
TOPOLOGY
PROCEEDINGS
Volume 40 (2012)
Pages 239-258

http://topology.auburn.edu/tp/

E-Published on November 4, 2011

GROUP HOMOLOGY AND
IDEAL FUNDAMENTAL CYCLES

THILO KUESSNER

Abstract. We prove that the (homological version of the) gener-
alized Goncharov invariant of locally symmetric spaces determines
their generalized Neumann-Yang invariant.

1. Introduction

Let M be an odd-dimensional locally symmetric space of noncompact
type, with vol (M) < ∞, which is either compact or of rank one. We com-
pare two invariants: the generalized Goncharov invariant and the gener-
alized Neumann-Yang invariant, and we show that the former determines
the latter.

In [7], Walter D. Neumann and Jun Yang constructed an invariant
of finite-volume hyperbolic 3-manifolds which lives in the Bloch group
B(C) and from which volume and the Chern-Simons invariant can be re-
captured. On the other hand, Alexander Goncharov [5] constructed an
invariant of odd-dimensional hyperbolic manifolds and representations of
their fundamental groups. (In particular, he considered the half-spinor
representations.) This invariant lives in K∗

(
Q
)
⊗ Q and the volume

can be recaptured by means of the Borel regulator. In [6], we general-
ized Goncharov’s construction to finite-volume locally symmetric spaces
of noncompact type Γ\G/K (either closed or locally rank one symmetric)
and representations ρ : G → GL (N,C). We constructed an invariant
γ (M) ∈ Hd

(
GL

(
N,Q

)
;Q

)
and a projection π : Hd

(
GL

(
Q
)
;Q

)
→
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Kd

(
Q
)
⊗Q yielding an invariant γ (M) := π (γ (M)) ∈ Kd

(
Q
)
⊗Q, and

we analyzed in which cases the obtained invariant γ (M) is nontrivial,
respectively, trivial. (The nontriviality of γ (M) turned out to depend
only on the representation ρ : G → GL (N,C). Again, if γ (M) ̸= 0,
then vol (M) can be recaptured from γ (M) by application of the Borel
regulator.)

Here we show that the natural evaluation map ev from H∗ (GL (N,C))
to the generalized pre-Bloch groups sends γ (M) to the natural general-
ization of the Neumann-Yang invariant β (M) . The latter invariant is
defined using ideal fundamental cycles.
Theorem 4.0.2. Let M be a compact, orientable, connected manifold
with boundary such that M := M − ∂M = Γ\G/K is a finite-volume,
locally rank one symmetric space of noncompact type. Let ρ : G →
GL (N,C) be a representation. Then

ev∗
(
γ
(
M

))
= βρ

(
M

)
.

For N = 2, we can derive the following consequence.
Corollary 4.0.3. If M3 is hyperbolic of finite volume, then Suslin’s ho-
momorphism

K3 (C)⊗Q → B (C)⊗Q

maps the Goncharov invariant γ (M) to the Neumann-Yang invariant
β (M)⊗ 1.

Although Corollary 4.0.3 seems to be well known to the experts, at
least for the case of closed manifolds, we could not locate a reference.

This paper makes essential use of the definition of the Goncharov in-
variant for cusped manifolds [6, §4] and, as such, is a continuation and
extension of [6]. We decided to publish it separately because [6] already
has a considerable length. This paper is organized as follows: Section
2 states the definitions of the Goncharov invariant and the (generalized)
Neumann-Yang invariant. Section 3 provides a chain map Ψ̂ from rela-
tive chains to ideal chains which, in particular, sends relative fundamental
cycles to ideal fundamental cycles. This is used in section 4 to prove The-
orem 4.0.2.

2. Definitions

2.1. Goncharov Invariant.

Group homology. For a group G, its classifying space (with respect to
the discrete topology on G) is the simplicial set BG defined as follows:
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• the set of k-simplices of BG is

Ssimp
k (BG) = {(g1, . . . , gk) : g1, . . . , gk ∈ G} ,

• the boundary operators are defined by
∂0 (g1, . . . , gk) = (g2, . . . , gk) ,
∂i (g1, . . . , gk) = (g1, . . . , gigi+1, . . . , gk) for i = 1, . . . , k − 1,
∂k (g1, . . . , gk) = (g1, . . . , gk−1),

• the degeneracy maps are defined by
sj (g1, . . . , gk) = (g1, . . . , gj , 1, gj+1, . . . , gk).

Ck (BG) is the free abelian group freely generated by Sk (BG). Let ∂ :

Ck (BG) → Ck−1 (BG) be the linear extension of ∂ =
∑k

i=0 (−1)
i
∂i. For

an abelian group R, the group homology H∗ (G;R) = Hsimp
∗ (BG;R) is

the homology of (C∗ (BG)⊗Z R, ∂ ⊗ 1).
If Γ = π1M for an aspherical space M , then Hsimp

∗ (BΓ;R) =
H∗ (M ;R). In particular, this is the case if M is a locally symmetric
space of noncompact type.

Homological Goncharov invariant of closed manifolds. Let Md =
Γ\G/K be a closed, orientable, connected, locally symmetric space of
noncompact type, and ρ : G → SL (N,C) a representation.1 Let [M ] be
a generator of Hd (M ;Z) ≃ Z. Then the homological Goncharov invariant
of (M,ρ) is defined as

γ (M) := B (ρj)d EM−1
d [M ] ∈ Hsimp

d (BSL (N,C) ;Z) ,

with j : Γ → G the inclusion, B (ρj) : BΓ → BSL (N,C) induced by
ρj, and EM−1

∗ : Hsimp
∗ (BΓ;Z) → H∗ (M ;Z) the Eilenberg-MacLane

isomorphism (see [6, §2.1]).
(In [6], γ (M) was considered as an element of Hd (BGL (C) ;Q). More-

over, in §2.5, we constructed a projection

Hd (BGL (C) ;Q) → PHd (BGL (C) ;Q) ≃ Kd (C)⊗Q

and defined the K-theoretic Goncharov invariant γ (M) ∈ Kd (C)⊗Q as
the image of γ (M) under this projection.

In this paper we will, except for Corollary 4.0.3, only use the homo-
logical invariant γ (M). The same remark applies to cusped manifolds
below.)

Homological Goncharov invariant of cusped manifolds. We recall
some notation from [6, §4.2]: For a continuous mapping : A1∪̇ . . . ∪̇As →

1Since G is semisimple, any representation ρ : G → GL (N ;C) has image in
SL (N,C).
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X, we define the disjoint cone

DCone (∪s
i=1Ai → X)

to be the pushout of the diagram

A1∪̇ . . . ∪̇As
i //

��

X

��
Cone (A1) ∪̇ . . . ∪̇Cone (As) // DCone (∪s

i=1Ai → X) .

If X is a CW-complex and A1, . . . , As are disjoint sub-CW-complexes,
then clearly

H∗ (DCone (∪s
i=1Ai → X)) ∼= H∗ (Cone (∪s

i=1Ai → X)) =

H∗ (X,∪s
i=1Ai)

in degrees ∗ ≥ 2. Similarly, for a simplicial mapping of simplicial sets
B1∪̇ . . . ∪̇Bs → Y , we define DCone (∪s

i=1Bi → Y ) to be the quasi-sim-
plicial set whose q-simplices are either q-simplices in Y or cones over
q − 1-simplices in some Bi, with the natural boundary operator.

Proposition 2.1.1. Let M be a compact, orientable, connected d-manifold
with boundary components ∂1M, . . . , ∂sM such that M := M − ∂M =
Γ\G/K is a finite-volume locally rank one symmetric space of noncompact
type. Let ρ : G → SL (N,C) be a representation such that Γ′

i := ρ (Γi)
is unipotent for i = 1, . . . , s, where Γi ⊂ Γ is the subgroup of π1 (M,x)
corresponding to π1 (∂iM,xi).2 Denote[

M,∂M
]
∈ Hd

(
DCone

(
∪s
i=1∂iM → M

)
;Z

)
the fundamental class of M . Then

B (ρj)d EM−1
d

[
M,∂M

]
∈ Hd (DCone (∪s

i=1BΓ′
i → BSL (N,C)) ;Z)

has a preimage
γ
(
M

)
∈ Hd (BSL (N,C) ;Z) .

This is proved in [6, Proposition 2].

2Our assumptions imply that π1∂iM injects into π1M , (cf. [6, Observation 1]). In
particular, if we fix x0 ∈ M and xi ∈ ∂iM for i = 1, . . . , s, then we obtain (using
some path from x0 to xi) isomorphisms of π1 (∂iM,xi) with subgroups Γi of
Γ= π1 (M,x0), for i = 1, . . . , s, and we will assume these isomorphisms to be fixed.

Moreover, since M and all ∂iM are aspherical (this follows from [4]), there is an
isomorphism H∗

(
DCone

(
∪s
i=1BΓi → BΓ

))
→ H∗

(
DCone

(
∪s
i=1∂iM → M

))
, see [6,

Corollary 6]
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2.2. Neumann-Yang Invariant.

The following definitions are given in [7, §8] for hyperbolic manifolds (and
actually in more generality for representations with certain properties),
but they generalize in an obvious way to manifolds of nonpositive sectional
curvature, in particular to locally symmetric spaces of noncompact type.
(See [2, Definition 8.1 and Definition 8.6] for the definition of the boundary
at infinity ∂∞M̃ and of the topology on M̃ ∪ ∂∞M̃ .)

Definition 2.2.1. (a) Let M̃ be a simply connected Riemannian mani-
fold of nonpositive sectional curvature and ∂∞M̃ its ideal boundary. Let
Cq

(
∂∞M̃

)
be the free abelian group freely generated by the (q+1)-tuples

of points of ∂∞M̃ modulo the relations
i) (z0, . . . , zq) = sign (τ)

(
zτ(0), . . . , zτ(q)

)
for any permutation τ of

{0, . . . , q} and
ii) (z0, . . . , zq) = 0 whenever zi = zj for some i ̸= j.

The operator ∂ : Cq

(
∂∞M̃

)
→ Cq−1

(
∂∞M̃

)
is defined by ∂ (z0, . . . , zq)

=
∑q

i=0 (−1)
i
(z0, . . . , ẑi, . . . , zq) and linear extension. Let G = Isom

(
M̃

)
.

We define the generalized pre-Bloch group of M̃ as

Pn

(
M̃

)
:= Hn

(
C∗

(
∂∞M̃

)
⊗ZG Z, ∂ ⊗ZG id

)
.

(b) We define the generalized pre-Bloch groups of C as

PN
n (C) := Pn (SL (N,C) /SU (N)) .

Relation to classical Bloch group. In particular, P2
3 (C) = P3

(
H3

)
is the classical pre-Bloch group P (C) ([7], [8]).

One should note that Neumann and Yang [7] considered C∗
(
∂∞H3

)
as the free abelian group generated by tuples of distinct points in ∂∞H3.
We will denote this group by Cnd

∗
(
∂∞H3

)
, the superscript standing for

“nondegenerate.” It is easy to see that the inclusion Cnd
∗

(
∂∞H3

)
⊗ZGZ →

C∗
(
∂∞H3

)
⊗ZGZ induces an isomorphism in homology. (Here we consider

the action of G := PGL (2,C) on P 1C = ∂∞H3.)
The definition of the pre-Bloch group (see [7, Definition 2.1]) is easily

seen to be equivalent to P (C) = Cnd
3

(
∂∞H3

)
⊗ZG Z/∂Cnd

4

(
∂∞H3

)
⊗ZG

Z. This agrees with H3

(
Cnd

∗
(
∂∞H3

)
⊗ZG Z, ∂ ⊗ZG id

)
because ∂ ⊗ 1 :

Cnd
3

(
∂∞H3

)
⊗ZG Z → Cnd

2

(
∂∞H3

)
⊗ZG Z is trivial; see [7, Remark 4.4].

Definition 2.2.2. Let M be a manifold of nonpositive sectional curvature
and M̃ its universal covering with deck group Γ. Let σ ∈ S

str

q (M) be a
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proper ideal q-simplex (see Definition 3.1.1) and σ̃ : ∆q → M̃ ∪ ∂∞M̃ a
lift of σ with vertices σ̃ (v0) , . . . , σ̃ (vq) ∈ ∂∞M̃ . We define the cross-ratio
of σ by

cr (σ) := (σ̃ (v0) , . . . , σ̃ (vq))⊗ 1 ∈ Cq

(
∂∞M̃

)
⊗ZΓ Z.

This is well defined because all lifts of σ are in the Γ-orbit of σ̃.
If G/K is a rank one symmetric space of noncompact type and ρ :

G → SL (N,C) a representation, then, upon conjugation, we can as-
sume that ρ maps K to SU (N), inducing a smooth map ρ : G/K →
SL (N,C) /SU (N) and a continuous ρ-equivariant map ρ∞ : ∂∞G/K →
∂∞SL (N,C) /SU (N).

In [7], the invariant β (M) of hyperbolic 3-manifolds M is defined by
means of degree one ideal triangulations. To circumvent the question
whether M admits such a triangulation, we give an a priori weaker defini-
tion and we will show in §3 that this one agrees with the Neumann-Yang
definition.

The notion of “proper ideal fundamental cycle” is defined in Definition
3.1.4.

Definition 2.2.3. (a) Let M be a compact, orientable, connected d-
manifold with boundary such that M = M − ∂M is a Riemannian man-
ifold of nonpositive sectional curvature. Let G be the isometry group of
the universal covering M̃ .

Let
∑r

i=1 aiτi be a proper ideal fundamental cycle of M . The Neumann-
Yang invariant of M is defined by

β
(
M

)
:=

r∑
i=1

ai [cr (τi)] ∈ Hd

(
C∗

(
∂∞M̃

)
⊗ZG Z, ∂ ⊗ZG id

)
= Pd

(
M̃

)
.

(b) If M̃ = G/K is a rank one symmetric space of noncompact type
and if ρ : G → SL (N,C) is a representation, then we define

βρ

(
M

)
:= ρ∗

(
β
(
M

))
∈ PN

d (C) ,

where

ρ∗ : H∗ (C∗ (∂∞G/K)⊗ZG Z) → Hn (C∗ (∂∞SL (N,C) /SU (N))⊗ZG Z)

is induced by the equivariant chain map

ρ∗ (c0, . . . , cq) = (ρ∞ (c0) , . . . , ρ∞ (cq)) .

We will show in §3.4 that β (M) is well defined, that is, independent
of the chosen proper ideal fundamental cycle.
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Some results of Neumann-Yang. Let M be a compact, orientable,
connected d-manifold with boundary such that M := M − ∂M is a Rie-
mannian manifold of negative sectional curvature and finite volume. In
[7], it is shown that there is an isomorphism

Hd

(
M,∂M

)
≃ Hd

(
C∗

(
∂∞M̃

)
Γ

)
for Γ = π1M acting by deck transformations. Although this is stated
for hyperbolic 3-manifolds, the proof in [7] only requires that M is a
negatively curved manifold of dimension d ≥ 3, as we shall indicate now.
(This isomorphism will be used in the proof of well-definedness of β (M).)

The reason the argument from [7] works in this general context is the
following elementary fact about discrete isometry groups in negative cur-
vature:

Fact 2.2.4. If M̃ is a simply connected manifold of negative sectional
curvature, if Γ ⊂ Isom

(
M̃

)
is discrete of finite covolume, and x ∈ ∂∞M̃

is not a cusp of Γ, then Stab (x) = {γ ∈ Γ : γx = x} is an infinite cyclic
group.

Proof. If Stab (x) contained loxodromic isometries γ1 and γ2 with

Fix (γ1) = {x, y1} and Fix (γ2) = {x, y2} for y1 ̸= y2,

then [γ1, γ2] ∈ Γ would be a parabolic isometry with fixed point x, con-
tradicting the assumption that x is not a cusp of Γ. Hence, all elements
of Stab (x) have a common fixed point y ̸= x and fix the geodesic from x
to y. Thus, Stab (x) is a discrete subgroup of R, hence infinite cyclic. �

The isomorphism Z = Hd

(
M,∂M

)
→ Hd

(
C∗

(
∂∞M̃

)
Γ

)
will be de-

fined3 as the composition

Hd

(
M,∂M

)
≃ Hd (Γ, C) → Hd

(
Γ, ∂∞M̃

)
→ Hd

(
C∗

(
∂∞M̃

)
Γ

)
.

The first isomorphism can be derived by the same argument as in
the proof of [3, Theorem V.1.3]. Namely, C∗

(
M̃

)
/C∗

(
∂M̃

)
is acyclic

except in degree 1, where its cokernel is K∗ := ZC. Thus, H∗ (Γ, C) =

3C is the set of cusps of Γ. If C, then H∗ (Γ, C) is understood to be H∗ (Γ,Z); that
is, in this case we claim an isomorphism H∗ (M ;Z) ≃ H∗ (Γ;Z) ≃ H∗

(
Γ, ∂∞M̃

)
.

Recall that, for a G-set Ω, H∗ (G,Ω) is defined as the homology of P∗⊗ZGZ, where

. . . P3 → P2 → P1 → JΩ

is a ZG-projective resolution of JΩ := ker (ZΩ → Z), the kernel of the augmentation
map.
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H∗

(
C∗

(
M̃

)
/C∗

(
∂M̃

)
⊗ZG Z

)
. On the other hand, by definition of

relative homology, H∗

(
C∗

(
M̃

)
/C∗

(
∂M̃

)
⊗ZG Z

)
= H∗

(
M,∂M

)
.

Lemma 2.2.5. Hd (Γ, C) → Hd

(
Γ, ∂∞M̃

)
is an isomorphism for d ≥ 3.

In particular, if C = ∅, then Hd (Γ;Z) → Hd

(
Γ, ∂∞M̃

)
is an isomor-

phism for d ≥ 3.

Proof. ([7, §3]) By Shapiro’s Lemma, Hi

(
Γ,Z

(
∂∞M̃ − C

))
is the direct

sum of Hi of the isotropy groups for the orbits of Γ on ∂∞M̃ − C. (This
is also true if C = ∅.)

The homology of a cyclic group vanishes for i ≥ 2; hence,
Hi

(
Γ,Z

(
∂∞M̃ − C

))
= 0 for i ≥ 2. The long exact homology sequence

of JC → J∂∞M̃ → Z
(
∂∞M̃ − C

)
implies then the desired isomorphism

for d ≥ 3. �

Lemma 2.2.6. Hd

(
Γ, ∂∞M̃

)
→ Hd

(
C∗

(
∂∞M̃

)
Γ

)
is an isomorphism.

Proof. ([7, Proposition 3.2]) Consider the spectral sequence with E1-term
Hi

(
Γ, Cj−1

(
∂∞M̃

))
that converges to H∗

(
Γ, ∂∞M̃

)
. The isotropy

group of a pair of points is infinite cyclic or trivial, i.e., of homological
dimension at most 1; hence, E1

p,q = 0 if q ≥ 2. Thus, the only nontrivial

d1 is d1 : H1

(
Γ, C1

(
∂∞M̃

))
→ H1

(
Γ, C0

(
∂∞M̃

))
. In [7, Lemma 3.3],

it is proven that d1 is injective for hyperbolic 3-manifolds. The proof uses
only the fact that stabilizers of points and stabilizers of pairs of points
in ∂∞M̃ are infinitely cyclic or trivial. By Fact 2.2.4, this is true for any
negatively curved manifold; hence, the proof of [7] applies verbatim. �

Corollary 2.2.7. If M̃ is a simply connected manifold of negative sec-
tional curvature and dimension d ≥ 3 and if Γ ⊂ Isom+

(
M̃

)
is a dis-

crete subgroup of finite covolume, then Hd

(
C∗

(
∂∞M̃

)
Γ

)
≃ Z.

3. Ideal Fundamental Cycles

3.1. Definition.

We refer to [2] for basic notions about simply connected manifolds M̃ of
nonpositive sectional curvature, especially for the notion of ideal boundary
∂∞M̃ [2, Definition 8.1] and the topology on M̃ ∪∂∞M̃ [2, Definition 8.5].

For each ordered tuple (v0, . . . , vq) ∈
(
M̃ ∪ ∂∞M̃

)q+1

, there is a unique
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straight ideal simplex str (v0, . . . , vq) with these vertices. We call this
simplex a genuine straight simplex, respectively, a proper ideal straight
simplex, if all vertices belong to M̃ , respectively, all vertices belong to
∂∞M̃ . In the sequel, ∆n is the standard n-simplex and ∆n

0 its set of
vertices.

Definition 3.1.1. Let M be a Riemannian manifold of nonpositive sec-
tional curvature, M̃ its universal cover, Γ a discrete group of isometries
of M̃ such that M = Γ\M̃ , and π : M̃ → M the canonical projection.

a) Let C
str

n (M) be the free abelian group generated by

S
str

n (M) :=

σ : ∆n −∆n
0 → M :

there is an ideal straight simplex
σ̃ : ∆n → M̃ ∪ ∂∞M̃ with
π ◦ σ̃ |∆n−∆n

0
= σ |∆n−∆n

0

 .

A simplex σ ∈ S
str

n (M) will be called genuine, respectively, proper ideal,
if (some, hence each) σ̃ is a genuine, respectively, a proper ideal straight
simplex in M̃ .

b) For x0 ∈ M , define Cstr,x0
∗ (M) ⊂ C

str

∗ (M) to be the subcomplex
generated by genuine straight simplices with all vertices in x0.

c) For c0 ∈ ∂∞M̃ , define C
str,c0
∗

(
M̃

)
⊂ C

str

∗ (M) to be the subcomplex
generated by proper ideal straight simplices such that (some, hence each)
σ̃ has all vertices in Γc0.

There is a chain isomorphism EM : Csimp
∗ (BΓ) → Cstr,x0

∗ (M) essen-
tially due to Eilenberg-MacLane (see [6, §2.1 ]).

Definition 3.1.2. Let M be an orientable smooth d-manifold. For σ ∈
S
str

d (M) and y ∈ M , we define degy (σ) = 0 if y ̸∈ σ
(
∆d − ∂∆d

)
, else we

define
degy (σ) :=

∑
σ(x)=y

sign (det (Dxσ)) .

For a chain z =
∑r

i=1 aiσi ∈ C
str

d (M), we define

degy (z) :=
r∑

i=1

aidegy (σi) .

Homology invariance of deg for closed manifolds. If z =
∑r

i=1 aiσi

∈ C
str

d (M), then it is a consequence of the Sard Lemma that almost every
y ∈ M is not contained in ∪r

i=1σi

(
∂∆d

)
. If M is a closed, orientable,

connected d-manifold, ∂z = 0, and all σi are genuine straight simplices,
then for all y ̸∈ ∪r

i=1σi

(
∂∆d

)
, the isomorphism Hd (M,M − {y}) → Z
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sends the relative homology class of z to degy (z). In particular, degy (z)
depends only on the homology class [z] ∈ Hd (M).

Since degy (z) is the same for almost all y ∈ M , we will occasionally
just write deg (z).

Observation 3.1.3. (a) Let M be a closed, orientable, connected Rie-
mannian d-manifold of nonpositive sectional curvature. Let z =

∑r
i=1 aiσi

∈ C
str

d (M) be a singular cycle consisting of genuine straight simplices.
If z represents the fundamental class [M ], then degy (z) = 1 for all
y ̸∈ ∪r

i=1σi

(
∂∆d

)
.

(b) Let z =
∑r

i=1 σi ∈ C
str

d (M) be an ideal degree one triangulation of
a finite volume hyperbolic 3-manifold as in [7]. Then degy (z) = 1 for all
y ̸∈ ∪r

i=1σi

(
∂∆d

)
.

Proof. Smooth closed manifolds are triangulable by Whitehead’s Theo-
rem; by orientability, the simplices of the triangulation can be coher-
ently oriented. The resulting cycle z represents [M ] and clearly satisfies
deg (z) = 1. Since homologous cycles have the same degree, (a) follows.

(b) is part of the definition in [7, §2.1]. �

This motivates the following definition.

Definition 3.1.4. Let M be an orientable Riemannian d-manifold of
nonpositive sectional curvature and M̃ its universal cover. We say that
z =

∑r
i=1 aiσi ∈ C

str

d (M) is an ideal fundamental cycle if
a) ∂z = 0, and
b) degy (z) = 1 for all y ̸∈ ∪r

i=1σi

(
∂∆d

)
.

An ideal fundamental cycle is said to be proper ideal if all σi are proper.

3.2. Mapping Fundamental Cycles to Ideal
Fundamental Cycles.

Lemma 3.2.1. Let M̃ be a simply connected Riemannian manifold of
nonpositive sectional curvature, Γ a discrete group of isometries of M̃ ,
M = Γ\M̃, π : M̃ → M the projection, and x̃0 ∈ M̃, x0 = π (x̃0) , c0 ∈
∂∞M̃ .

Then there exists a Γ-invariant chain map Ψ̃ : C
str

∗

(
M̃

)
→ C

str

∗

(
M̃

)
which is given on 0-simplices by

Ψ̃ (x) = x if x ∈
(
M̃ − Γx̃0

)
∪ ∂∞M̃,

Ψ̃ (γx̃0) = γc0 for all γ ∈ Γ,
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such that Ψ̃ descends to a chain map Ψ : C
str,x0

∗ (M) → C
str,c0
∗ (M) .

If M is a closed, orientable, connected manifold, then Ψ(z) is an ideal
fundamental cycle whenever z ∈ C

str,x0

∗ (M) is an ideal fundamental cy-
cle.

Proof. We have defined Ψ̃ Γ-equivariantly on the 0-skeleton. Since straight
simplices in M̃ ∪ ∂∞M̃ are determined by their vertices, this extends
uniquely to a Γ-equivariant chain map Ψ̃. Since Ψ̃ is Γ-equivariant, it
descends to a chain map on C

str

∗ (M). By construction, its restriction to
C

str,x0

∗ (M) has image in C
str,c0
∗ (M).

To prove the last claim, since deg depends only on the homology class,
it suffices to prove deg (Ψ (z)) = 1 for some ideal fundamental cycle z.
Choose some fundamental cycle with all vertices in some point x ̸= x0,
then Ψ(z) = z, which implies deg (Ψ (z)) = 1. �

We remark that Ψ : C
str,x0

∗ (M) → C
str,c0
∗ (M) is a chain isomorphism

if and only if Γ acts freely on Γc0, i.e., if and only if c0 ∈ ∂∞M̃ is not a
fixed point of any γ ∈ Γ.

3.3. Cusped Manifolds.

Assumption A. Let M be a manifold with boundary components

∂1M, . . . , ∂sM,M = M − ∂M.

Assume that M is a Riemannian manifold of nonpositive sectional cur-
vature of finite volume and that the universal covering M̃ is a visibility
manifold ([2, Definition 9.28]). Let π : M̃ → M be the canonical projec-
tion, and let x̃0 ∈ M̃, x0 = π (x̃0), and let c0 ∈ ∂∞M̃ be fixed.

Let xi ∈ ∂iM for i = 1, . . . , s and fix (using a path from x0 to xi) an
identification of Γi := π1

(
∂iM,xi

)
with a subgroup of Γ := π1

(
M,x0

)
=

π1 (M,x0) (which acts on M̃).

Remark 3.3.1. A rank one symmetric space of noncompact type is a
visibility manifold. If Assumption A holds, then it follows from [4] that
there are c1, . . . , cs ∈ ∂∞M̃ such that we have a continuous projection

p : M̃
∪

∪s
i=1Γci → DCone

(
∪s
i=1∂iM → M

)
with x ∈ Γci ⇐⇒ p (x) is the cone point of Cone

(
∂iM

)
, for i = 1, . . . , s

(see [6, §4.4]).

Definition 3.3.2. If Assumption A holds, then a simplex

σ ∈ C∗
(
DCone

(
∪s
i=1∂iM → M

))
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is said to be straight if some (hence any) lift σ̃ ∈ C∗

(
M̃

∪
∪s
i=1Γci

)
⊂

C∗

(
M̃ ∪ ∂∞M̃

)
with p (σ̃) = σ is a straight simplex.

If a vertex of σ̃ is in γci for some γ ∈ Γ, 1 ≤ i ≤ s, then we call the
corresponding vertex of σ = p (σ̃) an ideal vertex. All other vertices of σ
are called interior vertices. Let

Ĉstr,x0
∗ (M) ⊂ C∗

(
DCone

(
∪s
i=1∂iM → M

))
be the subcomplex freely generated by the straight simplices for which

• either all vertices are in x0,
• or the last vertex is in Γci for some 1 ≤ i ≤ s, all other vertices

are in x0, and the homotopy classes of all edges between interior
vertices belong to the image of Γi in Γ.

Ĉstr,c0
∗ (M) ⊂ C∗

(
DCone

(
∪s
i=1∂iM → M

))
is the subcomplex freely generated by simplices τ = π (τ̃) such that

• either all vertices of τ̃ are in Γc0,
• or the last vertex of τ̃ is in Γci for some 1 ≤ i ≤ s and all other

vertices of τ̃ are in Γc0.

Lemma 3.3.3 ([6, Lemma 8(a)]). If Assumption A holds, then

Ĉstr,x0
∗ (M) ∼= Csimp

∗ (DCone (∪s
i=1BΓi → BΓ)) .

Homology invariance of deg for cusped manifolds. If M is a
compact, orientable, connected d-manifold with boundary and z =∑r

i=1 aiσi ∈ C
str

d

(
DCone

(
∪s
i=1∂iM → M

))
satisfies ∂z = 0, then for

all y ̸∈ ∪r
i=1σi

(
∂∆d

)
, the isomorphism

Hd

(
DCone

(
∪s
i=1∂iM → M

)
, DCone

(
∪s
i=1∂iM → M

)
− {y}

)
→ Z

sends the relative homology class of z to degy (z). In particular, degy (z)
depends only on the homology class [z] ∈ Hd

(
DCone

(
∪s
i=1∂iM → M

))
=

Hd

(
M,∂M

)
.

Lemma 3.3.4. If Assumption A holds, then there is a chain map

Ψ̂ : Ĉstr,x0
∗ (M) → Ĉstr,c0

∗ (M) ,

such that the restriction of Ψ̂ to Cstr,x0
∗ is the chain map Ψ defined by

Lemma 3.2.1.
If z ∈ Ĉstr,x0

∗ (M) is an ideal fundamental cycle, then Ψ̂ (z) is an ideal
fundamental cycle.
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Proof. If σ ∈ Ĉstr,x0
∗ (M) has all vertices in x0, i.e., if σ ∈ Cstr,x0

∗ (M),
then we let Ψ̂ (σ) := Ψ (σ), where Ψ is defined by Lemma 3.2.1.

In the other case, σ lifts to a q-simplex σ̃ : ∆q → M̃ ∪ ∂∞M̃ whose
last vertex vq is γci for some γ ∈ Γ, 1 ≤ i ≤ s, and we have ∂qσ ∈
Cstr,x0

n−1 (M). Then we define Ψ̂ (σ) := p (τ̃) ∈ Cstr,c0
n (M) , where τ̃ is the

unique straight q-simplex with last vertex γc0 and with ∂q τ̃ = Ψ̃ (∂qσ̃).
Ψ is a chain map; hence, Ψ̂ (∂σ) = ∂Ψ̂ (σ) whenever all vertices of σ

are interior vertices. In the other case, if σ lifts to σ̃ with vq = γci, then
we have Ψ̂ (∂qσ) = Ψ (∂qσ) = ∂qΨ(σ) = ∂qΨ̂ (σ) and, for 0 ≤ j ≤ q − 1,
Ψ̂ (∂jσ) = p (κ̃), where κ̃ is the straight q−1-simplex with last vertex γc0
and with ∂q−1κ̃ = Ψ̃ (∂j∂qσ̃) = ∂jΨ̃ (∂qσ̃); hence, p (κ̃) = ∂jΨ̂ (σ). Thus,
Ψ̂ is a chain map.

Again, since deg depends only on the homology class, it suffices to
prove deg

(
Ψ̂ (z)

)
= 1 for some ideal fundamental cycle z. Choose some

ideal fundamental cycle with all interior vertices in some point x ̸= x0;
then Ψ̂ (z) = z, which implies deg

(
Ψ̂ (z)

)
= 1. �

As a side remark, unrelated to the rest of the paper, we observe that a
construction analogous to the proof of Lemma 3.3.4 proves the possibility
of an alternative definition of the simplicial volume for hyperbolic mani-
folds. The simplicial volume of a compact, orientable, connected manifold
M , as defined by Gromov, is

∥ M,∂M ∥= inf

{
r∑

i=1

| ai |:
r∑

i=1

aiσi represents
[
M,∂M

]}
.

If we define the ideal simplicial volume as

∥ M ∥ideal= inf

{
r∑

i=1

| ai |:
r∑

i=1

aiτi is an ideal fundamental cycle

}
,

then we can apply a similar construction to map any relative fundamental
cycle to an ideal fundamental cycle, thus proving ∥ M ∥ideal≤∥ M,∂M ∥
whenever M = M − ∂M is nonpositively curved. Moreover, if M is
hyperbolic, then each ideal simplex has volume at most Vn; thus, the ideal
simplicial volume cannot be bigger than 1

Vn
V ol (M). Since ∥ M,∂M ∥=

1
Vn

V ol (M) by the Gromov-Thurston Theorem, this implies

∥ M,∂M ∥=∥ M ∥ideal

for hyperbolic manifolds of finite volume.
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3.4. Well-Definedness of β (M).

If M is a compact, orientable, connected manifold such that its interior
admits a metric of negative sectional curvature, then there exists an ideal
fundamental cycle. Indeed, one can take some triangulation

∑r
i=1 τi of(

M,∂M
)
, let

∑p
j=1 κj := DCone (∂ (

∑r
i=1 τi)) be the cone over the in-

duced triangulations of the path-components ∂1M, . . . , ∂sM of ∂M , with
one cone point for each path-component ∂iM , and then use the homeo-
momorphism

DCone (∪s
l=1∂iM → M) ∼= Γ\G/K ∪ {Γc1, . . . ,Γcs} .

Thus, we can define β
(
M

)
by Definition 2.2.3. We will now prove

that the definition of β
(
M

)
does not depend on the chosen proper ideal

fundamental cycle.

Lemma 3.4.1. Let M be a compact, orientable, connected manifold such
that its interior admits a metric of negative sectional curvature and finite
volume. Let G be the isometry group of M̃ . Then β

(
M

)
in Definition

2.2.3 is well defined: If
∑r

i=1 aiτi and
∑s

j=1 bjκj are proper ideal funda-
mental cycles, then

r∑
i=1

ai [cr (τi)] =

s∑
j=1

bj [cr (κj)] ∈ H∗

(
C∗

(
∂∞M̃

)
G

)
.

Proof. By assumption and Definition 3.1.4, we have
∑r

i=1 aidegx (τi) =∑s
j=1 bjdegx (κj) = 1 for all x ̸∈ ∪r

i=1τi (∂∆
n) ∪ ∪s

j=1κj (∂∆
n).

If we define algebraic volume algvol (σ) of straight simplices as in [1, p.
107] by algvol (σ) = ±vol (σ) with the sign according to the orientation
of σ, then4 (as in [1, p. 109])

r∑
i=1

aialgvol (τi) =
r∑

i=1

ai

∫
M

∑
τi(x)=y

sign (Dxτi) dvol (y)

=

∫
M

r∑
i=1

aidegy (τi) dvol (y) =

∫
M

1dvol (y) = vol (M) ;

in particular,
∑r

i=1 aialgvol (τi) =
∑s

j=1 bjalgvol (κj).

Algvol : C∗

(
∂∞M̃

)
G
→ R (c0, . . . , cn) → algvol (str (c0, . . . , cn)) ,

4using that ∪r
i=1τi (∂∆

n) ∪ ∪s
j=1κj (∂∆

n) is a null set, thus can be neglected for
integration
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where str (c0, . . . , cn) is the unique proper ideal straight simplex with
these vertices, is, by Stokes’ Theorem, a (nontrivial) chain map and sat-
isfies of course Algvol ◦ cr = algvol.

By Corollary 2.2.7, we have H∗

(
C∗

(
∂∞M̃

)
Γ

)
≃ Z; therefore, Algvol

must be injective on H∗

(
C∗

(
∂∞M̃

)
Γ

)
.

In particular,
r∑

i=1

aialgvol (cr (τi)) =

s∑
j=1

bjalgvol (cr (κj))

implies
r∑

i=1

ai [cr (τi)] =
s∑

j=1

bj [cr (κj)] ∈ H∗

(
C∗

(
∂∞M̃

)
Γ

)
≃ Z ;

hence,
r∑

i=1

ai [cr (τi)] =
s∑

j=1

bj [cr (κj)] ∈ H∗

(
C∗

(
∂∞M̃

)
G

)
.

�

4. Evaluation

Let M̃ = G/K be a symmetric space of noncompact type. Fix some
c0 ∈ ∂∞M̃ . We define the evaluation map

evG,c0 : Csimp
∗ (BG) → C∗

(
∂∞M̃

)
⊗ZG Z

on generators by

evG (g1, . . . , gn) = (c0, g1c0, g1g2c0, . . . , g1g2 . . . gnc0)⊗ 1.

It is straightforward to check that evG,c0 extends linearly to a chain map;
thus, it induces a homomorphism

evG,c0∗ : H∗ (G) → P∗ (G/K) .

If Γ1, . . . ,Γs is a set of subgroups of G such that for 1 ≤ i ≤ s there is
some ci ∈ ∂∞M̃ with Γi ⊂ Stab (ci), then we define

evG,Γ1,...,Γs,c0,c1,...,cs : Csimp
∗ (DCone (∪s

i=1BΓi → BG)) →

C∗

(
∂∞M̃

)
⊗ZG Z

by
evG,Γ1,...,Γs,c0,c1,...,cs (g1, . . . , gn) = evG (g1, . . . , gn)
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if (g1, . . . , gn) ∈ Csimp
∗ (BG) and by

evG,Γ1,...,Γs,c0,c1,...,cs (Cone (γ1, . . . , γn−1))

= (c0, γ1c0, γ1γ2c0, . . . , γ1γ2 . . . γn−1c0, ci)⊗ 1

if Cone (γ1, . . . , γn−1) ∈ Csimp
∗ (Cone (BΓi)) for some 1 ≤ i ≤ s.

The assumption Γi ⊂ Stab (ci) implies that evG,Γ1,...,Γs,c0,c1,...,cs is a
chain map, as can be shown by a straightforward calculation. Indeed, for
j ̸= 0, it is immediate from the definition that

∂jev (Cone (γ1, . . . , γn−1)) = ev (∂j(Cone (γ1, . . . , γn−1)) ,

and for j = 0, we have (omitting the indices of ev)

∂0ev (Cone (γ1, . . . , γn−1))
= (γ1c0, γ1γ2c0, . . . , γ1 . . . γn−1c0, ci)⊗ 1
=

(
c0, γ2c0, . . . , γ2 . . . γn−1c0, γ

−1
1 ci

)
⊗ 1

= (c0, γ2c0, . . . , γ2 . . . γn−1c0, ci)⊗ 1
= ev (Cone (γ2, . . . , γn−1))
= ev (∂0Cone (γ1, . . . , γn−1)) ,

where the second equality uses the definition of the tensor product (and
that G acts trivially on Z), and the third equality is true because of
γ1 ∈ Γi ⊂ Stab (ci).

Theorem 4.0.2. Let M be a compact, orientable, connected manifold
with boundary such that M := M − ∂M = Γ\G/K is a finite-volume,
locally rank one symmetric space of noncompact type. Let ρ : G →
GL (N,C) be a representation. For 1 ≤ i ≤ s, let Γi be the subgroup
of Γ ≃ π1 (M,x0) corresponding to π1 (∂iM,xi), let Γ′

i := ρ (Γi), and fix
some c0 ∈ ∂∞M̃ and ci ∈ Stab (Γi) ⊂ ∂∞M̃ for 1 ≤ i ≤ s.

Then
evSL(N,C),Γ′

1,...,Γ
′
s,ρ∞(c0),ρ∞(c1),...,ρ∞(cs)∗

(
γ
(
M

))
= βρ

(
M

)
.

Proof. Since M is a finite-volume locally rank one symmetric space, Γi

must be unipotent. Then Γ′
i is unipotent and γ (M) is defined by Propo-

sition 2.1.1. Moreover, ci ∈ Stab (Γi) ⊂ ∂∞M̃ exists by Remark 3.3.1.
Since G is semisimple, ρ is actually a representation ρ : G → SL (N,C).
By definition of evSL(N,C)Γ′

1,...,Γ
′
s
, the upper square of the diagram

commutes, and ρ-equivariance of ρ∞ implies easily that the second square
(whose vertical arrows are induced by Bρ, respectively, by ρ∞) commutes.

(For readability of the diagram, we omit the indices G,Γ1, . . . ,Γs, c0, c1,
. . . , cs, respectively, SL (N,C) ,Γ′

1, . . . ,Γ
′
s, ρ∞ (c0) , ρ∞ (c1) , . . . , ρ∞ (cs),

from the notation.)



GROUP HOMOLOGY AND IDEAL FUNDAMENTAL CYCLES 255

C∗ (BSL (N,C))

j∗

��

ev // C∗ (∂∞ (SL (N,C) /SU (N)))SL(N,C)

=

��
C∗

(
DCone

(
∪s
i=1BΓ′

i → BSL (N,C)
)) ev // C∗ (∂∞ (SL (N,C) /SU (N)))SL(N,C)

C∗
(
DCone

(
∪s
i=1BΓi → BG

))
Bρ

OO

ev // C∗
(
∂∞M̃

)
G

ρ∗

OO

C∗
(
DCone

(
∪s
i=1BΓi → BΓ

)) ev //

i1

OO

C∗
(
∂∞M̃

)
Γ

i2

OO

Ĉstr,x0
∗ (M)

Ψ̂ //

Φ̂

OO

Ĉstr,c0
∗ (M)

cr

OO

C∗ (M ∪ {Γc1, . . . ,Γcs})

str

OO

C∗
(
DCone

(
∪s
i=1∂iM → M

))≃

OO

Z∗
(
M,∂M

)
OO

i1 is the obvious inclusion and i2 = id ⊗ id. Thus, the third square
commutes.

Φ̂ is the isomorphism given by Lemma 3.3.3. If σ ∈ Ĉstr,x0
∗ (M) has all

vertices on x0, then it lifts to a simplex σ̃ in M̃ with vertices

x̃0, γ1x̃0, γ1γ2x̃0, . . . , γ1 . . . γnx̃0,

and, (by the proof in [6]), Φ̂ (σ̃) = (γ1, γ2, . . . , γn). By Lemma 3.2.1, Ψ̃ (σ̃)
is a simplex with vertices c0, γ1c0, . . . , γ1 . . . γnc0; thus,

cr
(
Ψ̂ (σ)

)
= (c0, γ1c0, . . . , γ1 . . . γnc0)⊗ZΓ 1

= evG,Γ1,...,Γs,c0,c1,...,cs (γ1, . . . , γn)

= evG,Γ1,...,Γs,c0,c1,...,cs

(
Φ̂ (σ)

)
.
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If σ ∈ Ĉstr,x0
∗ (M) has its n-th vertex vn in Γci, then it lifts to a simplex

σ̃ in M̃ ∪ ∂∞M̃ with vertices x̃0, γ1x̃0, γ1γ2x̃0, . . . , γ1 . . . γn−1x̃0, vn, and
Φ̂ (σ) is the cone over (γ1, . . . , γn−1). By Lemma 3.2.1, Ψ̃ (σ̃) is a simplex
with vertices c0, γ1c0, . . . , γ1 . . . γn−1c0, ci ; thus,

cr
(
Ψ̂ (σ)

)
= (c0, γ1c0, . . . , γ1 . . . γn−1c0, ci)⊗ZΓ 1

= evG,Γ1,...,Γs,c0 (Cone (γ1, . . . , γn−1))

= evG,Γ1,...,Γs,c0

(
Φ̂ (σ)

)
.

This proves that the fourth square commutes.

Z∗
(
M,∂M

)
⊂ C∗ (M,∂M) denotes the group of relative cycles. If

z =
∑r

k=1 akτk ∈ Z∗
(
M,∂M

)
, that is, if ∂z =

∑q
j=1 bjκj ∈ C∗

(
∂M

)
,

then each κj has image in some component ∂iM of ∂M , and cone (z) ∈
C∗

(
DCone

(
∪s
i=1∂iM → M

))
is defined as

cone (z) =
r∑

k=1

akτk +

q∑
j=1

bjCone (κj) ,

where Cone (κj) is contained in Cone
(
∂iM

)
. If two relative cycles z1 and

z2 are relatively homologous, then cone (z1) and cone (z2) represent the
same homology class.

Since M = Γ\G/K is a finite-volume locally rank-one symmetric space,
there is a homeomorphism

Γ\G/K ∪ {Γc1, . . . ,Γcs} ≃ DCone
(
∪s
i=1∂iM → M

)
,

inducing the isomorphism

C∗
(
DCone

(
∪s
i=1∂iM → M

))
≃ C∗ (M ∪ {Γc1, . . . ,Γcs}) .

Finally, str is the straightening which homotopes each cycle to a straight
cycle with all interior vertices in x0 and all ideal vertices remaining fixed
during the homotopy. The same argument as in [1, C.4.3] (see the proof
of Theorem 4 in [6]) shows that str exists and preserves homology classes.

Now, if z represents
[
M,∂M

]
, then w := str (cone (z)) is an ideal

fundamental cycle and, by Lemma 3.3.4, Ψ̂ (w) is an ideal fundamental
cycle; thus, i1

(
cr

(
Ψ̂ (w)

))
represents β

(
M

)
by Definition 2.2.3. Hence,

(omitting the index of evSL(N,C),Γ′
1,...,Γ

′
s,ρ∞(c0) for the sake of readability),

βρ

(
M

)
= ρ∗β

(
M

)
= ρ∗i2∗

[
crΨ̂ (w)

]
= ev∗ (Bρ)∗ i1∗

[
Φ̂ (w)

]
= ev∗ (Bρ)∗ i1∗Φ̂∗

[
M,∂M

]
= ev∗ (Bρ)∗ i1∗

[
M,∂M

]
= ev∗γρ

(
M

)
.
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Because of evSL(N,C),Γ′
1,...,Γ

′
s,ρ∞(c0)j∗ = evSL(N,C), this implies evγρ

(
M

)
= βρ

(
M

)
. �

In [8], A. A. Suslin constructed a homomorphism K3 (C)⊗Q → B (C)⊗
Q which yields an isomorphism Kind

3 (C)⊗Q → B (C)⊗Q.

The following corollary is well known to the experts, at least in the
closed case, but seems not to have appeared in written form so far.

Corollary 4.0.3. If M is an orientable, connected, hyperbolic 3-manifold
of finite volume, then Suslin’s homomorphism

K3 (C)⊗Q → B (C)⊗Q

maps the Goncharov invariant γ (M) to the Neumann-Yang invariant
β (M)⊗ 1.

Proof. By [7, §5], we have β (M) ∈ B (C) ⊂ P (C).
Suslin [8] constructs a homomorphism H3 (SL (3,C) ;Z) → B (C) such

that restriction to the image of H3 (SL (2,C) ;Z) gives our evaluation
map evSL(2,C) (cf. [8, Lemma 3.4]). Composition with the inverse of
the stability isomorphism H3 (SL (3,C) ;Z) → H3 (SL (C) ;Z) yields a
homomorphism H3 (SL (C) ;Z) → B (C) whose restriction to the image
of H3 (SL (2,C) ;Z) gives evSL(2,C); in particular, by Theorem 4.0.2, it
maps γ (M) to β (M)⊗ 1.

Further composition with the map from [8, Corollary 5.2] gives the
homomorphism K3 (C) → B (C). By [8, Theorem 5.1], it induces an
isomorphism K3 (C) /π3

(
BGM (C)

+
)

→ B (C). Indeed, [8, Theorem

5.1] gives an isomorphism K3 (F ) /π3

(
BGM (F )

+
)
→ B (F ) /2c for any

field F , where c ∈ B (F ) is an element of order 6 by [8, Lemma 1.4]. In
particular, c = 0 since B (C) is a Q-vector space. It follows then from
[8, Theorem 5.2] that this morphism induces the isomorphism Kind

3 (C)⊗
Q → B (C)⊗Q.

We note that the inclusion
K3 (C)⊗Q ∼= PH3 (GL (C) ;Q) ∼= PH3 (SL (C) ;Q) ⊂ H3 (SL (C) ;Q)

is actually an equality; hence, γ (M) = γ (M) (cf. [6, §2.5] and the defini-
tion of γ (M) in [6, Theorem 4]). And the claim follows. �
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