
A survey on simplicial volume and invariants of

foliations and laminations

Thilo Kuessner

August 21, 2007

Contents

1 Volume and Topology 2
1.1 3-manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Topological decompositions . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Geometrization conjecture . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Glossary of notions from the topology of 3-manifolds . . . . . . . . 3

1.2 Hyperbolic volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Simplicial volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Properties of the simplicial volume . . . . . . . . . . . . . . . . . . . . . . 8

2 Foliations and Laminations 9
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Structure of laminations on 3-manifolds . . . . . . . . . . . . . . . . . . . 11

3 Invariants of foliations and laminations 12
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Inequalities for the transverse Gromov norm . . . . . . . . . . . . . . . . . 13
3.3 Inequalities for the normal Gromov norm . . . . . . . . . . . . . . . . . . 14
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1



Abstract

We intend to give a not too technical introduction to several recent results of sev-

eral authors related to hyperbolic volume and non-Hausdorfness of leaf spaces. In

particular, we describe results about the normal and transverse Gromov norm of

foliations and laminations.

1 Volume and Topology

1.1 3-manifolds

1.1.1 Topological decompositions

All used notions from 3-manifold topology are explained in the glossary in section 1.1.3.
Let M be a closed, orientable 3-manifold. Then there is the following topological
decomposition of M .

Kneser-Milnor: M has a unique decomposition M = M1♯ . . . ♯Mr as connected sum,
with Mi either irreducible or S2 × S1.

Jaco-Shalen-Johannson: If M is irreducible, then there is an (up to isotopy unique)
family T1, . . . , Ts of incompressible tori such that each connected component C of M \
∪s

i=1Ti contains no embedded incompressible torus (except tori homotopic into ∂C).

1.1.2 Geometrization conjecture

LetM be a compact, orientable, irreducible 3-manifold, with boundary a (possibly empty)
union of tori. Assume that each embedded incompressible torus can be homotoped into
the boundary. Then there are two cases.

Case 1 (Seifert case): π1M contains a (non-peripheral) subgroup isomorphic to Z ⊕ Z.
In this case, M must contain an immersed incompressible torus. By the Torus Theorem
(Scott), this implies that M must be a Seifert fibration, i.e. that some finite cover of M is
a circle bundle over a surface. (The immersed tori in M arise as projections of embedded
tori in this circle bundle.) It is known that each Seifert fibration can be equipped with
some locally homogeneous metric (a ’geometric structure’) and that there are 7 possible
types of geometric structures on Seifert fibrations.

Case 2 (Atoroidal/Hyperbolic case): M is atoroidal, that is, π1M does not con-
tain a (non-peripheral) subgroup isomorphic to Z ⊕ Z.
Thurston’s hyperbolization conjecture states that each compact, irreducible, atoroidal 3-
manifold M is hyperbolic. This means the following:
An orientable 3-manifold M is called hyperbolic if there is a faithful representation
ρ : π1M → PSL2C = Isom+

(
H3
)

with discrete, torsionfree image, such that (the
interior of) M is diffeomorphic to the quotient of hyperbolic 3-space H3 under the action
of ρ (π1M). The assumption that ρ (π1M) is discrete and π1M is torsionfree implies that
the projection H3 →M is a covering map and thus (the interior of) M is equipped with
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a complete Riemannian metric locally isometric to H3. In particular, M possesses a Rie-
mannian metric of sectional curvature constant −1.
The conjecture was proved for Haken manifolds, that is, 3-manifolds containing an in-
compressible, boundary-incompressible surface, by Thurston. At the time of writing, the
general hyperbolization conjecture seems to have been proved by Perelman, the proof still
being under revision (see the notes of Kleiner-Lott at [18]).

1.1.3 Glossary of notions from the topology of 3-manifolds

A very readable account on the basic notions of 3-dimensional topology is [16].
A 3-manifold M is called irreducible if each embedded 2-sphere bounds an embedded

3-ball. By the sphere theorem (cf. [16], Theorem 3.8.), for each orientable 3-manifold M
with π2M 6= 0, there exists an embedded 2-sphere representing a nontrivial element in
π2M . Therefore, for orientable 3-manifolds M , irreducibility implies π2M = 0. If the
Poincare conjecture is true, then also the converse holds.

An immersed surface F ⊂ M is called incompressible if there is no compression
disk for F . A compression disk for F is an embedded disk D ⊂ M with D ∩ F = ∂D,
such that ∂D does not bound a disk in F . By the loop theorem (cf. [16], Corollary 3.3),
a two-sided connected surface F in an orientable 3-manifold M is incompressible if and
only if the induced homomorphism π1F → π1M is injective.

If M is a compact manifold with nonempty boundary, then an embedded (immersed)
surface F ⊂M is called properly embedded (immersed) if ∂F ⊂ ∂M .

A properly immersed surface F ⊂ M is boundary-incompressible if there is no
boundary compression disk. A boundary compression disk for F is an embedded disk
D ⊂M with ∂D = ∂0D ∪ ∂1D, ∂0D = ∂D ∩ ∂M, ∂1D = ∂D ∩ F , such that ∂D does not
bound a disk in F ∪ ∂M . A sufficient condition for boundary-incompressiblity of F is
that π1 (F, ∂F ) → π1 (M,∂M) is injective.

Given a lamination F of M by properly immersed surface, a leaf F bounding some
complimentary region (i.e. a connected component C of M −F) is end-compressible if
there is no end-compressing monogon. An end-compressing monogon for F is a monogon
properly embedded in the complimentary regionC which is not homotopic (rel. boundary)
into ∂C. For example, let M = Γ\H3 be a hyperbolic 3-manifold, and F = F the
projection of a horosphere. Then the projection of the corresponding horoball is an end-
compressing monogon for F .

For a 3-manifold M , a subgroup H ⊂ π1M is called non-peripheral if it is not
conjugate in π1M to a subgroup of im (π1∂M → π1M).

A 3-manifold is called atoroidal if each π1-injective immersion T2 →M is homotopic
into the boundary. This is equivalent to the condition that there exists no non-peripheral
subgroup of π1M isomorphic to Z2.

A 3-manifold M with a given decomposition of ∂M into surfaces with boundary,
∂M = ∂0M ∪ ∂1M , is called pared acylindrical (with respect to ∂1M) if each immer-
sion f :

(
S1 × [0, 1] , S1 × {0, 1}

)
→ (M,∂1M), which is π1-injective as a map of pairs, is

homotopic into ∂M .
If M is compact, orientable, irreducible, atoroidal, has incompressible boundary ∂M , and
is pared acylindrical with respect to some subsurface ∂1M ⊂ ∂M , then DM = M∪∂1MM
is hyperbolic according to Thurston’s hyperbolization conjecture. (DM contains the in-
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compressible, boundary-incompressible surface ∂1M , therefore one can apply Thurston’s
hyperbolization theorem for Haken manifolds and does not rely on Perelman’s work.)
This implies that the original M is hyperbolic with geodesic boundary ∂1M and cusps
corresponding to ∂0M .

Guts-terminology. Let N be a compact, oriented, irreducible manifold with incom-
pressible boundary ∂N . The double DN = N ∪∂N N is obtained by glueing two copies
of N (with different orientations) along the common boundary. The double DN is irre-
ducible because N is irreducible and has incompressible boundary. (Each sphere in DN
could be homotoped to intersect one copy of N in either a sphere or a compression disk.)
Thus we can apply to DN the JSJ-decomposition from section 1.1:

DN = S1 ∪T 2 . . . ∪T 2 Sk ∪T 2 H1 ∪T 2 . . . ∪T 2 Hl

with Seifert fibrations S1, . . . , Sk and hyperbolic manifolds H1, . . . , Hl. For each of these
pieces we can consider its intersection with one copy of N . The intersections Si ∩N are
either Seifert fibrations or I-bundles. (If N happens to be atoroidal, then the only possible
Seifert fibrations in the decomposition are solid tori.) The intersections Hj ∩N must be
atoroidal and pared acylindrical (with respect to ∂1 (Hj ∩N) = ∂N ∩Hj), and thus carry
a hyperbolic metric with geodesic boundary ∂N ∩ Hj (and cusps corresponding to the
intersections with the decomposing tori). The union ∪l

j=1Hj ∩N is denoted Guts (N).
In particular, if M is a closed, orientable, irreducible 3-manifold and F ⊂ M an

incompressible surface, then we may apply this decomposition to N := M − F , which is
a 3-manifold with boundary consisting of two copies of F . This defines Guts

(
M − F

)
.

(This definition coincides with the definition which we will give for laminations in section
2.2.)

For example, if M is hyperbolic and F is a geodesic surface, then M − F is hyperbolic
with geodesic boundary and D

(
M − F

)
is hyperbolic. Thus Guts

(
M − F

)
= M − F in

this case.

1.2 Hyperbolic volume

In dimensions ≥ 3, hyperbolic metrics (of finite volume) on a given topological manifold
are unique up to isometry, by Mostow’s rigidity theorem. Therefore, geometric invariants
arising from the hyperbolic metric, such as its volume, are topological invariants.

It follows from the Chern-Gauß-Bonnet theorem that in even dimensions (including
surfaces) hyperbolic volume is proportional to the Euler characteristic χ. In odd dimen-
sions, χ vanishes by Poincare duality, and one might consider hyperbolic volume as a
good replacement.

Of course, there are, especially for hyperbolic 3-manifolds, also plenty of other topo-
logical invariants, but according to [31] ”one gets a feeling that volume is a very good
measure for the complexity” of a 3-manifold, and that the ordinal structure (of the set of
hyperbolic volumes as a subset of R+) ”is really inherent in 3-manifolds.”

In dimensions 6= 3, the set of possible volumes of hyperbolic manifolds is a discrete
subset of R+. In particular, if the dimension is even (n = 2m), then all volumes are
multiples of πm. In dimension 3, hyperbolic volumes are sums of dilogarithms of alge-
braic numbers. An important number-theoretical question is to which extent volumes of
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hyperbolic 3-manifolds are rationally independent. This is, by work of Goncharov, related
to the size of the algebraic K-theory K3

(
Q
)
.

The set of volumes of hyperbolic 3-manifolds is well-ordered, i.e. each subset has a
smallest element. In principle, the volume of a hyperbolic 3-manifold (given by Dehn
surgery at some link) can be numerically computed by Weeks’ program SnapPea. A
large number of volumes have been computed by this program, and the smallest closed
3-manifold found so far is the so-called Weeks manifold, whose volume is 0.94... Adams
has proved that the smallest nonorientable, noncompact, hyperbolic 3-manifold of finite
volume is the Gieseking manifold, whose volume is 1.014... Cao and Meyerhoff have
proved that the smallest orientable, noncompact, hyperbolic 3-manifolds of finite volume
are the complement of the figure eight knot and its sibling, of volume 2.029... One may
naturally ask what are the smallest hyperbolic 3-manifolds with certain topological char-
acteristics, say the smallest fibered manifold, the smallest Haken manifold, the smallest
link complement with certain properties of the link, the smallest manifold with a given
Betti number,...

Lower bounds. Lower bounds on volumes of hyperbolic 3-manifolds with, for example,
specified betti numbers, have been computed by Culler-Shalen and their coworkers in
a series of papers (e.g. [8]). It would lead us too far to discuss these results in detail.
However, we want to discuss another estimate, Agol’s inequality, because it has gener-
alizations to laminations to be discussed in section 3.3. This inequality estimates the
volume in terms of the topology of Guts

(
M − F

)
, for any incompressible surface F . The

guts-terminology is explained in section 1.1.3.
The ’original form’ of Agol’s inequality (which will have a generalization to lamina-

tions) is the following, with V3 = 1.014.. the volume of a regular ideal 3-simplex: If
M is a hyperbolic 3-manifold containing an incompressible surface F , then V ol (M) ≥
−2V3χ

(
Guts

(
M − F

))
.

In [3], this inequality has been improved as follows, with Voct = 3.66.. the volume of
a regular ideal octahedron.

Theorem 1 (Agol-Storm-Thurston, [3], Cor.2.2.): If M is a closed hyperbolic 3-
manifold containing an incompressible surface F , then

V ol (M) ≥ V ol
(
Guts

(
M − F

))
≥ −Voctχ

(
Guts

(
M − F

))
.

The proof uses analytical methods (Perelman’s entropy estimate for the Ricci flow,
work of Bray and Miao on the Penrose conjecture) and does not seem to generalize to
laminations so far.

The right hand side of the Agol-Storm-Thurston inequality has been computed in a
few cases.

If L is an alternating hyperbolic link with a prime, alternating, twist-reduced diagram
D of twist number t (D), then Lackenby ([24]) proved for M = S3 − L and the two
checkerboard surfaces B and W : χ

(
Guts

(
M −B

))
+ χ

(
Guts

(
M −W

))
= t (D) − 2.

The so obtained inequality V ol
(
S3 − L

)
≥ Voct

(
1
2 t (D) − 1

)
is sharp: equality holds for

the Borromean rings.
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If L is a 2-bridge link with its canonical Seifert surface F ⊂ M = S3 − L, then Agol
([2], section 7) has given an explicit, easily computable expression for the right-hand side
in terms of the twists of the Seifert surface.

There are 2-bridge link complements that fiber over the circle, for which this gives
a nontrivial lower bound. This suggests that for surface bundles of fiber genus ≥ 2 one
may hope to get nontrivial bounds from Agol’s inequality. On the other hand, for once-
punctured torus bundles M we have proved ([21]) that Guts

(
M − F

)
= ∅ holds for each

incompressible surface F .

1.3 Simplicial volume

Hyperbolic volume is a homotopy invariant and one might ask whether it is definable in
terms of algebraic topology. Such a homotopy invariant was indeed defined by Gromov
for all (compact, orientable) manifolds of arbitrary dimensions.

Let M be a compact, orientable, connected n-manifold, possibly with boundary. Its
top integer (singular) homology group Hn (M,∂M ; Z) is cyclic. The image of a gener-
ator under the change-of-coefficients homomorphism Hn (M,∂M ; Z) → Hn (M,∂M ; R)
is called a fundamental class and is denoted [M,∂M ]. If M is not connected, we define
[M,∂M ] to be the formal sum of the fundamental classes of its connected components.

The simplicial volume ‖M ‖ is defined as

‖M ‖= inf

{
r∑

i=1

| ai |
}

where the infimum is taken over all singular chains
∑r

i=1 aiσi (with real coefficients)
representing the fundamental class [M,∂M ] in Hn (M,∂M ; R).

Theorem 2 (Gromov-Thurston Theorem, [13], [31]): If M−∂M carries a complete
hyperbolic metric of finite volume V ol (M), then

‖M ‖= 1

Vn

V ol (M)

with Vn = sup {V ol (∆) : ∆ ⊂ Hn geodesic n-simplex} .

Proof: We outline the proof (for M closed) after [4].
Any simplex in a negatively curved manifold is homotopic (rel. vertices) to a unique

geodesic simplex. This can be used to show that each fundamental cycle
∑r

i=1 aiσi can
be homotoped such that each σi is geodesic and thus satisfies vol (σi) < Vn. This implies
V ol (M) =

∑r

i=1 aivol (σi) <
∑r

i=1 | ai | Vn, from which the ’≥’-part of the theorem
follows.

To show the ’≤’-part, one needs (for any given ǫ > 0) to find cycles
∑r

i=1 aiσi such
that each σi has volume vol (σi) ≥ Vn − ǫ. This is done by means of Gromov’s smearing
construction, which we are going to explain now.

On Isom+ (Hn) we have the bi-invariant Haar measure dh. For some fixed reflection
r ∈ Isom− (Hn), we consider smr = dh− r∗dh. This is a signed measure on Isom (Hn),
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and does not depend on r. For some fixed regular simplex σ̃ ⊂ Hn of volume vol (σ̃) =
Vn − ǫ, we consider the Isom (Hn)-equivariant bijection

Γ\Isom (Hn) → {regular n-simplices in M = Γ\Hn of volume Vn − ǫ} ,

given by [g] → proj (gσ̃), where proj : Hn → Γ\Hn is the projection. This bijection
allows us to consider smr as a signed measure on the set of regular n-simplices in M .

There is the so-called measure homology H (M), which is the homology of the space
of signed measures on map (∆∗,M) with the obvious boundary operator. smr is a cycle
and therefore represents a class in H (M). One can show that it actually represents
(Vn − ǫ) [M ], and it has norm ‖ smr ‖= V ol (M). (This proves the wanted inequality if
one were to consider the norm in H (M).)

To prove the ’≤’-part of the theorem, there are then two approaches. The one (see [4]
or [26]) is to approximate 1

Vn−ǫ
smr by actual singular chains representing the fundamental

class in singular homology. The other approach, suggested in Thurston’s lecture notes
and recently proved in [28], is to give, for any smooth manifold, an isometric isomorphism
between singular homology and measure homology.

For the noncompact (cusped) case, the proof can be completed using arguments from
Francaviglia ([10], sections 5-6). Here is an alternative proof for the cusped case: Consider
the map which pinches all boundary tori to points, and let (M ′, ∂M ′) be the quotient,
with ∂M ′ a finite number of points. Using Gromov’s theory of multicomplexes one can
show that this map induces an isometry of Gromov norms. There is an obvious isom-
etry between H∗ (M ′, ∂M ′) and the (absolute) homology theory constructed from ideal
simplices with all ideal vertices in the cusps of M . It is then fairly easy to check that
to the latter homology theory one can apply Gromov’s smearing construction, to prove
the wanted inequality. (A little care is needed because one can not apply the smearing
construction to ideal simplices: one is not allowed to have ideal simplices with vertices
not in cusps. This technical point is surmounted in section 2.3. of [23].) 2

Uniqueness of Gromov’s smearing construction. Jungreis proved in [17] that Gro-
mov’s smearing construction is unique in the following sense: if a sequence of fundamen-
tal cycles (of a closed hyperbolic manifold of dimension ≥ 3) has l1-norms converging to
‖M ‖, then the sequence converges to ±smr.

In [19] we generalized this result to noncompact hyperbolic manifolds of dimension
≥ 3 and of finite volume, which are not Gieseking-like. (A hyperbolic 3-manifold Γ\H3

is called Gieseking-like if Q
(√

−3
)
∪ {∞} are parabolic fixed points of elements in Γ.

The only known examples are commensurable to the complement of the figure eight knot
complement.)

The uniqueness fails for manifolds which are of dimension 2 or Gieseking-like.

Definitions using polyhedral norms. More generally, let P be any polyhedron.
Then the invariant ‖ M ‖P is defined in [2] as follows: we denote by C∗ (M,∂M ;P ; R)
the complex of P -chains (i.e. formal sums of maps P → M with real coefficients),
and by H∗ (M,∂M ;P ; R) its homology. There is a canonical chain homomorphism ψ :
C∗ (M,∂M ;P ; R) → C∗ (M,∂M ; R), given by some triangulation of P which is to be
chosen such that all possible cancellations of boundary faces are preserved. ‖ M ‖P is
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defined as the infimum of
∑r

i=1 | ai | over all P -chains
∑r

i=1 aiPi such that ψ (
∑r

i=1 aiPi)
represents the fundamental class [M,∂M ].

In general, one can probably not expect these polyhedral norms to be related to the
simplicial volume. However, for the case of hyperbolic manifolds one has the following
analogue of the Gromov-Thurston Theorem with VP := sup {V ol (∆)}, where the supre-
mum is taken over all straight P -polyhedra ∆ ⊂ Hn.

Proposition 1 (Agol, [2], Prop.4.1.): If M − ∂M admits a hyperbolic metric of finite
volume V ol (M), then

‖M ‖P =
1

VP

V ol (M) .

1.4 Properties of the simplicial volume

In spite of its relatively unassuming definition, the simplicial volume is quite hard to
calculate. Gromov ([13]) developed the theory of bounded cohomology to prove various
vanishing results for the simplicial volume. The bounded cohomology H∗

b (M,∂M) is the
cohomology of the complex of bounded cochains

{f ∈ C∗ (M,∂M ; R) : sup {f ([σ]) : σ ∈ map (∆∗,M)} <∞}

with the usual coboundary operator. Its relevance for vanishing of the simplicial volume
is shown by the following implication, for compact, orientable manifolds M with n =
dim (M):

Hn
b (M,∂M) = 0 =⇒ ‖M ‖= 0.

This was used to prove, for example, that

‖M ‖= 0

if one of the following assumptions is satisfied:
- π1M,π1∂M are amenable (e.g. virtually solvable) and ∂M is connected ([13], p.57),
- M (closed) admits a covering with n-dimensional nerve by sets with amenable funda-
mental group ([13], p.40) ,
- M (closed) admits a nontrivial (not necessarily free) S1-action (Yano, cf. [13], p.41).

On the other hand, [13] proved nontriviality

‖M ‖> 0

if int (M) admits a complete metric with −b2 ≤ sectional curvature ≤ −a2 < 0 and finite
volume. In particular, there is the exact formula for finite-volume hyperbolic manifolds in
Theorem 2. Recently, Lafont and Schmidt ([25]) proved nontriviality ‖M ‖> 0 for closed
locally symmetric spaces of noncompact type. The proof uses the barycenter method of
Besson-Courteois-Gallot.

We describe an application of the simplicial volume to mapping degrees, taken from
[13]. The simplicial volume quantifies the topological complexity of manifolds. Indeed,
define a partial order on the set of n-manifolds by: M1 ≥ M2 if there exists a degree 1
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map from M1 to M2. Then the simplicial volume is an order-preserving map from the set
of n-manifolds to R+. More generally, if there is a degree d map from M1 to M2, then
‖M1 ‖≥ d ‖M2 ‖. Thus, nontriviality results for the simplicial volume can be used to get
restrictions on the possible mapping degrees for continuous maps between given manifolds.

Additivity properties. Let M be a compact, irreducible 3-manifold and F ⊂ M a
compact, incompressible surface.

If F is a torus, then ‖M − F ‖=‖M ‖. (This is proved in a more general setting by
Gromov in [13], a detailed argument can be found in [20]. In this special case, a proof
was also given by Soma ([29]), built on Theorem 6.5.1. from Thurston’s lecture notes.)

If F is a geodesic surface in a hyperbolic 3-manifold, then ‖ M − F ‖>‖ M ‖. (This
follows from Jungreis’ result on the uniqueness of the smearing construction in the closed
case. In the cusped case, including the case of Gieseking-like manifolds, it is theorem 6.3.
in [19].)

On the other hand, if F is a fiber of a fibration M → S1, then ‖M − F ‖=‖ F × I ‖
depends only on F , whereas ‖M ‖ can become arbitrarily large.

Soma ([30], Theorem 0.1.) has shown that also in the non-fibered case one can have
arbitrarily large ‖M ‖ with given ‖M − F ‖.

2 Foliations and Laminations

2.1 Motivation

Since the work of Haken and Waldhausen, compact incompressible surfaces have been a
main tool to understand the topology of 3-manifolds. Manifolds containing such a com-
pact, incompressible surface are called Haken manifolds, and they are the first general
class of 3-manifolds for which the Geometrization conjecture had been proven. How-
ever, with the today knowledge of 3-manifolds topology, it is apparent that most closed
3-manifolds do not contain any closed incompressible surface. (We will illustrate this
with an example below.) Therefore one is looking for other topological structures on 3-
manifolds which are more frequent and which allow generalizations of methods from the
Haken-Waldhausen theory.

The first generalization are taut foliations. A foliation F of a compact 3-manifold is
called taut if for every leaf F of F there exists a circle, transverse to F , which intersects
F . Equivalently, there exists a circle, transverse to F , which intersects every leaf of F .
(This excludes the existence of Reeb components.)

A common generalization to incompressible surfaces and taut foliations is the concept
of essential laminations. Its definition is given in section 2.2.

There is a survey article on essential laminations ([11], section 3), so we only mention
that for manifolds containing essential laminations (with possibly noncompact leaves)
several theorems from the Haken-Waldhausen theory are still true (each homotopy equiv-
alence is homotopic to a homeomorphism; the diffeomeorphism group is finite; ...) and
that for manifolds with essential laminations a weak version of the hyperbolization the-
orem can be proved. (The latter may now seem obsolete in view of Perelman’s work.
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However, it is still very interesting and fruitful that one can build a direct connection
between topological structures, as essential laminations, and geometric structures, as hy-
perbolic metrics.)

Essential laminations, in general, need not have any compact leaf, and are thus by far
more frequent than compact, incompressible surfaces. It has actually been an open ques-
tion for long time, whether there exist at all hyperbolic 3-manifolds without essential
laminations. The first counterexamples have been found only recently by Fenley ([9]).
However, it seems in view of section 3.4. below that for hyperbolic 3-manifolds of small
volume it is often harder to get essential laminations.

An illustrating example ([31], section 4).

The hyperbolic knot complement of smallest volume is the complement of the figure
eight knot K, its volume is 2.029..

Let us look at all (infinitely many) 3-manifolds M , which are obtained by Dehn-filling
(i.e. glueing a solid torus by some A ∈ SL (2,Z) ⊂ Homeo

(
T2
)
) in the complement of

the figure eight knot.

All but 10 of them are hyperbolic. Their volumes are all strictly smaller than 2.029..
(Thurston’s hyperbolic Dehn surgery theorem).

From the topological point of view, Thurston has proved that all but 6 of them do not
contain a closed, incompressible surface (thus can not be studied by the classical Haken-
Waldhausen theory).

Moreover, by Agol’s inequality, none of these hyperbolic manifolds can contain a closed
geodesic surface.

However, by Hatcher ([15]), it is known that all of these Dehn-fillings of S3 − K carry
transversely orientable essential laminations.

We remark that, as will be explained in section 3.4, by the generalization of Agol’s in-
equality to laminations, the work of Calegari-Dunfield on tight laminations with empty
guts, and a recent paper of Tao Li, hyperbolic 3-manifolds of volume smaller than 2.029..
can not carry (transversely orientable) essential laminations, except possibly if the fun-
damental groups of these hyperbolic manifolds inject into Homeo+

(
S1
)
. (The latter

condition can in many cases be checked algorithmically, using the methods developed by
Calegari-Dunfield).

Thus, Hatcher’s construction implies that the fundamental groups of the hyperbolic Dehn-
fillings of the figure-eight knot complement inject into Homeo+

(
S1
)
.
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2.2 Structure of laminations on 3-manifolds

We remind that all upcoming notions from 3-manifolds topology are explained in the
glossary in section 1.1.3.

Let M be a compact 3-manifold and F a (codimension one) lamination of M .
By abuse of notation we will denote by F both the lamination and the laminated

subset of M , i.e. the union of leaves. Moreover, we will assume that F has no isolated
leaves (which can always be achieved by blowing up isolated leaves to a product region)
and we will denote by M −F the completion (w.r.t. any path metric) of the complement
of F . If M has boundary, we will always assume without further mentioning that F is
transverse or tangential to ∂M .

A lamination F of a 3-manifold M is called essential ([12], ch.1) if no leaf is a
sphere or a torus bounding a solid torus in M , M −F is irreducible, and ∂

(
M −F

)
is

incompressible and end-incompressible in M −F . Examples of essential laminations are
taut foliations or compact, incompressible, boundary- incompressible surfaces.

Guts of essential laminations. If M is a 3-manifold and F an essential lamination
on M , then N = M −F is, in general, a noncompact manifold. The noncompact ends
of N are I-bundles over noncompact subsurfaces of ∂N . After cutting off each of these
ends along an annulus S1 × I, one obtains a compact 3-manifold N cut with boundary.
One defines Guts (N) = Guts (N cut), where Guts (N cut) is defined as in section 1.1.3.
Thus Guts (N) is compact and it admits a hyperbolic metric with geodesic boundary and
cusps. (Be aware that some authors, like [6], include Seifert fibered solid tori into the
guts.)

We illustrate this with an example, taken from [6]. Let M be the mapping torus of a
surface diffeomorphism φ : Σ → Σ. Assume that genus (Σ) ≥ 2 and φ is pseudo-Anosov,
then M is hyperbolic and there are two φ-invariant geodesic laminations λ± on Σ. The
complement of, say, λ+ consists of ideal polygons. Let F be the suspension lamination of
λ+ (i.e. we consider λ+× I ⊂ S× I and project it to F ⊂M = S× I/(x,0)∼(φ(x),1)). Then

we can decompose M −F into I-bundles over noncompact surfaces (namely neighbor-
hoods of the cusps of the ideal polygons) and one solid torus. Thus, Guts

(
M −F

)
= ∅

in this case.

Leaf space of essential laminations. To construct the leaf space T of F , one considers
the pull-back lamination F̃ on the universal covering M̃ = H3. The space of leaves T
is defined as the quotient of M̃ under the following equivalence relation ∼. Two points
x, y ∈ M̃ are equivalent if either they belong to the same leaf of F̃ , or they belong to the

same connected component of the completion M̃ − F̃ . If F̃ is an essential lamination,
then T is an order tree, with vertices corresponding to the leaves of F̃ , and segments
corresponding to directed, transverse, efficient arcs in M̃ . (See [12], also for the definition
of order tree.) Moreover, T is an R-order tree, that is, it is a countable union of segments
and each segment is order isomorphic to a closed interval in R. T can be topologized
by the order topology on segments (and declaring that a set is closed if the intersection
with each segment is closed). The order tree T comes with a fixed-point free action of

π1M , because the deck transformations of M̃ send leaves of F̃ to other leaves of F̃ . (This
is proved in [9], Lemma 4.7.) Fenley ([9]) has exhibited hyperbolic 3-manifolds whose
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fundamental groups do not admit any fixed-point free action on order trees. Thus there
are hyperbolic 3-manifolds not carrying any essential lamination.

An essential lamination is called tight if its associated R-order tree T is Hausdorff. It
is called unbranched if its associated R-order tree T is homeomorphic to R. It is said to
have two-sided branching ([5], Def. 2.6.1) if there are leaves λ, λ1, λ2, µ, µ1, µ2 such that
the corresponding points in the R-order tree T satisfy λ < λ1, λ < λ2, µ > µ1, µ > µ2

but λ1, λ2 are incomparable and µ1, µ2 are incomparable. It is said to have one-sided
branching if none of the other two cases occurs.

Surfaces in 3-manifolds. Let M be a hyperbolic 3-manifold of finite volume. By
the Bonahon-Thurston theorem, each closed, incompressible surface F ⊂ M is either
quasigeodesic or is a virtual fiber. If we consider the essential lamination, obtained by
blowing up F to a product region, then it is clearly tight. If F is a virtual fiber, then it
is unbranched. If F is quasigeodesic, then it has two-sided branching.

3 Invariants of foliations and laminations

3.1 Definitions

Let M be a manifold and F a codimension one lamination of M . Let ∆n be the
standard simplex in Rn+1, and σ : ∆n → M some (continuous, not necessarily differ-
entiable) singular simplex. The lamination F induces an equivalence relation on ∆n by:
x ∼ y ⇐⇒ σ (x) and σ (y) belong to the same connected component of L∩σ (∆n) for some
leaf L of F . We say that a singular simplex σ : ∆n → M is laminated if the equivalence
relation ∼ is induced by a lamination F |σ of ∆n. We call a lamination F of ∆n affine
if there is an affine mapping f : ∆n → R such that x, y ∈ ∆n belong to the same leaf
if and only if f (x) = f (y). We say that a lamination G of ∆n is conjugate to an affine
foliation if there is a simplicial homeomorphism H : ∆n → ∆n such that H∗G is an affine
foliation.

We say that a singular n-simplex σ : ∆n → M , n ≥ 2, is transverse to F if it is
foliated and it is
- either contained in a leaf,
- or F |σ is conjugate to an affine foliation G of ∆n.

We say that the simplex σ : ∆n → M is normal to F if, for each leaf F , σ−1 (F )
consists of normal disks, i.e. disks meeting each edge of ∆n at most once (or being equal
to a face of ∆n).
In the special case of foliations F it is easy to show that the transversality of σ is equivalent

12



to the normality of σ.

transverse normal, not transverse not normal

It was first observed in [5] that a refinement of the simplicial volume gives a meaningful
invariant for foliations and laminations.

Definition 1 : Let M be a compact, oriented manifold, possibly with boundary, and F a
foliation or lamination on M . Then

‖M ‖F := inf

{
r∑

i=1

| ai |: ψ
(

r∑

i=1

aiσi

)
represents [M,∂M ] , σi : ∆n →M transverse to F

}

and

‖M ‖normal
F := inf

{
r∑

i=1

| ai |: ψ
(

r∑

i=1

aiσi

)
represents [M,∂M ] , σi : ∆n →M normal to F

}
.

There is an obvious inequality

‖M ‖≤‖M ‖normal
F ≤‖M ‖F .

In the case of foliations, equality ‖M ‖normal
F =‖M ‖F holds.

Analogous norms ‖ M ‖normal
F ,P can be defined for any polyhedron P instead of the

simplex ∆n.

3.2 Inequalities for the transverse Gromov norm

The transverse Gromov norm seems to measure the branching of foliations or laminations.
This is suggested by the following results of Calegari (which are stated in [5] for taut
foliations but can straightforwardly be generalized to essential laminations).

Theorem 3 (Calegari, [5], Theorems 2.2.10., 2.5.9.): Let F be an essential lamination
of a closed 3-manifold M . If F is either unbranched or branches in only one direction,
then ‖M ‖F=‖M ‖.
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If M is a hyperbolic 3-manifold, then some standard conjectures would imply that a
foliation F branches in both directions if and only if it is asymptotically separated, i.e.
there exists a geodesic half-plane in H3 = M̃ separating some leaf from some other leaf of
F̃ . Thus, as observed by Calegari, the following theorem would imply that, at least for
foliations of hyperbolic 3-manifolds, ‖M ‖F decides whether F has two-sided branching.

Theorem 4 (Calegari, [5], Theorem 2.4.5.): Let F be an asymptotically separated lam-
ination of a closed, hyperbolic manifold Mn≥3. Then ‖M ‖F>‖M ‖.

Proof: ([5]) Consider a sequence cn of fundamental cycles of norms converging to
‖ M ‖. By the uniqueness of Gromov’s smearing construction, due to Jungreis (see sec-
tion 1.3.), the sequence must converge to ±smr. In particular, for large enough n, cn
must involve simplices close to any given regular ideal simplex. However, one finds regular
ideal simplices which can not be approximated by simplices transverse to F . 2

For example, any lamination containing a closed geodesic leaf is asymptotically separated
and thus has nontrivial Gromov norm.

In [19] we have generalised Theorem 4 to noncompact, hyperbolic manifolds of fi-
nite volume, under the same assumptions as in section 1.3., i.e. either dim (M) ≥ 4 or
dim (M) = 3 and M is not Gieseking-like.

3.3 Inequalities for the normal Gromov norm

A straightforward generalization of the proof of Theorem 3 shows the following fact, which
suggests that ‖M ‖normal

F measures the non-tightness of laminations.

Lemma 1 : Let F be an essential lamination of a closed 3-manifold M . If F is tight,
then ‖M ‖normal

F =‖M ‖.

However, the analogue of Theorem 4 is clearly not true. There are many tight lamina-
tions containing compact, geodesic surfaces, the simplest example being just finite unions
of compact, geodesic surfaces.

We will discuss in section 3.5. a general inequality for the normal Gromov norm (The-
orem 6), which specialized to the 3-dimensional case yields the following generalization of
Agol’s inequality. (Actually Theorem 6, which is purely topological, is by a factor 2 weaker
than Theorem 5. The improvement by a factor 2 is special to hyperbolic 3-manifolds, as
explained at the end of section 3.5. below.)

Theorem 5 (K.): Let M be a compact hyperbolic 3-manifold and F an essential lami-
nation of M . Then

‖M ‖normal
F ≥ −2χ

(
Guts

(
M −F

))
.

If F consists of one compact, incompressible surface, then ‖ M ‖normal
F =‖ M ‖, and

the above inequality is exactly the ’original’ (weaker) form of Agol’s inequality.
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3.4 Applications

We discuss the application to non-existence results for laminations on 3-manifolds.
Tao Li ([27]) has proved that the existence of a transversely orientable essential lam-

ination on a given hyperbolic 3-manifold M implies that the same M must also carry a
tight lamination. Thus it makes sense to concentrate on the existence question for tight
laminations.

If M is hyperbolic and carries a tight lamination with empty guts, then Calegari and
Dunfield have shown ([6], Theorem 3.2.) that π1M acts effectively on the circle, i.e.,
there is an injective homomorphism π1M → Homeo

(
S1
)
. This implies that the Weeks

manifold (the closed hyperbolic manifold of smallest known volume) can not carry a tight
lamination with empty guts ([6], Corollary 9.4.). Calegari and Dunfield also observed
that the generalization of Agol’s inequality to tight laminations (which is stated above in
Theorem 5 and proved in [22]) would give obstructions to existence of laminations with
nonempty guts, and, in particular, exclude existence of tight laminations on the Weeks
manifold. (This was stated as conjecture 9.7 in [6].)
The following corollary applies, for example, to all hyperbolic manifolds M obtained by
Dehn-filling the complement of the figure-eight knot in S3. (It is known that each of these
M contains tight laminations. By the following corollary, all these tight laminations have
empty guts.)

Corollary 1 : If M is a closed hyperbolic 3-manifold with V ol (M) < 2V3 = 2.02..., then
M carries no tight lamination with nonempty guts.

Proof: We use that χ
(
Guts

(
M −F

))
= 1

2χ
(
∂Guts

(
M −F

))
≤ −1 because the

geodesic part of ∂M −F is either closed or contains at least two surfaces with boundary.
Hence Corollary 1 folows from Theorem 5. 2

Corollary 2: The Weeks manifold admits no tight lamination F .

Putting this together with the result of Tao Li, one can even improve this result as
follows.

Corollary 3: The Weeks manifold admits no transversely orientable essential lami-
nation.

The same argument shows that a hyperbolic 3-manifold M with
- V ol (M) < 2V3, and
- no injective homomorphism π1M → Homeo+

(
S1
)

can not carry a transversely orientable essential lamination. Some methods for excluding
the existence of injective homomorphisms π1M → Homeo+

(
S1
)

have been developed in
[6] (which yielded in particular the nonexistence of such homomorphisms for the Weeks
manifold, used in corollary 2), but in general it is still hard to apply this criterion to other
hyperbolic 3-manifolds of volume < 2V3.
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3.5 Higher dimensions

For keeping the notation not too complicated, we consider in this section the case ∂M = ∅.
(The general statements for ∂M 6= ∅ can be found in [22].)

For a manifold (with boundary) Nn and a submanifold Qn we denote ∂1Q = ∂N ∩
∂Q, ∂0Q = ∂Q− (∂N ∩ ∂Q). (Q, ∂1Q) is pared acylindrical if every π1-injective map(
S1 × [0, 1] , S1 × {0, 1}

)
→ (Q, ∂1Q) can be homotoped into ∂Q. We say that the de-

composition N = Q ∪ (N −Q) is essential if all inclusions Q → N,N −Q → N, ∂0Q →
Q, ∂0Q→ N −Q are π1-injective for each connected component.

Theorem 6 (K., [22], Thm.1): Let M be a closed, orientable n-manifold and F a lam-
ination (of codimension one) of M . Assume that there exists a compact, aspherical,
n-dimensional submanifold Q ⊂M −F such that, if we let
N = M −F , ∂0Q = ∂Q− (∂N ∩ ∂Q), ∂1Q = ∂N ∩ ∂Q, then
i) each connected component of ∂0Q has amenable fundamental group,
ii) (Q, ∂1Q) is pared acylindrical,
iii) the decomposition N = Q ∪ (N −Q) is essential. Then

‖M ‖normal
F ≥ 1

n+ 1
‖ ∂Q ‖,

‖M ‖F≥
1[

n
2

]
+ 1

‖ ∂Q ‖ .

The following corollary gives an explicit bound for the topological complexity of com-
pact, geodesic hypersurfaces in a given compact, negatively curved manifold. Such a
bound seems to be new except, of course, in the 3-dimensional case where it is due to
Agol ([2]) and (with nonexplicit constants) to Hass ([14]).

Corollary 2 : Let M be a compact Riemannian n-manifold of negative sectional curva-
ture and finite volume. Let F ⊂M be a geodesic n− 1-dimensional hypersurface of finite
volume. Then ‖ F ‖≤ n+1

2 ‖M ‖.

Proof: : Consider the lamination given by F . Its complement N = M − F is aspher-
ical and (pared) acylindrical. (The latter follows from the fact that DN = N ∪∂1N N is
hyperbolic, hence atoroidal.)

If N is compact we can choose Q = N , in which case the other assumptions of The-
orem 6 are trivially satisfied. In the case that N is not compact we cut off the cuspical
ends along submanifolds with amenable fundamental groups to get Q. From Theorem 6
we conclude ‖ M ‖norm

F ≥ 1
n+1 ‖ ∂N ‖. The boundary of N consists of two copies of F ,

hence ‖ ∂N ‖= 2 ‖ F ‖. Moreover ‖ M ‖normal
F =‖ M ‖ by Lemma 1. The claim follows.

2

Proof: (Sketch of proof of Theorem 6.)
To give a flavor of the argument, we describe it in the simplest case: M is a hyperbolic

3-manifold, F = F a geodesic surface (i.e. ∂Guts
(
M −F

)
= 2F ).
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Let
∑
aiσi be a normal cycle representing [M ]. Then

∑
ai (σi ∩ F ) represents [F ]

and to get the wanted inequality
∑ | ai |≥ 1

4 ‖ 2F ‖ it would suffice to have that each σi

intersects F in at most 4 simplices.
Of course, there is a priori no reason to have an upper bound on the number of

intersections that a normal simplex may have with the geodesic surface.
However, one can easily see that, whenever a 3-simplex intersects the surface more

than 4 times, then two of the intersection triangles must have a parallel edge, i.e. cut out
a square on one boundary face of the standard 3-simplex.

If σi mapped this square to a cylinder (i.e. mapped the opposite edges to the same
edge), then one could use the acylindricity ofM − F to argue that the cylinder degenerates
after homotopy, hence can be removed without changing the homology class, and thus
the number of intersections can be reduced.

Then the proof consists of defining a straightening which produces the maximally pos-
sible number of cylinders. (Some care is needed because the subdivided 1-skeleton can, of
course, not be straightened arbitrarily. Even though each 1-simplex can be moved freely,
the 2-skeleton imposes homotopy relations between concatenations of 1-simplices, which
have to be respected by the straightening.)

Roughly the same argument works whenever Q = N,P = ∅, i.e. N = Q is acylindrical.
We give a short outline of the proof.

The intersection of a normal fundamental cycle
∑r

i=1 aiσi with ∂Q gives a fundamental
cycle for ∂Q.

Since we are interested in proving an upper bound for ‖∂Q‖

‖M‖normal

F

, we would thus like

to bound the intersection of ∂Q with the σi’s, namely to bound it by the number n+ 1.
This is not possible for the, arbitrarily chosen, normal fundamental cycle

∑r

i=1 aiσi, but,
using acylindricity, for some fundamental cycle derived from it.

We note that homotoping a cycle, and removing subcycles consisting of degenerate
simplices, does not change the homology class and does not increase the norm.

In [22], section 4.1., we define a straightening on Q (i.e. a way of homotoping cycles
into some special position). The nontrivial point of this straightening is that, for each
pair of connected components of ∂1Q = ∂Q− P ∩Q, we fix among the straight edges
one ’special’ straight edge connecting them, and that those edges of the new cycle, which
are subarcs of edges of the original fundamental cycle of M , are only allowed to be
straightened into the ’special’ straight edges. Hence, to straighten a simplex it will be
necessary to move all edges coming from the original fundamental cycle into the ’special’
straight ones, possibly changing the homotopy classes relative to the endpoints. These
homotopies extend to a homotopy of the whole new fundamental cycle because we may
guarantee that no two edges coming from the original fundamental cycle have a common
vertex.

After this straightening one removes all simplices which have become degenerate after
straightening.

Using acylindricity, one can show that each simplex, of the fundamental cycle we
started with, can (after straightening and removal of degenerate simplices) contribute at
most n+1 simplices to the fundamental cycle of ∂Q. (This needs a combinatorial exercice:
each n-simplex contains at most n+ 1 affine codimension one simplices without parallel
edge.) This proves Theorem 6 in the case Q = N .
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Finally, to handle the general case Q 6= N , one would like to define a retraction r :
C∗ (N) → C∗ (Q). It seems not possible to define r directly, but, using Gromov’s work
on multicomplexes, one can at least define it up to some ’amenable ambiguity’ and use
this to prove the general case.

To make a precise statement, such a retraction can be only defined in the following
weak sense: there are multicomplexes K (N) and K (Q), with isomorphic bounded coho-
mology to N resp. Q, and an action of a group G on them, such that there is defined a
retraction r : C∗ (K (N) ,K (∂N)) ⊗ZG Z → C∗ (K (Q) ,K (∂Q)) ⊗ZG Z. In other words,
there is an ambiguity up to some group action.

If ∂0Q = P ∩Q has amenable fundamental group, then the acting group G turns out
to be amenable and this allows in some sense to remove the ambiguity (using bounded
cohomology), and to prove Theorem 6.

2

Finally we show how Theorem 5 follows from Theorem 6.
Proof: For an essential lamination F , it follows from [12], Theorem 6.1., that the com-
plementN = M −F is aspherical. Thus one can apply Theorem 6 to essential laminations
of 3-manifolds.

Let P be the characteristic submanifold and Q = Guts (F) (see section 2.2.). Both
are known to be π1-injective. Moreover, Q admits a hyperbolic metric with geodesic
boundary ∂1Q = ∂Q− P ∩Q and cusps ∂0Q = P ∩Q, hence must be pared acylindrical
([32],Thm.3). ∂0Q consists of tori and annuli, hence has amenable fundamental group.
In conclusion, Q satisfies the assumptions of Theorem 6.

From the computation of the simplicial volume for surfaces ([13], section 0.2.) and
χ (Q) = 1

2χ (∂Q) (which is a consequence of Poincare duality for the closed 3-manifold
Q ∪∂Q Q), it follows that

−χ
(
Guts

(
M −F

))
= −1

2
χ
(
∂Guts

(
M −F

))
=

1

4
‖ ∂Guts

(
M −F

)
‖ .

Thus, Theorem 6 for n = 3 yields ‖ M ‖normal
F ≥ −χ

(
Guts

(
M −F

))
. It was shown

by Agol in [2], end of section 6, that one can use other polyhedral norms, with suitable
sequences of polyhedra, to get an improvement by a factor 2 with respect to simplicial
norms. This also applies to the normal Gromov norm. (By the way, this is the only
argument for Theorem 5 which really uses hyperbolic geometry. The proof of Theorem
6 only uses topological properties of hyperbolic manifolds, especially the acylindricity of
Guts

(
M −F

)
).

2
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