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Abstract

Let M = Γ\G/K be a finite volume locally symmetric space of noncompact type of
R-rank 1. In this note we show that the monomorphism H∗

c,b (G) → H∗

b

(
M, ∂M

)

sends the cohomology class of the volume cocycle to the cohomology class of the
volume form. This gives an alternative proof for Gromov’s proportionality principle
in this case.

1 Introduction

Proportionality principle. In [4] Gromov defined a topological invariant, the simpli-
cial volume ‖ M ‖ and he proved (for closed manifolds M) the proportionality principle
‖ M ‖= c

M̃
vol (M), where c

M̃
is a constant which depends only on (the geometry of) the

universal cover M̃ with the pull-back metric. In [1, Section 6] Bucher-Karlsson gave a
proof of the proportionality principle (for closed manifolds) in terms of bounded cohomol-
ogy. (See also [3].) Moreover she showed in [1, Section 4] that for closed locally symmetric
spaces the proportionality principle is a direct consequence of the (almost obvious) fact
that the homomorphism H∗

c (G) → H∗
dR (M) sends the volume class in H∗

c (G) to the
cohomological fundamental class, that is the class of the volume form. (This allows for a
description of cG/K , see Section 4 below.) In this note we will use the constructions from
our recent paper [8] to extend the argument to the finite-volume R-rank 1 case.

Volume class. Let Γ be a lattice in a semisimple Lie group G and let M = Γ\G/K
be the corresponding locally symmetric space. Let n = dim (M). The volume class
vn ∈ Hn

c (G) is defined as the cohomology class of the volume cocycle vn given by

vn (g1, . . . , gn) := vol (str (x̃, g1x̃, g1g2x̃, . . . , g1g2 . . . gnx̃))

for some x̃ ∈ G/K, where str (x̃, g1x̃, g1g2x̃, . . . , g1g2 . . . gnx̃) denotes the straight simplex
with vertices x̃, g1x̃, g1g2x̃, . . . , g1g2 . . . gnx̃ ∈ G/K. The cohomology class [vn] does not
depend on x̃.

Uniform lattices. If Γ is cocompact, then it is well known (and easy to prove using
that H∗(Γ) can be computed from the complex of Γ-invariant cochains on G) that the
restriction homomorphism res : H∗

c (G) → H∗ (Γ) is an injective isometry (a left inverse
is the transfer map [5, Lemma 2.1], given by integration over a compact fundamental
domain) and that the composition

H∗
c (G) → H∗ (Γ) ∼= H∗

dR (M)
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sends the volume class to the cohomology class of the volume form.
Nonuniform lattices. In this note we will consider non-uniform lattices Γ. Then

res : H∗
c (G) → H∗ (Γ) need not be injective (the transfer map is not defined for arbitrary

cocycles), however the analogous morphism

res : H∗
c,b (G) → H∗

b (Γ)

in bounded cohomology is an injective isometry (integration of bounded cocycles over the
fundamental domain still works, see [12, Section 8.6.2]).

We assume that M = Γ\G/K is the interior of a compact n-manifold M with
boundary ∂M . Since the locally symmetric metric is defined only on M = M − ∂M
we have to specify what we mean by the cohomology class of the volume form. Let
DCone

(
∂M → M

)
:= DCone

(
∪i∈I∂iM → M

)
be the union along ∂M of M and the

(disjoint) cones over the path components of ∂M . We have a homeomorphism h :
M ∪ {cusps} → DCone

(
∂M → M

)
, where the cusps are mapped to the cone points.

The metric on M defines a volume form on M , hence via h a volume form dvol on
DCone

(
∂M → M

)
−{cone points}, hence with the proof of kkk a simplicial cocycle dvol

on DCone
(
∂M → M

)
by integration (declaring the cone points to have measure zero),

hence a (bounded) cohomology class
[
dvol

]
∈ H∗

b

(
DCone

(
∂M → M

))
. When G/K

has R-rank 1, then ∂M has nilpotent (hence amenable) fundamental group. This implies
that H∗

b

(
DCone

(
∂M → M

))
is isometrically isomorphic to H∗

b

(
M

)
and to H∗

b

(
M, ∂M

)
,

see Lemma 1 below. Composition with res defines an injective isometry

Ξ : H∗
c,b (G) → H∗

b

(
DCone

(
∂M → M

))
∼= H∗

b

(
M, ∂M

)
.

By [4, Section 1.2] the volume cocycle (and also the volume form) are bounded, i.e.
we have [vn]b ∈ Hn

c,b (G). The purpose of this note is to show that Ξ maps [vn]b to the
cohomology class of the volume form.

We mention that a second reason for using bounded cohomology (besides Ξ being an
isometry) in the proof is that the isomorphism H∗

b

(
M, ∂M

)
∼= H∗

b

(
M

)
has no counterpart

in ordinary cohomology. It seems plausible that the proportionality principle should hold
not only for R-rank 1 locally symmetric spaces but in greater generality for noncompact
Riemannian manifolds of finite volume. However the argument of this paper does not seem
to extend (not even to locally symmetric spaces of Q-rank 1) because the isomorphism
H∗

b

(
M, ∂M

)
∼= H∗

b

(
M

)
∼= H∗

b (Γ) does not hold in general.
We thank Michelle Bucher-Karlsson for bringing the problem to our attention.

2 Descriptions of Ξ

Let M = Γ\G/K. Fix some x ∈ M, x̃ ∈ G/K such that x̃ projects to x under π : G/K →
M . Let Cstr,x

∗ (M) ⊂ C∗ (M) be the subcomplex of straight simplices with all vertices in
x. There is a chain isomorphism

Φ : C∗ (BΓ) → Cstr,x
∗ (M)

given by
Φ (γ1, . . . , γn) = π (str (x̃, . . . , γ1 . . . γnx̃)) .
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Moreover the inclusion
j : Cstr,x

∗ (M) → C∗ (M)

is a chain homotopy equivalence by [2, Theorem 1a].

We briefly recall some notation from [8].
Let I = {1, . . . , s} be an index set for the path components of ∂M = ∂1M ∪ . . .∪∂sM .

Then, as in [8, Section 4.2.1] we let

DCone
(
∪i∈I∂iM → M

)

be the union along ∂M of M and the (disjoint) cones over the path components ∂iM ,
and as in [8, Section 4.2.2] we define

BΓcomp = DCone (∪i∈IBΓi → BΓ) ,

where Γi as in [8, Definition 5] is a fixed subgroup of Γ with Γi
∼= π1∂iM .

In [8] we constructed a chain homotopy equivalence Csimp
∗ (BΓcomp) ≃ C∗

(
DCone

(
∪i∈I∂iM → M

))

under the assumption that G/K has R-rank one and Γ is a lattice.

Namely we defined in [8, Definition 11] a simplicial complex Ĉstr,x
∗ (M) containing

Cstr,x
∗ (M) and chain maps Φ̂, ĵ such that the following diagram (with i denoting the

respective inclusions) commutes.

Csimp
∗ (BΓ)

Φ

��

i // Csimp
∗ (BΓcomp)

Φ̂
��

Cstr,x
∗ (M)

j

��

i // Ĉstr,x
∗ (M)

ĵ

��
C∗ (M)

i // C∗ (M ∪ {cusps})

∼= h

��
C∗

(
DCone

(
∪i∈I∂iM → M

))

(In the last row we use a homeomorphism h : M ∪ {cusps} ∼= DCone
(
∪i∈I∂iM → M

)
.)

Φ̂ is a chain isomorphism by [8, Lemma 8a]. Moreover, in [8, Lemma 8b] we proved

that ĵ is a chain homotopy equivalence. Thus ĵΦ̂ is a chain homotopy equivalence.

We observe that the composition
((

hĵφ̂i
)∗)−1

◦ res :

H∗
cb (G) // H∗

b (Γ) // H∗
b

(
DCone

(
∪i∈I∂iM → M

))

agrees with Ξ. Indeed Ξ is the composition of res with the isomorphism H∗
b (Γ) →

H∗
b

(
M

)
, which is given by

(
(jΦ)

∗)−1
, and with the isomorphism H∗

b

(
M

)
→ H∗

b

(
DCone

(
∪i∈I∂iM → M

))
,

which is given by
(
(hi)

∗)−1
. Because of ijΦ = ĵΦ̂i this is the same as the composition

considered above.
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Lemma 1. Let M be a compact manifold with boundary ∂M such that all path components
of ∂M have amenable fundamental group injecting into π1M . Then
a) inclusion M → DCone

(
∂M → M

)
induces an isometric isomorphism

H∗
b

(
DCone

(
∂M → M

))
→ H∗

b

(
M

)
,

b) the quotient map C∗

(
M

)
→ C∗

(
M, ∂M

)
induces an isometric isomorphism

H∗
b

(
M, ∂M

)
→ H∗

b

(
M

)
,

c) the composed isomorphism τ∗ : H∗
b

(
DCone

(
∂M → M

))
→ H∗

b

(
M, ∂M

)
is induced

by τ (z) = z + Cone (∂z) for relative cycles z ∈ Z∗

(
M, ∂M

)
.

Proof: a) We give an argument using the theory of multicomplexes as developed by
Gromov in [4]. We stick to the notation of [9].

For each pair of topological spaces (X, Y ) (with π1Y → π1X injective for all path com-
ponents of Y ) one has associated a pair of aspherical minimal multicomplexes (K (X) , K (Y )).
Their 0-skeleton coincides with (X, Y ) and their 1-skeleta contains one 1-simplex in each
homotopy class rel. ∂∆1 of maps ∆1 → X . We can assume that the 1-simplices in
K (X) are choosen to have minimal number of components of intersection with Y in their
homotopy class.

For each subset A ⊂ X there is an action of a certain group ΠAX on K (X), as defined
in [9, Section 1.5]. By [9, Lemma 4], the group ΠAX is amenable if π1A is amenable for
each path component of A. So in our setting we have the following commutative diagram
with G := Π∂MM and H := ΠDCone(∂M)DCone

(
∂M → M

)
both amenable:

Csing
∗

(
M

) i1 // Csing
∗

(
DCone

(
∂M → M

))

Csimp
∗

(
K

(
M

))
j1

OO

i2 //

k1

��

Csimp
∗

(
K

(
DCone

(
∂M → M

)))
j2

OO

k2

��
Csimp

∗

(
K

(
M

))
⊗ZG Z

i3// Csimp
∗

(
K

(
DCone

(
∂M → M

)))
⊗ZH Z

According to Gromov’s results in [4, Section 3.3] the morphisms j1, j2, k1, k2 induce iso-
metric isomorphisms in bounded cohomology. Thus to prove the claim of the lemma it
suffices that i3 induces an isometric isomorphism in bounded cohomology. We claim that
i3 is actually an isomorphism of chain complexes. To prove this claim we are going to
construct an chain homomorphism f3 inverse to i3.

First we define f3 on the 1-skeleton. Let τ : [0, 1] → DCone
(
∂M → M

)
represent

a 1-simplex in Csimp
1

(
K

(
DCone

(
∂M → M

)))
. Upon homotopy we can assume that at

most two boundary intervalls [0, a] and [b, 1] are mapped to DCone
(
∂M

)
. (This follows

from π1

(
DCone

(
∂M

)
, ∂M

)
= 0.) Now let h1 = τ |[0,a] and h2 = τ |[b,1], and consider1

1If only [0, a] or only [b, 1] or none of them are mapped to DCone
(
∂M

)
, then we let h =

{
h1, h1

}
or

h =
{

h2, h2

}
or h = ∅.
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h =
{
h1, h1, h2, h2

}
∈ H . Then clearly τ = hσ, where σ := τ |[a,b] represents a 1-simplex

in Csimp
1

(
K

(
M

))
. We define f3 (τ ⊗ 1) = σ ⊗ 1. Clearly f3i3 = id. Since τ = hσ we

have τ ⊗ 1 = σ ⊗ 1 and therefore also i3f3 = id. This defines f3 = i−1
3 on the 1-skeleton

and using asphericity this definition easily extends to the full multicomplex.
b) This is Theorem 1.2 in [7]. (The proof also uses Gromov’s theory of multicom-

plexes.)
c) An analogous commutative diagram as in a) shows that for computing the effect of

τ∗ on bounded cohomology we can replace τ : Z∗

(
M, ∂M

)
→ Z∗

(
DCone

(
∂M → M

))
by

the simplicial map Zsimp
∗

(
K

(
M

)
, K

(
∂M

))
⊗ZGZ → Zsimp

∗

(
K

(
DCone

(
∂M → M

)))
⊗ZG

Z which sends z⊗1 to τ (z)⊗1. On the other hand the proof of [7, Theorem 2.1] and the
proof of a) yield that the composed isomorphism is induced by the simplicial map sending
z ⊗ 1 to z ⊗ 1. But [9, Observation 1] implies for amenable H that Cone (∂z) ⊗ 1 = 0
whenever ∂z ∈ Csimp

∗

(
K

(
∂M

))
. Thus z ⊗ 1 = τ (z) ⊗ 1 which yields the claim.

QED

3 Proof

After these preparations we are ready to prove the main result Ξ ([vn]b) =
[
dvol

]
b
.

Theorem 1. Let M be a compact manifold such that M = M − ∂M is of the form
M = Γ\G/K with G/K an R-rank one symmetric space of noncompact type and Γ ⊂ G
a lattice. Then the injective isometry Ξ defined as the composition

H∗
cb (G) → H∗

b (Γ) ∼= H∗
b

(
M

)
∼= H∗

b

(
DCone

(
∂M → M

))

sends the cohomology class [vn]b of the volume cocycle to the cohomology class
[
dvol

]
b

of
the volume form.

Proof: We use the explicit description of the isomorphism H∗
b (Γ) ∼= H∗

b

(
M, ∂M

)

from Section 2.
Let (γ1, . . . , γn) be an n-simplex in BΓ. Then ĵ

(
Φ̂ (i (γ1, . . . , γn))

)
= j (Φ (γ1, . . . , γn))

and the latter is, by definition, the image of the straight simplex str (x̃, . . . , γ1 . . . γnx̃)
under the projection π : G/K → M . Application of the volume form yields the volume of
this simplex, that is vol (π (str (x̃, . . . , γ1 . . . γnx̃))). Since π is a local isometry the latter
equals

vol (str (x̃, . . . , γ1 . . . γnx̃))

which is, by the very definition of vn, exactly the value of < vn, (γ1, . . . , γn) >. Hence

< h∗dvol, ĵ
(
Φ̂ (i (γ1, . . . , γn))

)
>=< vn, (γ1, . . . , γn) >,

which implies vn =
(
hĵΦ̂i

)∗

dvol. Hence the composition

H∗
cb (G) // H∗

b (Γ) // H∗
b

(
DCone

(
∪i∈I∂iM → M

))
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maps [vn]b to ((
hĵφ̂i

)∗)−1

([vn]b) =
[
dvol

]
b
.

QED

4 Applications

If M is a closed, orientable, Riemannian manifold, V ol (M) its volume and ‖ M ‖ the
topologically defined simplicial volume, then it is a well-known application of the Hahn-
Banach Theorem (cf. [1, Section 2]) that

V ol (M)

‖ M ‖
=‖ [dvol] ‖∞ .

Moreover the Gromov-Thurston proportionality principle states that this quotient V ol(M)
‖M‖

depends only on (the geometry of) the universal cover M̃ . This was proved in [4] and
with more details in [10].

If M̃ = G/K is a symmetric space of noncompact type (and again M is closed),
then Bucher-Karlsson proved in [1] an explicit (and better, but still hard to compute)
description for this quotient, namely

V ol (M)

‖ M ‖
=‖ [vn] ‖∞,

where [vn] ∈ Hn
c (G) is the class of the volume cocycle. The latter depends only on the

geometry of the universal cover G/K. (See also [3].) In fact she used that Ξ : H∗
c (G) →

H∗ (M) is an injective isometry, which then implies

‖ [dvol] ‖∞=‖ [vn] ‖∞,

because in the closed case it is obvious that Ξ sends [vn] to [dvol].

Corollary 1. If M = Γ\G/K is a finite volume locally symmetric space of noncompact
type of R-rank 1, then

V ol (M)

‖ M, ∂M ‖
=‖ [vn] ‖∞ .

Proof: Let β ∈ Hdim(M)
(
M, ∂M ; R

)
be a cohomological fundamental class. A

standard application of the Hahn-Banach Theorem shows 1

‖M,∂M‖
=‖ β ‖∞.

Let τ∗ : H∗
b

(
DCone

(
∂M → M

))
→ H∗

b

(
M, ∂M

)
be the isometric isomorphism in-

duced by τ (z) = z + DCone (∂z) for relative cycles z ∈ Z∗

(
M, ∂M

)
. We claim that

[dvol] := τ∗
[
dvol

]
represents V ol (M)β. Since Hdim(M)

(
M, ∂M ; R

)
is one-dimensional it

suffices to check the equality for some representative of
[
M, ∂M

]
. Now, if z is some trian-

gulation of
(
M, ∂M

)
, then τ (z) = z+DCone (∂z) is a triangulation of DCone

(
∂M → M

)
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and we have < dvol, τ (z) >= vol (M), hence < dvol, z >=< τ∗dvol, z >= vol (M). This
proves that [dvol] represents V ol (M)β and thus

V ol (M)

‖ M, ∂M ‖
=‖ [dvol] ‖∞ .

Moreover Ξ is an injective isometry and we have proved in Theorem 1 that Ξ sends
[vn]b to

[
dvol

]
b
, thus ‖ [vn] ‖∞=‖

[
dvol

]
‖∞=‖ [dvol] ‖∞. QED

We remark that the proportionality principle in that case (and more generally for
finite-volume locally symmetric spaces of Q-rank one) has already been proved in [11],
but that proof does not give the explicit constant.

For G/K = RHn it follows from the Gromov-Thurston Theorem that ‖ [vn] ‖∞ is
the maximal volume of an ideal simplex in RHn. By the Haagerup-Munkholm Theorem
the latter equals the volume of a regular ideal simplex in RHn, e.g. ‖ [v2] ‖∞= π and
‖ [v3] ‖∞= 3Λ

(
π
3

)
, where Λ is the Lobatschewski function.

For G/K = CHm, HHm, CaH2 it is clear that ‖ [vn] ‖∞ is bounded above by the
maximal volume of an ideal simplex, but the exact value of ‖ [vn] ‖∞ has not been
computed so far.
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