
Remark: Lemma 3 and hence Corollary 1/Theorem 1 are wrong. (I intend to give
another construction of cycles that gives conditions for nontriviality of the Euler class.)

Lefschetz Fibrations with unbounded Euler Class -

Work in progress

Thilo Kuessner

Abstract. We investigate the bounded cohomology of Lefschetz fibrations: we show
that the Euler class, of a Lefschetz fibration of fiber genus ≥ 2 having distinct van-
ishing cycles with nontrivial (homological) intersection, is not bounded. As a con-
sequence, we exclude the existence of negatively curved metrics on such Lefschetz
fibrations.
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The bounded cohomology H∗
b (X ; Z) is an invariant of topological spaces, which was

introduced by Gromov in his work about the simplicial volume and has since then shown
to be useful also in group theory and dynamics of group actions.
A cohomology class β ∈ H∗ (X ; Z) is said to be bounded if it is in the image of the
natural map H∗

b (X ; Z) → H∗ (X ; Z). Among other results, Gromov proved that (real)
characteristic classes in H∗

(

BGδ; R
)

are bounded, if Gδ is an algebraic subgroup of
GL (n, R) equipped with the discrete topology. This generalized the classical Milnor-
Sullivan theorem which states that Euler classes of flat affine bundles are bounded.
In this article, we consider the Euler class of Lefschetz fibrations. A well-known theorem
of Morita says that the Euler class of a surface bundle, with fiber of genus ≥ 2, is bounded.
We prove a converse to Morita’s theorem.

Theorem 1. If a Lefschetz fibration, with regular fiber of genus ≥ 2, has bounded Euler
class, then all pairs of vanishing cycles have vanishing homological intersection numbers.

As an application, we can exclude the existence of negatively curved metrics on a large
number of Lefschetz fibrations.

Corollary 2: If a Lefschetz fibration, with regular fiber of genus ≥ 2, admits a Rie-
mannian metric with negative sectional curvature everywhere, then all pairs of vanishing

Mathematics Subject Classification. 57N65.
Key words and phrases. Lefschetz fibrations, bounded cohomology, Euler class.

1



2 Thilo Kuessner

cycles have vanishing homological intersection numbers.

We recall that any finitely presented group Γ can be realised as the fundamental group of
a Lefschetz fibration ([3],[1]). If Γ happens to be word-hyperbolic, we will actually show
that π2MΓ 6= 0.
I thank the referee for pointing out a gap in a former version of the proof.

1. Preliminaries

Lefschetz fibrations. A smooth map π : M → B from a smooth (closed, oriented,
connected) 4-manifold M to a smooth (closed, oriented, oriented) 2-manifold B is said
to be a Lefschetz fibration, if it is surjective and dπ is surjective except at finitely many
critical points {p1, . . . , pk} =: C ⊂ M , having the property that there are complex
coordinate charts (agreeing with the orientations of M and B), Ui around pi and Vi

around π (pi), such that in these charts f is of the form f (z1, z2) = z2
1 + z2

2 , see [7]. After
a small homotopy the critical points are in distinct fibers, we assume this to hold
for the rest of the paper.

The preimages of points in B − π (C) are called regular fibers. It follows from the
definition that all regular fibers are diffeomorphic and that the restriction π′ := π |M ′ :
M ′ → B′ to M ′ := π−1π (M − C) is a smooth fiber bundle over B′ := B − π (C).

Let Σg be the regular fiber, a closed surface of genus g, and let, for an arbitrary point
∗ ∈ Σg, be Mapg,∗ the group of diffeomorphisms f : Σg → Σg with f (∗) = ∗, modulo
homotopies fixing ∗. It is well-known, cf. [13], that for any surface bundle one gets a
monodromy ρ : π1M

′ → Mapg,∗, which fits into the commutative diagram

1 −→ π1Σg −→ π1M
′ −→ π1B

′ −→ 1 idρ 1 −→ π1Σg −→ Mapg,∗ −→ Mapg −→ 1

It follows from the local structure of Lefschetz fibrations that, for a simple loop ci sur-
rounding π (pi) in B, its image under the monodromy, ρ (ci), is the Dehn twist at some
closed curve vi ⊂ Σg. vi is called the ’vanishing cycle’.

We point out the following fact: for γ ∈ π1Σg ⊂ π1M
′, the pointed mapping class ρ (γ)

is a mapping which twists some loop representing γ ∈ π1 (Σg, ∗) once along itself back
and forth, such that it is homotopic (but not base-point preserving homotopic) to the
identity. If Σg carries a hyperbolic metric, then there is a representative of ρ (γ) which
can be lifted to a hyperbolic isometry with axis γ̃ ⊂ H

2, mapping ∗̃ to γ (∗̃), for any lift
∗̃ of ∗.

Euler class of Lefschetz fibrations. For a topological space X , and a rank-2-vector
bundle ξ over X , one has an associated Euler class e (ξ) ∈ H2 (X ; Z).

If π : M → B is a Lefschetz fibration, we may consider the tangent bundle of the fibers,
TF , except at points of C, where this is not well defined. We get a rank-2-vector bundle
L′ over M − C with euler class e′ := e (TF ) ∈ H2 (M − C; Z).
By a standard application of the Mayer-Vietoris sequence, there is an isomorphism i∗ :

H2 (M ; Z) → H2 (M − C; Z) induced by the inclusion. Hence, e := (i∗)
−1

e′ ∈ H2 (M ; Z)
is well-defined. In what follows we will denote e as the Euler class of the Lefschetz fibration
π : M → B. It is actually true (but we will not need it) that there exists a rank-2-vector
bundle ξ over M such that ξ |M−C≃ TF . It is the pull-back of the universal complex line
bundle, pulled back via the map f : M → CP∞ corresponding to e ∈ H2 (M ; Z) under
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the bijection H2 (M ; Z) ≃ [M, CP∞].

S
1-bundles associated to surface bundles. For any surface bundle π′ : M ′ → B′

we may, after fixing a Riemannian metric, consider UTF , the unit tangent bundle of
the fibers. We consider the case that the fiber has genus g ≥ 2. Then this S

1-bundle
is, according to [13], equivalent to the flat Homeo+

(

S
1
)

-bundle with monodromy ∂∞ρ,

where ∂∞ : Mapg,∗ → Homeo+
(

S
1
)

is constructed as follows.
Recall that π1Σg is word-hyperbolic, since g ≥ 2. For f ∈ Mapg,∗ let f∗ : π1 (Σg, ∗) →

π1 (Σg, ∗) be the induced map of fundamental groups, and ∂∞f∗ the extension of f∗ to
the Gromov boundary ∂∞π1 (Σg, ∗). It is well-known that ∂∞f∗ is a homeomorphism and
that there is a canonical homeomorphism ∂∞π1 (Σg, ∗) ≃ S

1.
If γ ∈ π1 (Σg, ∗) ≃ ker (Mapg,∗ → Mapg), then ∂∞ρ (γ) ∈ PSL2R ⊂ Homeo+

(

S
1
)

is

a hyperbolic map whose both fixed points are the ideal vertices of the lift γ̃ ⊂ H
2 of a

representative of γ passing through ∗. An explicit diffeomorphism F : (Σg, ∗) → (Σg, ∗)
representing γ in Mapg,∗ can be constructed as follows. Fix some immersed loop c rep-
resenting γ, extend to some immersion C : R/Z × [−1, 1] and define F (C ([s] , t)) =
C ([s + 1− | t |] , t) for ([s] , t) ∈ R/Z × [−1, 1].
One should be aware that the extension of UTF to M −C is not flat: a loop surrounding
a singular fiber is trivial in π1 (M − C) but its monodromy is a Dehn twist, giving a
nontrivial homeomorphism of S

1.

Bounded Cohomology. It will be important for us to distinguish between bounded
cohomology with integer coefficients, H2

b (X ; Z), and bounded cohomology with real co-
efficients, H2

b (X ; R). We refer to [10] for definitions. To avoid too complicated notation,
we use the following convention: for β ∈ H∗ (X ; Z), we denote βR ∈ H∗ (X ; R) its image
under the canonical homomorphism H∗ (X ; Z) → H∗ (X ; R). Also, we will not distinguish
between H∗

b (X ; R) and H∗
b (π1X ; R).

A cohomology class β ∈ H∗ (X ; Z) is called bounded if it belongs to the image of the
canonical homomorphism H∗

b (X ; Z) → H∗ (X ; Z).
We will use the following two facts. (A) is proved in Bouarich’s thesis, see [2]. (B) is
proved in [6].

(A): If 1 → N → Γ → G → 1 is an exact sequence of groups, then there is an exact
sequence

0 → H2
b (G; R) → H2

b (Γ; R) → H2
b (N ; R)

G
→ H3

b (G; R) .

(B): For any group Γ, there is an exact sequence, natural with respect to group homo-
morphisms,

H1 (Γ; R/Z) → H2
b (Γ; Z) → H2

b (Γ; R) .

A commutative diagram. Let π : M → B be a Lefschetz fibration with fiber F , let
π |M ′ : M ′ → B′ be the smooth fiber bundle obtained by removing the singular fibers and
introduce the following notations: N = ker (π1M

′ → π1M) , V = ker (π1B
′ → π1B) , Γ =

ker (N → V ). Then we have a commutative diagram

1111ΓNV 1π1Fπ1M
′π1B

′1

with all rows and columns being exact sequences.
A few remarks are in order about well-definedness of the involved homomorphisms.

The second line is the long exact homotopy sequences of the surface bundle M ′ → B′.
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Inclusion maps ker (N → V ) to ker (π1M
′ → π1B

′), hence Γ = ker (N → V ) is a sub-
group of π1F. Clearly, the projection maps N to ker (π1B

′ → π1B) = V . Surjectivity
of this homomorphism does not follow from the commutative diagram, but is easy to
see geometrically. Indeed, each simple loop ci surrounding a puncture can be lifted to an
element ĉi ∈ N , just working in coordinate charts. For g ∈ π1B, we fix some lift ĝ ∈ π1M .
Then ĝĉiĝ

−1 is an element of N , projecting to gcig
−1. Since V is generated by elements

of the form gcig
−1, we have surjectivity.

2. Actions on the circle with nontrivial Euler class

We start with recalling the setting of [4].
Let

Homeo+
S

1 := {f : R/Z → R/Z orientation-preserving homeomorphism}

and

Homeo
+

S
1 :=

{

f̃ : R → R orientation-preserving homeomorphism, f̃ (x + 1) = f̃ (x) + 1 ∀x ∈ R

}

.

There is an exact sequence

0 → Z → Homeo
+

S
1 → Homeo+

S
1 → 0,

where n ∈ Z is mapped to translation by n.
Let χ ∈ H2

b

(

Homeo+
S

1
)

be the Euler class of this extension. An explicit representative

c of χ is given as follows: we fix a set-theoretic section s : Homeo+
S

1 → Homeo
+

S
1 by

letting s (f) be the unique lift of f with 0 ≤ s (f) (0) < 1. Then let

c (f, g) := s (fg)−1 s (f) s (g) ∈ ker
(

Homeo
+

S
1 → Homeo+

S
1
)

= Z

for all f, g ∈ Homeo+
S

1. The bounded cocycle c ∈ C2
b

(

Homeo+
S

1, Z
)

represents the
Euler class χ. One should observe that c (f, g) = 0 if 0, g (0) , fg (0) are in clockwise order
and c (f, g) = 1 if 0, g (0) , fg (0) are in anti-clockwise order.

For a discrete group Γ, H2
b (Γ; Z) ”classifies” actions of Γ on S

1 (see [5],thm.6.6). In
particular ([4],p.35), for ρ : Γ → Homeo+

(

S
1
)

, ρ∗χ = 0 holds if and only if all ρ (γ)

with γ ∈ Γ have a common fixed point on S
1. (Note that the original statement in [4] is

mistaken and would erroneously imply the existence of two common fixed points.)

Lemma 1. Let Γ be a group, A a (possibly infinite) set of generators of Γ and ∂∞ρ :
Γ → Homeo+

S
1 be a representation such that

a) for all a ∈ A the rotation number of ∂∞ρ (a) is zero, and
b) there is no common fixed point on S

1, that is,
there is no x ∈ S

1 with ∂∞ρ (a) (x) = x for all a ∈ A.
Then the Euler class of ρ does not belong to the kernel of the canonical homomorphism
H2

b (Γ; Z) → H2
b (Γ; R).

Proof. For γ ∈ A let jγ : Z → Γ be the unique homomorphism with jγ (1) = γ. By
functoriality of the exact sequence (B) (section 1), we have a commutative diagram

Πγ∈AH1 (Z; R/Z)
≃

Πγ∈AH2
b (Z; Z) Πγ∈AH2

b (Z; R) Π j∗
γ
Π j∗

γ
Π j∗

γ H1 (Γ; R/Z)H2
b (Γ; Z)H2

b (Γ; R) ,

where the isomorphism

H2
b (Z; Z) ≃ R/Z ≃ H1 (Z; R/Z)

follows from prop. 3.1. in [4].
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Let e ∈ H2
b (Γ; Z) be the Euler class of ρ. Its image j∗γe ∈ H2

b (Z; Z) is the Euler class
of the representation of Z mapping 1 to ∂∞ρ (γi). By theorem A3 in [4], j∗γe is mapped to

the rotation number of ∂∞ρ (γ) under the isomorphism H2
b (Z; Z) ≃ R/Z. The rotation

number of ∂∞ρ (γi) is zero, hence j∗γe = 0 for all γ ∈ A.
Now assume that e, the Euler class of ρ, belonged to the kernel of the canonical

homomorphism H2
b (Γ; Z) → H2

b (Γ; R). It follows that e ∈ H2
b (Γ; Z) has a preimage

E ∈ H1 (Γ; R/Z) .

Since A generates Γ, the homomorphism Πγ∈Aj∗γ : H1 (Γ; R/Z) → Πγ∈AH1 (Z; R/Z)
is injective. Hence, Πγ∈Aj∗γe = 0 implies E = 0. Therefore, also e = 0.

According to [5], this contradicts assumption b). �

Definition 1. We say that f ∈ Homeo+
S

1 is a hyperbolic map if it has exactly two
fixed points x− and x+ and if limn→−∞ fn (x) = x−, limn→∞ fn (x) = x+ holds for each
x 6∈ {x−, x+}.

&%
'$

&%
'$

&%
'$

x+ = 0

ay+

ax− a
y−

x+ = 0

ay+

ay− a
x−

x+ = 0

ax−

ay− a
y+

Observations. We consider two hyperbolic maps g and h which do not have common
fixed points. Let x− and x+ be the repelling resp. attracting fixed point of g. Let y−
and y+ be the repelling resp. attracting fixed point of h. We choose an identification
of S

1 with R/Z = [0, 1] / ∼ such that x+ = 0 = 1. Up to possibly replacing h by h−1

we have after this identification three possibilities: either 0 = x+ < x− < y− < y+ or
0 = x+ < y+ < x− < y− or 0 = x+ < y+ < y− < x−. (The other three possibilities are
obtained after replacing h by h−1, which will not affect our arguments.)

It follows directly from definition 1 that in each of the three cases the following is true:
for each 0 < ǫ < y− there exist some m, n such that 1 − ǫ < gmh−ng−m (ǫ) < 1. This
leads to the following observations:

(A) If f ∈ Homeo+
(

S
1
)

satisfies y− > f (x+) > x+, then c (f, gmh−ng−mf) = 1.
Indeed, f (0) > 0 implies f (1 − ǫ) > ǫ > 0 for some small ǫ. Depending on ǫ we choose
m and n so large that gmh−ng−m (ǫ) > 1 − ǫ. Then we get the claim.
(B) If f ∈ Homeo+

(

S
1
)

satisfies y− > f2 (x+) > x+, then c (gmh−ng−mf, f) = 0.

This is obvious because 1 is the attracting fixed point of g, hence gmh−ng−mf2 can not
exceed x+ = 1.

In the statements of the following lemmas we will identify elements x ∈ π1 (Σg, ∗) with
their images in Mapg,∗. Moreover, tx ∈ Mapg,∗ will denote the (isotopy class of the)
Dehn twist at x. i (x, y) denotes the homological intersection number of x, y ∈ π1 (Σg, ∗).

Lemma 2. Let N be a group, and ρ : N → Mapg,∗ be a representation such that there
exist elements γ1, γ2, γ3, γ4 ∈ N and x, y ∈ π1 (Σg, ∗) with ρ (γ1) = x, ρ (γ2) = y, ρ (γ3) =
tx, ρ (γ4) = ty.
If i (x, y) 6= 0, then the bounded real Euler class of ∂∞ρ does not belong to the kernel of
the canonical homomorphism H2

b (N ; R) → H2 (N ; R).
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Proof. To show that e 6= 0 ∈ H2 (N ; R), it suffices to exhibit some 2-cycle z on N with
c (∂∞ρ (z)) 6= 0.

i (x, y) 6= 0 implies that x+ is not a fixed point of ty. We consider first the case that
ty (x+) > x+.

Define (for m, n large enough to make the above observations (A) and (B) valid):

z =
(

ty, x−mynxmty
)

−
(

x−mynxmty, ty
)

(This is again to be considered as a chain in the bar resolution.)
We will show in corollary 1 below that z is a cycle.
Since y− is a fixed point of ty, we have that ty (x+) < y− and t2y (x+) < y−. So

we may apply the above observations (A) and (B) to get c (ty, x
−mynxmty) = 1 and

c (tyx−mynxm, ty) = 0, implying
c (z) 6= 0.

Now consider the case that ty (x+) < x+. Then ty−1 (x+) > x+. We consider then

z =
(

ty−1 , x−mynxmty−1

)

−
(

x−mynxmty−1 , ty−1

)

and get, with the same reasoning as
before, c (z) 6= 0.

�

To prove corollary 1 we need the following lemma which ought to be well-known.

Lemma 3. Let x, y ∈ π1 (Σg, ∗) and i := i (x, y) their homological intersection number.
Then tyxt−1

y = yix.

Proof. Recall that the isomorphism I : ker (Mapg,∗ → Mapg) → π1 (Σg, ∗) is con-
structed as follows: let f ∈ ker (Mapg,∗ → Mapg) and Ht a homotopy in Diff (Σg)
between f and id. Then t → Ht (∗) is a loop in Σg, representing I (f) ∈ π1 (Σg, ∗).
Now, if g is any diffeomorphism of Σg which fixes ∗, then gHtg

−1 is a homotopy between
gfg−1 and id, and gHtg

−1 (∗) = gHt (∗) for all t. If g is the Dehn twist at y, then g spins
Ht (∗) along y for every intersection of Ht (∗) with y, hence the claim of the lemma. 2

Corollary 1. Assume that the assumptions of lemma 2 are satisfied. Let x, y ∈ π1 (Σg, ∗)
and z= (ty, tyx

−mynxm) − (tyx−mynxm, ty). Then ∂c = 0.

Proof.

∂c = ty + tyx−mynxm − t2yx−mynxm −
(

tyx
−mynxm + ty − tyx−mynxmty

)

=

= t2yx−mynxm − tyx−mynxmty = 0,

where the last identity t2yx−mynxm − tyx−mynxmty = 0 follows from lemma 3 because

i (y, x−mynxm) = i (y, x−m) + i (y, xm) = 0. 2

Finally we explain some elementary (and surely well-known) facts, concerning the
action of Dehn twists on ∂∞π1 (Σg, ∗), which will be of importance in the proof of the
backward direction of lemma 5.
Let x− and x+ be the repelling resp. attracting fixed point for the action of x ∈ π1 (Σg, ∗)
on ∂∞π1 (Σg, ∗). Then x− = x−∞ and x+ = x∞, meaning that x− is the limit of the
sequence x−n and x+ is the limit of xn.
Let ty be the Dehn twist at y. ty acts on the fundamental group by ty (x) = yi(x,y)x.
In particular, if i (x, y) = 0, then the induced action of ty on ∂∞π1 (Σg, ∗) fixes x− and
x+. What is more, if in addition i (y, w) = 0 holds for some w ∈ π1 (Σg, ∗), then ty fixes
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also w (x±). We will apply this in the proof of theorem 1 to the situation where the
intersection form vanishes on all of Γ, to conclude that ty fixes the whole Γ-orbit of x+,
for y ∈ Γ.

3. Proof of Theorem 1 and corollaries

Theorem 1 If a Lefschetz fibration with regular fiber Σg of genus g ≥ 2, has bounded
Euler class, then all pairs of vanishing cycles have vanishing homological intersection
numbers.

Theorem 1 will follow from the following two lemmata. (χR denotes the real Euler
class of the representation ∂∞ρ : π1M

′ → Homeo+
(

S
1
)

, and N denote the kernel of the
homomorphism π1M

′ → π1M induced by inclusion.)

Lemma 4. If a Lefschetz fibration with regular fiber Σg of genus g ≥ 2, has bounded real
Euler class, then χR ∈ ker

(

H2
b (π1M

′; R) → H2 (π1M
′; R)

)

+ker
(

H2
b (π1M

′; R) → H2
b (N ; R)

)

.

In particular, boundedness of the real Euler class implies χR |N∈ ker
(

H2
b (N ; R) → H2 (N ; R)

)

.

Lemma 5. For a Lefschetz fibration with regular fiber Σg of genus g ≥ 2, we have
χR |N∈ ker

(

H2
b N → H2N

)

if and only if all pairs of vanishing cycles have vanishing
homological intersection.

Proof of Lemma 4. Assume that eR is bounded. Let eb ∈ H2
b (M, R) be a bounded

cohomology class which maps to eR under the homomorphism H2
b (M, R) → H2 (M, R).

It follows from commutativity of

H2
b (M ; R)

i∗
H2

b (M ′; R) H2 (M ; R)
i∗

H2 (M ′; R)

that i∗eb is mapped to e′
R

= i∗eR under the homomorphism H2
b (M ′, R) → H2 (M, R). On

the other hand, consider the class χ ∈ H2
b (π1M

′, Z) = H2
b (M ′, Z) discussed in section 2,

i.e. the Euler class associated to the representation ∂∞ρ : π1M
′ → Homeo+

S
1. Its asso-

ciated real class χR ∈ H2
b (π1M

′, R) = H2
b (M ′, R) is mapped to e′

R
by the homomorphism

H2
b (M ′, R) → H2 (M ′, R). Hence,

χR − i∗eb ∈ ker
(

H2
b (M ′, R) → H2 (M ′, R)

)

.

We observe that the canonical homomorphism H2
b (π1M

′, R) → H2 (π1M
′, R) factors over

the canonical homomorphism H2
b (M ′, R) → H2 (M ′, R). (This is because the classifying

map M ′ → K (π1M
′, 1) induces an isomorphism on bounded cohomology.) Therefore we

have

χR − i∗eb ∈ ker
(

H2
b (π1M

′, R) → H2 (π1M
′, R)

)

.

Consider N = ker (i∗ : π1M
′ → π1M). Since eb is a class in H2

b (π1M, R), we have that
the restriction of i∗eb to N is trivial in H2

b (N, R). Hence

χR |N∈ ker
(

H2
b (N, R) → H2 (N, R)

)

.

We note that χR |N is the real Euler class of

∂∞ρ |N : N → Homeo+
S

1,

constructed as in section 2.
Bouarichs’s exact sequence gives im (i∗) = ker

(

H2
b (π1M

′; R) → H2
b (N ; R)

)

, hence the
claim of lemma 4. �
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Proof of Lemma 5. As explained in section 1, if we are given a hyperbolic metric on Σg,
then, for any γ ∈ π1Σg, ρ (γ) can be represented by a mapping which lifts to a hyperbolic
isometry of H

2. (The axis of the hyperbolic isometry projects to a loop representing γ.)
This implies that ∂∞ρ (γ) is a hyperbolic map in the sense of definition 1.

Let x, y ∈ π1 (Σg, ∗) represent vanishing cycles with i (x, y) 6= 0. By the discussion
at the end of section 1 we have x, y ∈ Γ ⊂ N . According to lemma 2 this contradicts
χR |N∈ ker

(

H2
b (N ; R) → H2 (N ; R)

)

, giving one direction of lemma 5.
Conversely, assume that i (x, y) = 0 holds for all x, y ∈ Γ. (In particular, Γ must have

infinite index in π1 (Σg, ∗), thus H2 (Γ; R) = 0.)
If x−, x+ are the fixed points of ρ (x), i (x, y) = 0 implies ty (x±) = x± for all y ∈ Γ. It

is immediate from the definition of the Euler cocycle c that this implies c (f, gty) = c (f, g)
for all y ∈ Γ and arbitrary f, g. Moreover, ty fixes not only x+ but also each point in
the Γ-orbit of x+, since i (x, y) = 0 for all x ∈ Γ. This implies then that also c (fty, g) =
c (f, g) holds for all f, g ∈ Γ (although not for arbitrary f, g). We remark that each
element of N ⊂ Mapg,∗ is a product of Dehn twists (at vanishing cycles) and elements in
Γ ⊂ π1 (Σg, ∗). From lemma 3 we get (argueing by induction) that each such product can
be written in the form γty1

. . . tyr
with γ ∈ Γ and y1, . . . , yr vanishing cycles. We define

a map p : N → Γ by p (γty1
. . . tyr

) = γ. Denoting i : Γ → N the inclusion, we have just
shown that (ip)

∗
c = c. But, on the cohomology level, (ip)

∗
factors over H2 (Γ; R) = 0,

hence (ip)
∗

= 0 in cohomology. Thus (ip)
∗
χ |N= χ |N implies χ |N= 0 ∈ H2 (N ; R). �

We close this section by proving some corollaries.

Corollary 2. : Let Γ be a word-hyperbolic group and MΓ a Lefschetz fibration (with reg-
ular fiber of genus g ≥ 2) with π1MΓ = Γ, which has two vanishing cycles with nontrivial
homological intersection. Then π2MΓ 6= 0.

Remark: To any finitely presented group Γ, there exists some Lefschetz fibration MΓ

with π1MΓ = Γ ([3],[1]).

Proof. If π1M is word-hyperbolic, then H2
b (π1M, Z) → H2 (π1M, Z) is surjective, by

the Gromov-Mineyev theorem ([12]).
Assume π2M = 0. Then, by the Hopf-identity,

H2 (π1M ; Z) ≃ H2 (M ; Z) /π2M = H2 (M, Z) .

Thus, surjectivity of H2
b (π1M, Z) → H2 (π1M, Z) would imply surjectivity of

H2
b (M, Z) → H2 (M, Z). In particular, the Euler class would be bounded. This contra-

dicts theorem 1. �

Corollary 3. If a Lefschetz fibration, with regular fiber of genus ≥ 2, admits a Riemann-
ian metric with negative sectional curvature everywhere, then all vanishing cycles have
vanishing homological intersection.

Proof. If M admitted a metric of negative sectional curvature, then
H2

b (M ; Z) → H2 (M ; Z) would be surjective ([8]). �

4. Relation with simplicial volume

For a closed, orientable manifold M , we consider the simplicial volume ‖ M ‖, defined
in [8]. It is well-known ([8]) that ‖ M ‖> 0 if and only if the fundamental class ωM ∈
Hdim(M) (M ; R) is bounded.
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Lemma 6. Let π : M → B be a Lefschetz fibration with regular fiber F of genus g (F ) 6= 1.
Let e ∈ H2 (M ; Z) be the Euler class. Then

‖ M ‖> 0 if and only if the cup-product eR ∪ π∗ωB ∈ H∗ (M ; R) is bounded.

Proof. It is well-known that ‖ M ‖> 0 if and only if the fundamental class is bounded.
Thus, to show equivalence of ‖ M ‖> 0 with boundedness of eR ∪ π∗ωB, it suffices to
show that e ∪ π∗ωB is a non-zero multiple of the fundamental class, i.e., that

< e ∪ π∗ωB, [M ] > 6= 0.

The proof of this inequality is a minor generalisation of the argument in [9].
We work with de Rham-cohomology. Define π∗ : H2 (M) → H0 (B) by π∗ = D−1

B π∗DM ,
where DB resp. DM are the Poincare duality maps. One has
< π∗α ∪ β, c >=< α ∪ π∗β, π∗c > for any α, β ∈ H∗ (M) , c ∈ H∗ (M).

We continue to denote e resp. ωB some differential forms representing the cohomology
classes eR resp. ωB. At each point, e∪ π∗ωB is a multiple of the volume form. Therefore
its value on [M ] does not depend on the zero-volume set π−1π (C). Hence,

e ∪ π∗ωB ([M ]) =

∫

M−π−1π(C)

e ∪ π∗ωB =

∫

B−π(C)

π∗e ∪ ωB.

Using, for b ∈ B, < π∗e, [b] >=< π∗e, π∗ [F ] >=< e, [F ] >= χ (F ), we get

e ∪ π∗ωB ([M ]) = χ (F )

∫

B

ωB 6= 0

because χ (F ) 6= 0. �

If genus(B) ≥ 2, then π∗ωB is bounded and, thus, a sufficient condition for ‖ M ‖> 0
is boundedness of the Euler class e. One should not expect this condition to be necessary.
To understand under which conditions boundedness of e∪ π∗ωB (and hence nontriviality
of ‖ M ‖) holds, it would be necessary to understand the fourth bounded cohomology of
Lefschetz fibrations better.

References

[1] J. Amoros, F. Bogomolov, L. Katzarkov, T. Pantev, Symplectic Lefschetz fibrations with arbitrary

fundamental groups, J.Differ.Geom. 54, 489-559 (2000).
[2] A. Bouarich, Suites exactes en cohomologie bornee reelle des groupes discretes, C.R.Acad.Sci., Paris,

Ser.I 320, 1355-1359 (1995).
[3] S. Donaldson, Symplectic submanifolds and almost-complex geometry, J.Differ.Geom. 44, 666-705

(1996).
[4] E. Ghys, Groupes d’homeomorphismes du cercle et cohomologie bornee, Differential Equations, Proc.

Lefschetz Centen. Conf., Mexico City/Mex. 1984, Pt.III, Contemp. Math. 58.3, 81-106 (1987).
[5] E. Ghys, Groups acting on the circle. Preprint
[6] S. Gersten, Bounded cocycles and combings of groups, Int.J.Alg.Comput. 2, pp.307-326 (1992).
[7] R. Gompf, A. Stipsicz, 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics 20.

Providence (1999).
[8] M. Gromov, Volume and Bounded Cohomology, Public. Math. IHES 56, 5-100 (1982).
[9] M. Hoster, D. Kotschick, On the simplicial volume of fiber bundles, Proc. Am. Math. Soc. 129,

1229-1232 (2001).
[10] N. Ivanov, Foundations of the theory of bounded cohomology, J. Sov. Math. 37, 1090-1114 (1987).
[11] M. Korkmaz, B. Ozbagci, Minimal number of singular fibers in a Lefschetz fibration, Proc.AMS

129, 1545-1549 (2001).

[12] I. Mineyev, Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal. 11,
807-839 (2001).



10 Thilo Kuessner

[13] S. Morita, Characteristic classes of surface bundles and bounded cohomology, A fete of topology,
Pap. Dedic. I. Tamura, 233-257 (1988).

[14] D. Witte, Products of similar matrices, Proc. Am. Math. Soc. 126, 1005-1015 (1998).

Mathematisches Institut, Universität München, Theresienstrasse 39, D-80333 München,

Germany

kuessner@mathematik.uni-muenchen.de , http://www.mathematik.uni-muenchen.de/∼kuessner


