) = (log(−ace)+log | d |2 − log(−abd)−log | e |2, log(− | a |2)+log def−log(−abd)−log | e |2)
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λ(c0110) = (log 2Im(bcde)i + log d2 − log abd − log def, log(−abd) + log(−def) − log abd − log def)

λ(c0101) = (log ace + log def − log 2Im(bcde)i− log e2, log(−ace)+ log def − log 2Im(bcde)i− log e2)

λ(c0020) = (log(−bcf)+log(− | d |2)−log(− | b |2)−log(−def), log abd+log | f |2 − log(− | b |2)−log(−def))

λ(c0011) = (log bcf + log(−def)− log(−bcf)− log def, log 2Im(bcde)i + log f2 − log(−bcf)− log def)

λ(c0002) = (log(− | c |2)+log def−log bcf−log(− | e |2), log ace+log(− | f |2)−log bcf−log(− | e |2))

By Proposition 1 we are free to chose lifts (i.e., logarithms) as long as we chose the same
lift for the same numbers. To simplify the above expressions we fix once and for all the
following lifts:

log(abd) = log a + log b + log d, log abd = log a + log b + log d, etc.

log(−abd) = πi + log a + log b + log d, etc.

log a2 = 2 log a, log(−a2) = πi + 2 log a, etc.

log | a |2= log a + log a, log(− | a |2) = πi + log a + log a, etc.

log(2Im(bcde)i) = πi + log b + log c + log d + log e + log(1 −
bcde

bcde
)

The reason for the somewhat unnatural seeming choice of λ̃(c1111) is to simplify the formulas
in the following lemma. One can easily check that it is indeed a choice of logarithm, i.e.,
that exponentiating the right hand side gives 2Im(bcde)i.

Now with these lifts we can simplify as follows.

Lemma 8. With the above-chosen lifts, the pre-Bloch group elements associated to the
Ptolemy coordinates of ρ ⊗ ρ for the decorated simplex ∆ from Section 3.1 are:

λ̃(c2000) = λ̃(c0200) = λ̃(c0002) =

(− log b + log c + log d − log e, log a − log b − log e + log f)

λ̃(c0020) = (− log b + log c + log d − log e,−2πi + log a − log b − log e + log f)

λ̃(c1100) = λ̃(c0011) =

(log b − log b + log c − log c + log d − log d + log e − log e, log(1 −
bcde

bcde
))

λ̃(c1010) = λ̃(c0101) = (−πi + log a − log b + log c − log c + log d − log d − log e + log f − log(1 − bcde

bcde
),

log a − log b − log e + log f − log(1 − bcde

bcde
))

λ̃(c1001) = (πi − log a + log c + log d − log f + log(1 − bcde

bcde
),

log a − log a + log b − log b + log e − log e + log f − log f)

λ̃(c0110) = (πi − log a + log c + log d − log f + log(1 − bcde

bcde
),

2πi + log a − log a + log b − log b + log e − log e + log f − log f)

Remark: The symmetry-breaking formulas for λ̃(c0020) and λ̃(c0110) seem to be an artefact
of our somewhat arbitrary choice of logarithms.

Next we want to express these formulas in the (z, p, q)-form (in the notation of [12],
compare the remark after Definition 1). The proof will use some elementary facts about
complex logarithms, which for better readability had been collected in Lemma 7 before.
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Lemma 9. Let z = cd
be

= 1− af
be

6∈ R be the cross ratio of ∆, and define the integers p, q via

log c + log d − log b − log e = log(z) + 2pπi,

log a + log f − log b − log e = log(1 − z) + 2qπi.

Then
λ̃(c2000) = λ̃(c0200) = λ̃(c0002) = (log(z) − 2pπi, log(1 − z) − 2qπi)

λ̃(c0020) = (log(z) − 2pπi, log(1 − z) − 2(q + 1)πi)

λ̃(c1100) = λ̃(c0011) =





(log( z
z
) + 4pπi, log(1 − z

z
)) Re(z) > 0 or (Re(z) = 0, Im(z) > 0)

(log( z
z
) + (4p + 2)πi, log(1 − z

z
)) Re(z) < 0, Im(z) > 0

(log( z
z
) + (4p − 2)πi, log(1 − z

z
)) Re(z) ≤ 0, Im(z) < 0





λ̃(c1010) = λ̃(c0101) =

{
(log( z(1−z)

z−z
) + 2(2p − q)πi, log( (1−z)z

z−z
) + 2qπi) Im(z) > 0

(log( z(1−z)
z−z

) + 2(2p− q − 1)πi, log( (1−z)z
z−z

) + 2qπi) Im(z) < 0

}

λ̃(c1001) =





(log( z−z
z−1 ) + 2(q − p)πi, log 1−z

1−z
+ 4qπi) Im(z) > 0, Re(z) < 1

log( z−z
z−1 ) + 2(q − p)πi, log 1−z

1−z
+ (4q + 2)πi) Im(z) > 0, Re(z) ≥ 1

log( z−z
z−1 ) + 2(q − p + 1)πi, log 1−z

1−z
+ 4qπi) Im(z) < 0, Re(z) ≤ 1

log( z−z
z−1 ) + 2(q − p + 1)πi, log 1−z

1−z
+ (4q + 2)πi) Im(z) < 0, Re(z) > 1





λ̃(c0110) =





(log( z−z
z−1 ) + 2(q − p)πi, log 1−z

1−z
+ (4q + 2)πi) Im(z) > 0, Re(z) < 1

log( z−z
z−1 ) + 2(q − p)πi, log 1−z

1−z
+ (4q + 4)πi) Im(z) > 0, Re(z) ≥ 1

log( z−z
z−1 ) + 2(q − p + 1)πi, log 1−z

1−z
+ (4q + 2)πi) Im(z) < 0, Re(z) ≤ 1

log( z−z
z−1 ) + 2(q − p + 1)πi, log 1−z

1−z
+ (4q + 4)πi) Im(z) < 0, Re(z) > 1





Proof: a) The formulas for λ̃(c2000) = λ̃(c0200) = λ̃(c0002) and λ̃(c2000) are immediate
by complex conjugation of the formulas for log(z) + 2pπi and log(1 − z) + 2qπi.

b) Subtraction yields λ̃(c1100) = λ̃(c0011) = (log(z) − log(z) + 4pπi, log(1 − z
z
)). The

formulas for λ̃(c1100) = λ̃(c0011) then follow from Lemma 7 i).
c) By Lemma 7 v) we have log(z) − log(1 − z) = log( z

1−z
). So subtraction yields

− log(a) + log(c) + log(d) − log(f) = log(
z

1 − z
) + 2(p − q)πi.

From this one obtains

λ̃(c1010) = λ̃(c0101) =
(−πi − log( z

1−z
) + 2(p − q)πi + log(z) + 2pπi − log(1 − z

z
), log(1 − z) + 2qπi − log(1 − z

z
))

Using ii) and v) from Lemma 7 the first coordinate simplifies to −πi + log(1− z) + log(z)−
log(z−z)+2(2p−q)πi. We observe that − log(z−z)−πi is − log(z−z) or − log(z−z)−2πi
according to whether Im(z) > 0 or Im(z) < 0. Then with Lemma 7 vi) and vii) we get
the claimed formula for the first coordinate. The formula for the second coordinate is also
obtained by applying Lemma 7 vi) and vii).

d) Conjugating the first equation in the proof of c) and plugging it into the first coordinate
yields

λ̃(c1001) = (πi + log(
z

1 − z
)− 2(p− q)πi + log(1−

z

z
), log(1 − z) + 2qπi − log(1 − z) + 2qπi)

We have again log( z
1−z

) = log(z) − log(1 − z) and log(1 − z
z
) = log(z − z) − log(z). If

Im(z) > 0, then πi + log(z) = log(−z) and (as a direct computation shows) Im( z
1−z

) < 0,
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so πi + log( z
1−z

) = log( −z
1−z

), so the first coordinate simplifies to πi − log(1 − z) + log(z −

z) + 2(q − p)πi = − log(z − 1) + log(z − z) + 2(q − p)πi = log( z−z
z−1 ) + 2(q − p)πi, where the

last equality uses that z − z and 1 − z have the same imaginary part, so the difference of
their arguments is in (−π, π). If Im(z) < 0, then one obtains by similar arguments that
the first coordinate equals log( z−z

z−1 )+ 2(q− p+ 1)πi. The formula for the second coordinate

follows from Lemma 7 viii). This proves the formula for λ̃(c1001) and by exactly the same

arguments we obtain that for λ̃(c0110). QED

Corollary 3. Under the assumptions of Lemma 9 we have

λ̃(c2000)+λ̃(c0200)+λ̃(c0002)+λ̃(c0020)+λ̃(c1100)+λ̃(c0011)+λ̃(c1010)+λ̃(c0101)+λ̃(c1001)+λ̃(c0110) =

4(log(z) − 2pπi, log(1 − z) − 2qπi)

+2(log(
z

z
) + 4pπi, log(1 −

z

z
))

+2(log(
z(1 − z)

z − z
) + 2(2p − q)πi, log(

(1 − z)z

z − z
) + 2qπi)

+2(log(
z − z

z − 1
) + 2(q − p)πi, log(

1 − z

1 − z
) + 2(2q + 1)πi)

+





χ(− log(z) + log( z−z
z−1 ) + 2qπi) : Re(z) ≥ 1, Im(z) > 0

χ(− log(z) − log( z−z
z−1 ) + 2qπi) : 1 > Re(z) ≥ 0, Im(z) > 0

χ(− log(z) + 2 log(1 − z
z
) − log( z−z

z−1 ) + 2qπi) : Re(z) < 0, Im(z) > 0

χ(− log(z) + 2 log( (1−z)z
z−z

) − 2 log(1−z
1−z

) + log( z−z
z−1 ) + 2(q − 1)πi) : Re(z) > 1, Im(z) < 0

χ(− log(z) + 2 log( (1−z)z
z−z

) − 2 log(1−z
1−z

) − log( z−z
z−1 ) + 2(q − 1)πi) : 1 ≥ Re(z) > 0, Im(z) < 0

χ(− log(z) − 2 log(1 − z
z
) + 2 log( (1−z)z

z−z
) − 2 log(1−z

1−z
) − log( z−z

z−1 ) + 2(q − 1)πi) : Re(z) ≤ 0, Im(z) < 0





Proof: This follows from Lemma 9 by using part iv) of Lemma 5 and χ(4πi) = 0.QED

3.4. Using the five-term relation.

Lemma 10. In P̂(C) we have the equality




(log( z−z
1−z

) + 2(q − p)πi, log(1−z
1−z

) + 4qπi) : Re(z) < 1 or (Re(z) = 1, Im(z) < 0)

(log( z−z
1−z

) + 2(q − p)πi, log(1−z
1−z

) + 2(2q + 1)πi) : Re(z) > 1, Im(z) < 0

(log( z−z
1−z

) + 2(q − p)πi, log(1−z
1−z

) + 2(2q − 1)πi) : Re(z) ≥ 1, Im(z) > 0





−(log(z) + 2pπi, log(1 − z) + 2qπi)

+(log(
z(1 − z)

z − z
) + 2(2p− q)πi, log(

z(1 − z)

z − z
) + 2qπi)

−(log(
z

z − z
) + 4pπi, log(

z

z − z
))

+(log(
1

1 − z
) + 2qπi, log(

z

z − 1
) + 2(q − p)πi)

= 0

for any p, q ∈ Z.
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Proof: We want to apply the five-term relation from Definition 1 with the five summands
above corresponding to (e0, f0), . . . , (e4, f4). According to Definition 1 we have to check the
conditions

e2 = e1 − e0, e3 = e1 − e0 − f1 + f0, f3 = f2 − f1, e4 = f0 − f1, f4 = f2 − f1 + e0.

In each of the five cases the equality is a direct consequence of Lemma 7.
QED

Corollary 4. In P̂(C) we have the equality

(log(
z − z

1 − z
) + 2(q − p)πi, log(

1 − z

1 − z
) + 2(2q + 1)πi)

+(log(
z(1 − z)

z − z
) + 2(2p− q)πi, log(1 − z) + 2qπi)

+(log(
z

z
) + 4pπi, log(

z − z

z
)) =

(log(z) + 2pπi, log(1 − z) + 2qπi)

−(log(z) − 2pπi, log(1 − z) − 2qπi)




0 : Re(z) < 1 or (Re(z) = 1, Im(z) < 0)
χ(log( z−z

1−z
) + 2(q − p)πi) : Re(z) > 1, Im(z) < 0

−χ(log( z−z
1−z

) + 2(q − p)πi) : Re(z) ≥ 1, Im(z) > 0



+





χ(− 1
2 log(1 − z) − 1

2 log(1 − z
z
) − 1

2 log( z
z
) − (2q2 + q)πi) : Re(z) > 0, Im(z) > 0

χ(− 1
2 log(1 − z) + 1

2 log(1 − z
z
) + 1

2 log( z
z
) − (2q2 + q)πi)) : Re(z) < 0, Im(z) > 0

χ(1
2 log(1 − z) + 1

2 log(1 − z
z
) + 1

2 log( z
z
) + (2q2 + q)πi)) : Re(z) > 0, Im(z) < 0

χ(1
2 log(1 − z) − 1

2 log(1 − z
z
) − 1

2 log( z
z
) + (2q2 + q)πi)) : Re(z) < 0, Im(z) < 0





for any p, q ∈ Z.

Proof: We will prove this by adapting some of the terms in Lemma 10.
The correction term for the first summand is a direct application of Lemma 5. Let us

look at the fifth and fourth summand from Lemma 10.
From Lemma 6 or Corollary 2, respectively, we obtain

(log(
1

1 − z
) + 2qπi, log(

z

z − 1
) + 2(q − p)πi) =

{
(log(z) − 2pπi, log(1 − z) − 2qπi) + χ((− 1

2 log(1 − z) − (2q2 + q − 1
6 )πi : Im(z) > 0

(log(z) − 2pπi, log(1 − z) − 2qπi) + χ((1
2 log(1 − z) + (2q2 + q + 1

6 )πi) : Im(z) < 0

}

and, using z
z−z

= 1
1− z

z

(and an explicit computation if Re(z) = 0, i.e., if z
z

= −1) we get

(log(
z

z − z
) + 4pπi, log(

z

z − z
)) =

(log(
z

z
)−4pπi, log(1−

z

z
)−4pπi)+





χ(1
2 log(1 − z

z
) + (2p + 1

6 )πi) : Re(z) ≥ 0, Im(z) > 0
or Re(z) ≤ 0, Im(z) < 0

χ(− 1
2 log(1 − z

z
) − (2p − 1

6 )πi) : Re(z) > 0, Im(z) < 0
or Re(z) < 0, Im(z) > 0




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= −(log(
z

z
)+4pπi, log(1−

z

z
))+





χ(− 1
2 log(1 − z

z
) − 1

2 log( z
z
) + πi

6 )) : Re(z) ≥ 0, Im(z) > 0
or Re(z) ≤ 0, Im(z) < 0

χ(1
2 log(1 − z

z
) + 1

2 log( z
z
) + πi

6 )) : Re(z) > 0, Im(z) < 0
or Re(z) < 0, Im(z) > 0





Plugging this into the equation from Lemma 10 we get the claim, using that χ is a homo-
morphism vanishing on multiples of 4πi. QED

Corollary 5. With the notation from Lemma 9 we have

λ̃(c2000) + λ̃(c0200) + λ̃(c0002) + λ̃(c0020) + λ̃(c1100)+

+λ̃(c0011) + λ̃(c1010) + λ̃(c0101) + λ̃(c1001) + λ̃(c0110)

= 2(log(z) + 2pπi, log(1 − z) + 2qπi) + 2(log(z) − 2pπi, log(1 − z) − 2qπi).

Proof: This follows from Corollary 3 and Corollary 4, namely the right hand side will be
obtained by plugging twice the right hand side of Corollary 4 in place of the second, third
and fourth summand of the right hand side of Corollary 3. The result then follows by an
elementary computation in each of the seven cases arising by the different case distinctions.
Let us spell it out for the cases 0 < Re(z) < 1 and Im(z) > 0 or Im(z) < 0, respectively.

If 0 < Re(z) < 1 and Im(z) > 0, then we obtain from Corollary 3 and Corollary 4 that
the wanted sum is

2(log(z) + 2pπi, log(1 − z) + 2qπi) + 2(log(z) − 2pπi, log(1 − z) − 2qπi)

+χ(− log(z) + log(
z − z

z − 1
) + log(1 − z) − log(1 −

z

z
) − log(

z

z
))

and one easily checks that in the argument of χ everything cancels out such that the last
summand is actually χ(0) = 0.

If 0 < Re(z) < 1 and Im(z) < 0, then the last summand will be

χ(− log(z)+2 log(
(1 − z)z

z − z
)+2(q−1)πi−2 log(

1 − z

1 − z
)−log(

z − z

z − 1
)−log(1−z)+log(1−

z

z
)+log(

z

z
)+2qπi)

and this time the cancellation occurs because of

χ(2 log(z − z) − 2 log(z − z) − 2πi) = χ(−4πi) = 0.

A very similar calculation works in the other five cases.
QED

3.5. Proof of Theorem 1. Let M be a finite-volume, orientable, hyperbolic 3-manifold.
Let τ : PSL(2, C) → SO(3, 1) be the isomorphism PSL(2, C) → SO(3, 1). Then for each
boundary-unipotent representation ρ : π1M → PSL(2, C) one has

(τ ◦ ρ)∗ [M, ∂M ] = 2ρ∗ [M, ∂M ] + 2ρ∗ [M, ∂M ] ∈ B̂(C)

if ρ lifts to a boundary-unipotent representation π1M → SL(2, C) (in particular if M is
closed) and

(τ ◦ ρ)∗ [M, ∂M ] = 2ρ∗ [M, ∂M ] + 2ρ∗ [M, ∂M ] ∈ B̂(C)PSL

otherwise.

Proof: Let us first assume that ρ : π1M → PSL(2, C) lifts to a boundary-unipotent
representation π1M → SL(2, C), which abusing notation we will also denote by ρ.



28 THILO KUESSNER

Fix some generalized ideal triangulation M = ∪r
k=1Tk whose lift to M̃ admits a ρ-

equivariant decoration whose ptolemy coordinates ck
t in the sense of Definition 7 are generic

in the sense of Definition 8. (Such a triangulation exists by [12, Proposition 5.4].) For
k = 1, . . . , r let λ(ck) be defined as in Definition 9 (with α = 0) and define zk ∈ C, pq, qk ∈ Z

via

λ(ck) = (log(zk) + 2pkπi, log(1 − zk) + 2qkπi).

By definition we have

ρ∗ [M, ∂M ] =

r∑

k=1

ǫkλ(ck)

with the sign ǫk = ±1 depending on orientation of Tk. By Corollary 5 we have

(ρ⊗ρ)∗ [M, ∂M ] =

r∑

k=1

ǫk(2(log(zk)+2pkπi, log(1−zk)+2qkπi)+2(log(zk)−2pkπi, log(1−zk)−2qkπi)),

from which we conclude

(ρ ⊗ ρ)∗ [M, ∂M ] = 2ρ∗ [M, ∂M ] + 2ρ∗ [M, ∂M ].

Finally it is known from the representation theory of SL(2, C) that the 2-fold covering
SL(2, C) → SO(3, 1) is conjugate in GL(4, C) to

id ⊗ id : SL(2, C) → SL(4, C).

This implies that ρ ⊗ ρ is conjugate to τ ◦ ρ, so we obtain the wanted equality

(τ ◦ ρ)∗ [M, ∂M ] = 2ρ∗ [M, ∂M ] + 2ρ∗ [M, ∂M ].

If ρ does not lift to SL(2, C), then the ptolemy coordinates a, . . . , f in Section 3.1 are
only defined up to sign. We can choose some sign, so that for each simplex Tk we have some
equality of the kind ±akfk ± ckdk = bkek (with certain signs) and can then still do all the

computations in P̂(C)PSL to get the equality there. QED

Remark: The proof of Theorem 1 via Corollary 5 might leave the impression that the
equality from Theorem 1 already holds simplexwise, but one should be aware that this is just
a (surprising) effect of the special choice of logarithms before Lemma 8. With other (perhaps
more natural) choices of logarithms the wanted equality would not hold simplexwise, rather
additional contributions from different simplices would cancel out.

3.6. Non-liftable PSL(2,C)-representations. When a boundary-unipotent representa-
tion ρ : π1M → PSL(2, C) does not lift12 to a boundary-unipotent representation π1M →
SL(2, C), then its Chern-Simons invariant is only defined modulo π2 and so of course the
equality in CS(τ ◦ ρ) = 4CS(ρ) can only hold modulo π2.

However, since ρ ⊗ ρ is well-defined as a boundary-unipotent representation to SL(4, C)
it actually makes sense to compute its Chern-Simons invariant modulo 4π2 and we will
describe in this section how to do this calculation.

12This is in particular the case for the hyperbolic monodromy of a cusped hyperbolic 3-manifold. Al-
though such representations by [6] can always be lifted to SL(2, C), it is proved in [2] that boundaries of
incompressible surfaces necessarily lift to parabolic elements with eigenvalue −1. Since these manifolds are
always Haken this implies that they can not have a boundary-unipotent lift to SL(2, C). See [12, Proposition
9.20].
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Given a boundary-unipotent representation π1M → PSL(2, C) its obstruction to lift-
ing it as a boundary-unipotent representation to SL(2, C) is represented by a 2-cycle σ ∈
Z2(K, ∂K; Z/2Z). Depending on σ the Ptolemy coordinates have to satisfy a certain sim-
plexwise equation. Namely if for i = 0, . . . , 3 we denote by σi the value of σ on the face
opposite to the i-th vertex, then

σ0σ1af + σ0σ3cd = σ0σ2be,

see [11, Definition 3.5]. (Now we fix one simplex and denote its ptolemy coordinates for the
SL(2, C)-representation again by a, . . . , f as in Section 3.1.)

For a given σ one can then use the methods from [12, Section 9] to simplexwise compute
decorations for a simplex with given ptolemy coordinates a = c01, b = c02, . . . , f = c23. (Ac-
cording to [12, Definition 9.23] the ”diamond coordinates” of a face have to be multiplied by
a sign according to its appearance in the obstruction cycle.) The result of the computations
is in the end that a decoration of a 3-simplex is given by

((
1 0
0 1

)N, (
0 − 1

a

a 0
)N, (

−d
a

∓ 1
b

±b 0
)N, (

−e
a

∓ 1
c

±c 0
)N),

where the sign in front of b is positive if and only if σ3 = 0, and the sign in front of c is
positive if and only if σ2 = 0.

When the signs in ±b and ±c are chosen as above, then we have an equality a(±f) +
(±c)d = (±b)e with the sign in front of f being positive if and only if σ1 = 0.

This means that we can do the computations from Section 3.3 but with b, c, f replaced
by ±b,±c,±f according to the values of the obstruction cycle. (Note that the f -coordinate
does not appear in the decoration, but it made its entrance in the calculations of Section 3.3
indirectly through the formula af + cd = be. For this reason we also have to change the sign
of f accordingly.)

Then one can use Lemma 8 to compute (ρ ⊗ ρ)∗ [M, ∂M ] as an element in B̂(C) (rather

just in B̂(C)PSL) and the Chern-Simons invariant modulo 4π2 (rather just modulo π2).
As an illustration let us take up the example of the figure eight knot complement S3\K(2

5 ).
Our computation in Section 2.5 actually illustrates the general principle from this subsection.

The result was that (ρ⊗ρ)∗ [M, ∂M ] = 0 holds in P̂(C), and not just in P̂(C)PSL as it would
result from Theorem 1. Hence

CS(S3 \ K(
2

5
), τ ◦ ι) = 0

holds even modulo 4π2 and not just modulo π2.

4. On components of character varieties

This section has two purposes. In Section 4.1 we use Theorem 1 to derive Corollary 1 (and
we discuss why we need Chern-Simons invariants to distinguish components of the character
variety while the known local rigidity results do not suffice). In Section 4.2 and Section 4.3
we discuss two methods to construct more components of the character variety for specific
classes of 3-manifolds. In particular in Section 4.3 we prove Theorem 2 which provides
esamples of knot complements with an arbitrarily large number of connected components of
the character variety that are not distinguishable by Chern-Simons invariants.

To repeat the basic notions, the variety of representations Hom(Γ, G) of a finitely gener-
ated group Γ into an algebraic group G is by definition the variety defined by the relations
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between the given generators. The character variety is its quotient Hom(Γ, G)//G in the
sense of geometric invariant theory. We consider these varieties with the euclidean topology
(not the Zariski topology). If G is connected, then connected components of the character
variety correspond to connected components of the representation variety. By a result of
Goldman, the number of connected components is finite if Γ is finitely generated and G
semisimple with finite center.

For closed manifolds we will consider the variety of characters of all representations

X(π1M, SL(n, C)) = Hom(π1M, SL(n, C))//SL(n, C).

For manifolds with boundary we will consider only those representations whose restriction
to ∂M has unipotent image:

Xbup(π1M, SL(n, C)) = {ρ ∈ Hom(π1M, SL(n, C)) : ρ(π1∂M) ⊂ N} //SL(n, C).

Volume and Chern-Simons invariant are constant on connected components of these char-
acter varieties, see [19, Theorem 3.4] or [1, Proposition 4.1].

4.1. SL(4,R)-representations factoring over PSL(2,C). Any representation of the
form ρ ⊗ ρ (for a representation ρ into SL(2, C)) can be conjugated into SL(4, R). Indeed
it is easy to check that the matrix entries of ρ ⊗ ρ with respect to the basis

{e1 ⊗ e1, e1 ⊗ e2 + e2 ⊗ e1, i(e1 ⊗ e2 − e2 ⊗ e1), e2 ⊗ e2} are all real.

Even better, there is an isomorphism PSL(2, C) → SO(3, 1) explicitly defined by τ

(
a b
c d

)
=

1/2 ×



| a |2 + | b |2 + | c |2 + | d |2 ab + ab + cd + cd i(ab − ab + cd − cd) | a |2 − | b |2 + | c |2 − | d |2

ac + ac + bd + bd ad + ad + bc + bc i(ad + bc − ad − bc) ac + ac − bd − bd

−i(bd + ac − ac − bd) −i(ad + bc − ad − bc) ad + ad − bc − bc −i(ac + bd − ac − bd)

| a |2 + | b |2 − | c |2 − | d |2 ab + ab − cd − cd i(ab + cd − ab − cd) | a |2 − | b |2 − | c |2 + | d |2


 .

and it is known from the representation theory of the Lorentz group that the ”four-vector
representation”, i.e., the corresponding 2-fold covering SL(2, C) → SO(3, 1), is equivalent
to the representation ρ1,1 = id ⊗ id. So for any representation ρ we have

τ ◦ ρ ∼ ρ ⊗ ρ.

(That was why our computations in Section 3 also implied V ol(τ ◦ ρ) = 0, CS(τ ◦ ρ) =
4CS(ρ).)

We remark that this isomorphism is not well-behaved with respect to genericity of ptolemy
coordinates in the sense of Definition 7. Given a triangulation and a generic PSL(2, C)-
decoration one may well get a non-generic SO(3, 1)-decoration after applying the isomor-
phism. For this reason it was more convenient to compute Chern-Simons invariants for ρ⊗ρ
as we did in Section 3, rather than trying to compute them for τ ◦ ρ directly.

Besides the trivial representation and the four-vector representation there is only one
more representation of SL(2, C) in SL(4, R) namely the representation κ : SL(2, C) →
SL(4, R) ⊂ SL(4, C) defined by

κ

(
a1 + a2i b1 + b2i
c1 + c2i d1 + d2i

)
=




a1 a2 b1 b2

−a2 a1 −b2 b1

c1 c2 d1 d2

−c2 c1 −d2 d1


 .
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Again, application of this representation to the standard decoration would yield a nongeneric
decoration. However conjugation with the matrix




1 0 1 0
i 0 −i 0
0 1 0 1
0 i 0 −i


 ∈ GL(4, C)

shows that κ is equivalent to id ⊕ id, which then with Lemma 2 implies that

V ol(κ ◦ ι) = 0, CS(κ ◦ ι) = 2CS(M).

Let M be a finite-volume hyperbolic 3-manifold and ι : π1M → SL(2, C) a lift of the
hyperbolic monodromy ι : π1M → SL(2, C). To the best of my knowledge it has not been
known so far whether the three characters of τ ◦ ι, κ ◦ ι and the trivial representation neces-
sarily belong to different components in the SL(4, R)-character variety. It is known that in
general neither of this representations has to be locally rigid (i.e., the corresponding com-
ponent of the character variety is not just an isolated point). For example, [17] constructs
(for some 3-manifolds) a 1-parameter deformation of κ ◦ ι in Sp(4, R) ⊂ SL(4, R), which
is therefore not an isolated point in the character variety. It is also known that the rep-
resentations ι ⊗ ι = (ρ2 ⊗ ρ2) ◦ ι are not always locally rigid, for example [5] shows that
local rigidity in SL(4, R) does not hold for exactly 52 of the first 4500 closed, orientable,
hyperbolic 3-manifolds with 2-generator fundamental group in the Hodgson-Weeks census.
And for the trivial representation ν : Γ → GL(n, C) one has H1(Γ, Ad(ν)) = H1(Γ, Cn), i.e.,
one has deformations corresponding to homomorphisms π1M → H1M → Cn.

But for hyperbolic 3-manifolds with CS(M) 6= 0 we can now use

CS(τ ◦ ι) = 4CS(M) 6= 0 6= 2CS(M) = CS(κ ◦ ι)

to obtain that τ ◦ ι, κ◦ ι and the trivial character belong to three different components of the
character variety. Hence for hyperbolic 3-manifolds with CS(M) 6= 0 the SL(4, R)-character
variety has at least three connected components, which proves Corollary 1.

Similarly we obtain in this case at least 10 components in the SL(4, C)-character variety,
as we had explained in the introduction.

For the figure eight knot complement, the experimental results from [13] suggest that
there are not more than three components of the SL(4, R)-character variety containing
characters of irreducible representations. In particular, even though CS(M) = 0 in this
case, the experimental result seems to suggest that τ ◦ ι and κ ◦ ι are isolated points and so
again we have 3 components.

For other knots one may have more than three components and the following two sub-
sections will shortly discuss two approaches to construct some of them.

4.2. Using Galois actions. One can frequently get more components by applying Galois
actions. Namely, for each finite-volume hyperbolic 3-manifold M , the image of the hyper-
bolic monodromy ρ : π1M → PSL(2, C) is contained in PSL(2, K) for some number field
K and then any element of the Galois group σ ∈ Gal(K : Q) provides a (non-discrete)
representation

ρσ : π1M → PSL(2, K) ⊂ PSL(2, C).

Composition with representations PSL(2, C) → SL(m, C) then produces more SL(m, C)-
representations of π1M . One should also note that local rigidity results from [21] and [25]
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carry over to the Galois conjugate representations because the group cohomology H1(Γ, Ad(ρ))
is compatible with Galois conjugations.

As an illustration let us look at the 2-bridge knot K(7
3 ), which is the knot considered

in [12, Example 10.1]. Its hyperbolic monodromy has image in PSL(2, Q(x)) with x the
unique root of positive imaginary part of

x3 − x2 + 1 = 0.

Letting x′ be the real root, the Galois automorphism Q(x) → Q(x′) yields a representation
ρ : Γ → PSL(2, R), which according to [31, Example 6.16] has Chern-Simons invariant
−1.1134 . . ., while the hyperbolic monodromy and its complex conjugate have Chern-Simons
invariants ±3.0241 . . .. Then ρ⊗ρ is a representation to SL(4, R) of Chern-Simons invariant
−4.453 . . . which consequently does not belong to any of the three other components.13

4.3. Using epimorphisms of knot groups. Recall that for each rational number p
q

one

has a 2-bridge link K(p
q
) which is determined by the coefficients b1, b2, . . . , bk in the continued

fraction expansion
p

q
= [b1, b2, . . . , bk] =

1

b1 + 1
b2+

1
b3+...

and has a plane diagram which (for even k) looks as in he picture below, where the number
±bi ∈ Z inscribed in a box means the number of half-twists in that box with positive
numbers corresponding to right-handed half-twists and negative numbers corresponding to
left-handed ones.

b1

−b2

bk−1

−bk

The link K(p
q
) is hyperbolic for p > 1.

We will use the following result from [24] which is a combination of Proposition 5.1 (or
the equivalent Proposition 5.2) and Theorem 6.1 in that paper. Following [24, Section 5]
we will use the notation b = (b1, . . . , bk),b−1 = (bk, . . . , b1), ǫb = (ǫb1, . . . , ǫbk), ǫb−1 =
(ǫbk, . . . , ǫb1) with ǫ ∈ {1,−1}.

Proposition 3. (Ohtsuki-Riley-Sakuma): Assume p
q

= [b1, b2, . . . , bk] and

p̃

q̃
= 2c +

[
ǫ1b, 2c1, ǫ2b

−1, 2c2, ǫ3b, . . . , 2cl−1, ǫlb
(−1)l−1

]

for14 l ∈ N, c ∈ N ∪ {0} and some ǫ1, . . . , ǫl ∈ {1,−1} , c1, . . . , cl−1 ∈ Z. Then there exists a

proper, branched fold map f : (S3, K(p
q
)) → (S3, K( p̃

q̃
)) inducing an epimorphism

f∗ : π1(S
3 \ K(

p

q
)) → π1(S

3 \ K(
p̃

q̃
)).

13I do not know whether it has some meaning that this value coincides with the Chern-Simons invariants
of one of the SL(3, R)-representations in [12, Example 10.1].

14The statement in [24, Proposition 5.1] assumes c positive, but the equivalent [24, Proposition 5.2] and
its proof do not require this assumption.
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The map sends a meridian to a meridian and a longitude to the power of a longitude
(see [16, Section 4]), in particular it is boundary-preserving and f∗ defines a map between
boundary-unipotent character varieties.

Using this result of theirs, Ohtsuki, Riley and Sakuma proved in [24, Corollary 7.3]
that there are 2-bridge link character varieties with arbitrarily large number of irreducible
components.15 Namely they constructed a sequence of hyperbolic links Kn with non-injective
epimorphisms

fn : π1(S
3 \ Kn) → π1(S

3 \ Kn−1).

Let Cn be the irreducible component containing the defining representation for the hyper-
bolic metric of S3\Kn, because the latter is an irreducible representation. The epimorphism
fn induces an injective, regular map f∗

n of the representation varieties. Then f∗
nCn−1 is an

irreducible component consisting of non-faithful representations and thus does not agree
with the irreducible component Cn containing the defining representation for the hyperbolic
metric of S3 \ Kn−1. Iterating this argument they get at least n irreducible components
for the character variety of Kn: the argument above shows that the irreducible compo-
nents f∗

i Ci−1 and Ci are distinct, and this implies (since preimages of irreducible sets under
injective, regular maps are irreducible) that the irreducible components f∗

n . . . f∗
i Ci−1 and

f∗
n . . . f∗

i+1Ci are distinct.
Since we are considering the euclidean topology rather than the Zariski topology, a con-

nected component may consist of several irreducible components. So having many irreducible
components does, a priori, say nothing about the number of components of the character
variety. The following argument shall show, however, that the Ohtsuki-Riley-Sakuma con-
struction actually can yield 2-bridge link character varieties with an arbitrarily large number
of connected components.

Proposition 4. There are 2-bridge knots with the boundary-unipotent SL(m, C)-character
variety Xbup having arbitrarily large number of connected components.

Proof:
As a special instance of the construction in [24] let us consider the sequence Ln = K(pn

qn
)

of 2-bridge knots such that pn

qn
has a continued fraction expansion

pn

qn

= [2, 2, 2, 2, . . . , 2, 2]

with 2 · 3n−1 coefficients all equal to 2.

2

−2

2

−2

2

−2

So L1 = K(2
5 ) is the figure eight knot, L2 (shown in the picture above) is K( 70

169 ) and so
on. Then, for any n ≥ 2, Proposition 3 applied with c = 0, l = 3, c1 = c2 = 0, ǫ1 = 1 = ǫ2 =
ǫ3 = 1 and b = b−1 = [2. . . . , 2] provides us with boundary-preserving maps

fn : S3 \ Ln → S3 \ Ln−1.

15They stated this theorem for SL(2, C), but their argument also applies to SL(m, C)-character varieties
for m > 2. One just has to consider the geometric representation (that is, the composition of the lifted
hyperbolic monodromy ρ0 with the irreducible representation SL(2, C) → SL(m, C)) in place of ρ0 to adapt
their proof.



34 THILO KUESSNER

By [24, Proposition 6.2] the degree of the map f constructed in Proposition 3 can be

computed as deg(f) =
∑l

j=1(−1)j+1ǫj . So in our example we have deg(fn) = 1.
We now want to prove that pulling back components via f∗

n one obtains many components
that can be distinguished by volume.

There are linear bounds

C1tw(L) − C2 ≤ vol(S3 \ L) ≤ C3tw(L) + C4

(with explicit constants C1, C2, C3, C4) for the hyperbolic volume in terms of the twist
number of a prime alternating diagram, see [18],[15]. We can apply this to our diagrams
because they are alternating. (This is a consequence of all the coefficients bi having the
same sign and can of course also be seen directly from the link diagram.) The number of
twist regions for the canonical diagram of Ln is

tw(Ln) = 2 · 3n−1.

In particular, in our situation vol(S3 − Ln) will go to infinity exponentially.
Let ρn : π1(S

3 \ Ln) → SL(m, C) be the geometric representation. By Lemma 1 we have

vol(ρn) =
(m + 1)m(m − 1)

6
V ol(S3 \ Ln),

so also vol(ρn) grows exponentially in n. In particular, there are natural numbers N1, N2

such that for all N ≥ N1 there are at least N − N2 distinct values among the volumes

vol(ρn), n = 1, . . . , N.

Let n ≤ N . Denote by fk∗ the homomorphism of fundamental groups induced from fk.
From deg(fN) = . . . = deg(fn+1) = 1 we obtain

vol(ρnfn+1,∗ . . . fN,∗) = vol(ρn),

see Lemma 4. Hence there are also at least N − N2 distinct values among the volumes

vol(ρnfn+1,∗ . . . fN,∗), n = 1, . . . , N

for N ≥ N1. In particular the SL(m, C)-character variety of S3 \ LN has at least N − N2

connected components. QED

With the help of the following proposition we can even show that the above constructed
components all correspond to representations of trivial Chern-Simons invariant.

Proposition 5. 16The complement of a 2-bridge knot K(p
q
) has vanishing PSL(2, C)-Chern-

Simons invariant if the continued fraction expansion p
q

= [a1, . . . , ak] is symmetric in the

sense that
a1 = ak, a2 = ak−1, a3 = ak−2, . . .

Proof: ([33]) The symmetry of the continued fraction expansion is equivalent to q2 ≡
−1 mod p, see [27], or [28] for a more general statement. If K(p

q
) is a knot, then q is odd

and we obtain q2 ≡ −1 mod 2p. From the ”Korollar zu Satz 4” in [26] this is equivalent to
K(p

q
) being amphicheiral. According to [22] this implies CS(S3 \ K(p

q
)) = 0. QED

16Experimental evidence from the knot table [3] suggests that also the converse of this proposition might
be true.
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This shows that all the examples in the proof of Proposition 4 will have vanishing Chern-
Simons invariant and so Proposition 4 actually produces examples of manifolds with SL(m, C)-
character variety having arbitrarily large number of connected components of vanishing
Chern-Simons invariants. This proves Theorem 2 from the introduction.

The argument for Proposition 4 does not apply to SL(m, R)-character varieties because
the volume of SL(m, R)-representations is always zero. Instead one should use Chern-
Simons invariants, but of course the above argument using growth of volumes does not
adapt because no such statement can be true for Chern-Simons invariants. Still one can use
explicitly computed values to construct distinct components in specific examples. E.g. for
the 2-bridge knot K(3

7 ) one can use the degree 2-map

S3 \ K(
23

53
) → S3 \ K(

3

7
)

(that one obtains from Proposition 3 with b = (2, 3), l = 2, c = c1 = 0, ǫ1 = 1, ǫ2 = −1) and
the inequality

CS(S3 \ K(
23

53
)) 6= 2CS(S3 \ K(

3

7
))

to obtain an additional component in the SL(4, R)-character variety of the 2-bridge knot
K(23

53 ). A similar argument applies to other components of the character variety and to
many other knots.
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