
ARCHIVUM MATHEMATICUM (BRNO)

Tomus 43 (2007), 485 – 490

PROPORTIONALITY PRINCIPLE FOR CUSPED MANIFOLDS

Thilo Kuessner

Abstract. We give a short proof of the proportionality principle for cusped

hyperbolic manifolds.

1. Introduction

Let M be a hyperbolic manifold of finite volume Vol (M). The Gromov-
Thurston proportionality principle is the following theorem, where ‖M,∂M‖ de-
notes the simplicial volume and Vn is the volume of a regular ideal simplex in
hyperbolic n-space.

Theorem 1 ([6], Theorem 6.5.4.). Let M be a compact, orientable n-manifold
such that int (M) = M −∂M admits a hyperbolic metric of finite volume Vol (M).
Then

‖M,∂M‖ =
1
Vn

Vol (M) .

The proportionality principle for closed manifolds was proved by Gromov ([3,
Section 2.2]), for a more detailed elaboration of the proof see [1], Theorem C.4.2.
(An alternative proof using measure homology was proposed by Thurston and
completed in [4].)

For cusped manifolds (i.e., non-compact manifolds of finite volume), the propor-
tionality principle was stated in [6], Theorem 6.5.4. The proof in [6] is very brief
and uses another definition of the simplicial volume. Thus it remained an open
question whether Gromov’s proof has a direct generalization to cusped manifolds.
Such a generalization is actually possible, all necessary arguments are contained
in the recent paper [2].

The aim of our paper is to give yet another, somewhat shorter, proof of the
proportionality principle for cusped manifolds, using bounded cohomology and
measure chains to give a more direct generalization of Gromov’s argument.

We give a short outline of the argument. Consider the map which pinches all
boundary tori to points, and let (M ′, ∂M ′) be the quotient, with ∂M ′ a finite
number of points. It follows from Gromov’s theory of multicomplexes that this

2000 Mathematics Subject Classification : 57N16.

Key words and phrases : hyperbolic volume, simplicial volume.



486 T. KUESSNER

map induces an isometry of Gromov norms. There is an obvious isometry between
H∗ (M ′, ∂M ′) and the (absolute) homology theory constructed from ideal simplices
with all ideal vertices in the cusps of M . The main point in the proof of the
wanted inequality is then to check that to the latter homology theory one can
apply Gromov’s smearing construction. A little care is needed because one can
not apply the smearing construction to ideal simplices: one is not allowed to have
ideal simplices with vertices not in cusps. In section 2.3, which is the main part
of this paper, this technical point is surmounted.

2. Proof

2.1. Crushing.

Definition 1. For a manifold M with boundary ∂M we denote by M crush resp.
∂M crush the quotient M/ ∼ of M resp. ∂M/ ∼ of ∂M under the following equiva-
lence relation: x ∼ y if and only if x and y belong to the same connected component
of ∂M (or if x = y 6∈ ∂M). We denote by crush: (M,∂M) →

(
M crush, ∂M crush

)
the canonical projection.

Lemma 1. Let M be an n-dimensional compact, orientable, connected manifold
with boundary ∂M . If each connected component of ∂M has amenable fundamental
group, then (crush)n : Hn (M,∂M) → Hn

(
M crush, ∂M crush

)
is an isometry of

Gromov norms.

Proof. We have Hn (M,∂M) ' Hn

(
M crush, ∂M crush

)
' R. This implies, by the

argument in [3], section 1.1, that for proving equality of Gromov-norms it suffices
to show that (crush)∗ induces an isometric isomorphism in bounded cohomology.

Because each connected component of ∂M has amenable fundamental group,
the Relative Mapping Theorem ([3], section 4.1) states that (crush)∗ is indeed an
isometric isomorphism in bounded cohomology.

For a topological space X, the measure chain complex C∗ (X) is the vector
space of signed measures on map (∆∗, X) with compact determination set and
finite variation. The total variation gives a norm on C∗ (X) which descends to a
seminorm on the homology of this complex (for the usual boundary operator), the
so-called measure homology H∗ (X). (For a detailed account on measure homology
see [4], section 2). For a pair of spaces (X, Y ), C∗ (X, Y ) is the vector space of
signed measures on map (∆∗, X) / map (∆∗, Y ) with compact determination set
and finite variation.

Lemma 2 ([4]). If N is a compact manifold with π1-injective boundary ∂N , then
the inclusion i∗ : C∗ (N, ∂N) → C∗ (N, ∂N) induces an isometric isomorphism in
homology.

Proof. This is [4], Theorem 1.1, in the case ∂N = ∅. We explain how the proof
can be adapted to the relative case.
Let p : Ñ → N be the universal covering. The main step in [4] is the construction of
a Borel map sk : map

(
∆k, N

)
→ map

(
∆k, Ñ

)
with pksk = id. The construction

of sk consists in the construction of a countable covering map
(
∆k, Ñ

)
= ∪∞j=1Vj
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such that p |Vj is a homeomorphism, and to succesively define sk = p−1 on
p (Vn)− ∪n−1

j=1 p (Vj).

In the proof of [4, Theorem 4.1], sk is used to define a map vk : map
(
Ñk+1, R

)π1N

→ map
(
map(∆k, N), R

)
by vk (f) := f

(
sk(σ)(e0), . . . , sk(σ)(ek)

)
.

Let Wj = Vj ∩ map
(
∆k, p−1(∂N)

)
. Since p |Vj

is a homeomorphism, also its
restriction p |Wj

: Wj → p(Wj) ⊂ map(∆k, ∂N) is a homeomorphism. Therefore
sk maps map(∆k, ∂N) to map

(
∆k, p−1(∂N)

)
.

This means that vk maps map
(
p−1(∂N)k+1, R

)
to map

(
map(∆k, ∂N), R

)
.

Hence we get a relative cochain map of norm ≤ 1. Since its composition with i∗

is an isometric isomorphism (which follows from independence of bounded coho-
mology from the choice of strong relatively injective resolutions), i∗ must actually
be an isometry. By duality, the claim follows.

2.2. Ideal simplices.

Definition 2. We denote Cstr,ideal
∗ (Hn) the chain complex of straight, possibly

ideal, simplices in hyperbolic space Hn. For a hyperbolic manifold N = Γ\Hn we
denote

Cstr,ideal
∗ (N) = Γ\Cstr,ideal

∗ (Hn) .

Assume that M is an orientable manifold with boundary such that its interior
N = M − ∂M admits a complete hyperbolic metric, i.e. N = Γ\Hn for some
discrete, torsionfree subgroup Γ ⊂ Isom+ (Hn). Assume that this hyperbolic met-
ric has finite volume. It is then well-known that points of ∂M crush (the so-called
cusps) correspond to Γ-orbits of points of the ideal boundary ∂∞Hn which are
fixed points for some parabolic element of Γ. Therefore each n+1-tuple of vertices
in M crush corresponds to a Γ-orbit of straight simplices with vertices either in Hn

or in parabolic fixed points of Γ. In particular, we get a straight ideal simplex
str (σ) with the same vertices and homotopic rel. vertices to a given simplex σ in
M crush.

Lemma 3.
str : C∗

(
M crush, ∂M crush

)
→ Cstr,ideal

∗ (N)

is a chain map of norm 1.

Proof. Obvious.

Corollary 1. ‖M,∂M‖ ≥ 1
Vn

Vol (M).

Proof. Let
∑

aiσi be a representative of
[
M crush, ∂M crush

]
. We consider the vol-

ume form of the hyperbolic metric on N = M−∂M = M crush−∂M crush. It defines
a measure ν on N which extends to a measure on M crush by putting ν

(
∂M crush

)
=

0. With respect to this measure we have Vol (N) =
∑

ai Vol (str (σi)) and
|Vol (str (σi)) | ≤ Vn, from which we get

1
Vn

Vol (M) ≤ ‖ str
[
M crush, ∂M crush

]
‖ ≤ ‖M crush, ∂M crush‖ = ‖M,∂M‖ .
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(The first inequality is true because
∑

ai str (σi) represents str∗
[
M crush, ∂M crush

]
,

the second by Lemma 3, the last equality is Lemma 1.)

2.3. Smearing construction. The purpose of this section is to construct rep-
resentatives of [M,∂M ] ∈ Hn (M,∂M) of norm close to 1

Vn
Vol (M). We as-

sume that N = M − ∂M is a complete hyperbolic manifold of finite volume.
For ε > 0 let N[ε,∞] = {x ∈ N : inj (x) ≥ ε} be the ε-thick part and N[0,ε] =
{x ∈ N : inj (x) ≤ ε} the ε-thin part.

For some small δ > 0, let σ : ∆n → N be some fixed straight regular simplex
with Vol (σ) = Vn − δ. Abbreviate G = Isom+ (Hn). We define σ∗ : Γ\G →
map(∆n, N) by σ∗ [g] = gσ. We denote by Haar the Haar measure on Γ\G,
normalised such that Haar(Γ\G) = Vol(N).

As in [5], we define smr(σ) ∈ C∗ (N) to be the measure chain given by smr(σ)(B)
:= Haar

(
(σ∗)−1B

)
for B ⊂ map(∆n, N), and Avg(σ) := 1

2 smr(σ)− 1
2 smr(rσ) for

some fixed orientation-reversing isometry r ∈ Isom(Hn). By the same proof as in
[5], we have ∂ Avg(σ) = 0.

Let ε0 be smaller than the Margulis constant for G. It follows from the Margulis
lemma (see [1, D.3.3]) that, for each ε1 ≤ ε0, N[0,ε1] is a product and one thus has
a homotopy-equivalence hε1 :

(
N,N[0,ε1]

)
→

(
N[ε1,∞], ∂N[ε1,∞]

)
.

Further we fix some positive constants ε < ε1 < ε0 such that

d
(
∂N[ε0,∞], ∂N[ε1,∞]

)
> l(δ) ,

d
(
∂N[ε1,∞], ∂N[ε,∞]

)
> l(δ) ,

where l(δ) denotes the edge-length of the regular simplex of volume Vn − δ.

Definition 3. For a hyperbolic manifold N and σ, ε as above we define

Cε (N) =
{
τ ∈ map (∆n, N) : τ (e0) , . . . , τ (en) ∈ N[ε,∞]

}
and a signed measure Avgε (σ) ∈ C∗ (N) by

Avgε (σ) (B) = Avg (σ) (B ∩ Cε (N)) .

Lemma 4. ∂ Avgε (σ) is determined on map
(
∆n, N[0,ε1]

)
.

Proof. We know that ∂ Avg (σ) = 0. Therefore ∂ Avgε (σ) is determined on
simplices which are, at the same time, face of some n-simplex in Cε (N) and
some n-simplex not in Cε (N), both simplices being regular simplices with volume
Vn − δ and edgelength l (δ). Since d

(
∂N[ε1,∞], ∂N[ε,∞]

)
> l (δ), this implies that

∂ Avgε (σ) is determined on simplices with vertices in N[0,ε1]. It is well-known that
N[0,ε1] is convex, therefore ∂ Avgε (σ) is determined on simplices in N[0,ε1].

Therefore Avgε (σ) ∈ Cn

(
N,N[0,ε1]

)
is a relative cycle. Applying hε1 , we get a

relative cycle

(hε1)∗ Avgε (σ) ∈ Cn

(
N[ε1,∞], ∂N[ε1,∞]

)
' Cn (M,∂M) .

Lemma 5. Let M be a compact, orientable n-manifold such that N = int (M)
admits a hyperbolic metric of finite volume. Then

(i) ‖ (hε1)∗ Avgε (σ) ‖ ≤ Vol
(
N[ε,∞]

)
,
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(ii) (hε1)∗ Avgε (σ) represents K
Vol(N)

[
N[ε1,∞], ∂N[ε1,∞]

]
with K ≥ (Vn − δ)

(
Vol(N)− (n + 1) Vol(N[0,ε0])

)
.

Proof. (i) We have ‖ (hε1)∗ Avgε (σ) ‖ ≤ ‖Avgε (σ) ‖. Let smrε (σ) be the positive
part of Avgε (σ). Then ‖Avgε (σ) ‖ = 1

2‖ smrε (σ) ‖+ 1
2‖ smrε (rσ) ‖ = ‖ smrε (σ) ‖,

such that it suffices to compute the latter. This is

‖ smrε(σ)‖ = smrε(σ)
(
map(∆n, N)

)
= smr(σ)

(
Cε(N)

)
= Haar

(
(σ∗)−1Cε(N)

)
≤ Vol

(
N[ε,∞]

)
.

(ii) To determine the homology class of a relative n-cycle it suffices to evaluate
it against the volume form dvol of N[ε1,∞]. We compute〈

dvol, (hε1)∗ smrε(σ)
〉

=
〈
(hε1)

∗ dvol, smrε(σ)
〉

=
∫

map(∆n,N)

( ∫
τ

(hε1)
∗ dvol

)
dsmrε(σ)(τ)

=
∫

Cε(N)

( ∫
τ

(hε1)
∗ dvol

)
dsmr(σ)(τ)

=
∫

Cε(N)

vol(hε1τ) dsmr(σ)(τ) =
∫

Γ\G
vol(hε1gσ) dHaar(Γg) .

Let v0 = σ (e0) , . . . , vn = σ (en) be the vertices of σ. Let g ∈ G. If all gvi ∈
N[0,ε1], then gσ ⊂ N[0,ε1] because d

(
∂N[0,ε], ∂N[0,ε1]

)
> l (δ). Thus vol (hε1gσ) =

vol (gσ) = Vn − δ except possibly if gvi 6∈ N[0,ε1] for some vi. But the set{
g ∈ Γ\G : gvi 6∈ N[0,ε1] for some i

}
has Haar measure smaller than (n + 1)Vol

(
N[0,ε0]

)
. This implies the claimed

inequality〈
dvol, (hε1)∗ smrε(σ)

〉
≥ (Vn − δ)

(
Vol(N)− (n + 1)Vol(N[0,ε0])

)
.

Theorem 2. Let M be a compact, orientable n-manifold such that int(M) admits
a hyperbolic metric of finite volume.

Then ‖M‖ = 1
Vn

Vol(M).

Proof. The lower bound follows from Corollary 1. To get the upper bound we
observe that, using (M,∂M) '

(
N[ε1,∞], ∂N[ε1,∞]

)
, Lemma 5 implies

‖M,∂M‖ ≤ Vol (M)
Vn − δ

Vol(N[ε,∞])(
Vol(N)− (n + 1) Vol(N[0,ε0])

) .

This implies the wanted inequality if we let δ, ε0, ε → 0.
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[4] Löh, C., Measure homology and singular homology are isometrically isomorphic, Math. Z.
253 (2006), 197–218.

[5] Ratcliffe, J., Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics,
Springer-Verlag, Berlin (1994).

[6] W. Thurston, The Geometry and Topology of 3-Manifolds, Lecture Notes, Princeton.

Universität Münster, Mathematisches Institut

Einsteinstraße 62, D-48149 Münster
E-mail : kuessner@math.uni-muenster.de


