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1 Results

Agol’s inequality ([1], Theorem 2.1.) is the following:

Agol’s inequality: If M is a hyperbolic 3-manifold containing an incompressible,
properly embedded surface F , then

V ol (M) ≥ −2V3χ
(
Guts

(
M − F

))
,

where V3 is the volume of a regular ideal tetrahedron in hyperbolic 3-space.

In [2], this inequality has been improved to

V ol (M) ≥ V ol
(
Guts

(
M − F

))
≥ −Voctχ

(
Guts

(
M − F

))
,

where Voct is the volume of a regular ideal octahedron in hyperbolic 3-space.

In this paper we will, building on ideas from [1], prove a general inequality for
the (transversal) Gromov norm ‖M ‖F and the normal Gromov norm ‖M ‖norm

F

of laminations.

To state the result in its general form we first need two definitions.

Definition (Pared acylindrical): Let Q be a manifold with a given decom-
position

∂Q = ∂0Q ∪ ∂1Q.

The pair (Q, ∂1Q) is called a pared acylindrical manifold, if any continuous map-

ping of pairs f :
(
S1 × [0, 1] ,S1 × {0, 1}

)
→ (Q, ∂1Q), which is π1-injective as a

map of pairs, must be homotopic, as a map of pairs
(
S1 × [0, 1] ,S1 × {0, 1}

)
→ (Q, ∂1Q) ,
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into ∂Q.

Definition (Essential Decomposition): Let (N, ∂N) be a pair of topological
spaces such that N = Q ∪R for two subspaces Q,R. Let

∂0Q = Q ∩R, ∂1Q = Q ∩ ∂N, ∂1R = R ∩ ∂N, ∂Q = ∂0Q ∪ ∂1Q, ∂R = ∂0Q ∪ ∂1R.

We say that the decomposition N = Q∪R is an essential decomposition of (N, ∂N)
if the inclusions

∂1Q→ Q→ N, ∂1R→ R→ N, ∂N → N, ∂0Q→ Q, ∂0Q→ R

are each π1-injective (for each path-component).

Theorem 1. Let M be a compact, orientable, connected n-manifold and F a
lamination (of codimension one) of M .

Assume that N := M −F has a decomposition N = Q ∪R into orientable n-
manifolds (with boundary) Q,R such that the following assumptions are satisfied
for ∂0Q = Q ∩R, ∂1Q = Q ∩ ∂N, ∂1R = R ∩ ∂N :
i) each path-component of ∂0Q has amenable fundamental group,
ii) (Q, ∂1Q) is pared acylindrical, ∂1Q is acylindrical
iii) Q, ∂N, ∂1Q, ∂1R, ∂0Q are aspherical,
iv) the decomposition N = Q ∪R is an essential decomposition of (N, ∂N).

Then

‖M,∂M ‖norm
F ≥

1

n+ 1
‖ ∂Q ‖ .

In the case of 3-manifolds M carrying an essential lamination F , considering

Q = Guts
(
M −F

)
yields then as a special case:

Theorem 2. Let M be a compact 3-manifold with (possibly empty) boundary
consisting of incompressible tori, and let F be an essential lamination of M .
Then

‖M,∂M ‖norm
F ≥ −χ

(
Guts

(
M −F

))
.

More generally, if P is a polyhedron with f faces, then

‖M,∂M ‖norm
F ,P ≥ −

2

f − 2
χ
(
Guts

(
M −F

))
.

2



The following corollary applies, for example, to all hyperbolic manifolds M ob-
tained by Dehn-filling the complement of the figure-eight knot in S3. (It is known
that each of these M contains tight laminations. By the following corollary, all
these tight laminations have empty guts.)

Corollary 4: If M is a finite-volume hyperbolic 3-manifold with V ol (M) <
2V3 = 2.02..., then M carries no essential lamination F with ‖M ‖norm

F ,P =‖M ‖P

for all polyhedra P, and nonempty guts. In particular, there is no tight essential
lamination with nonempty guts.

It was observed by Calegari-Dunfield in [7] that a generalization of Agol’s in-
equality to the case of tight laminations, together with the results in [7] about
tight laminations with empty guts, would imply the following corollary.

Corollary 5 ([7], Conjecture 9.7.): The Weeks manifold admits no tight lam-
ination F .

Putting this together with the main result of a recent paper by Tao Li ([24]),
one can even improve this result as follows.

Corollary 6: The Weeks manifold admits no transversely orientable essential
lamination.

Finally, we also have an application of Theorem 1 to higher-dimensional man-
ifolds.

Corollary 7: Let M be a compact Riemannian n-manifold of negative sec-
tional curvature and finite volume. Let F ⊂ M be a geodesic n − 1-dimensional
hypersurface of finite volume. Then ‖ F ‖≤ n+1

2 ‖M ‖.

The basic idea of Theorem 1, say for simplicity in the special situation of Corollary 7,
is the following: a simplex which contributes to a normalized fundamental cycle
of M should intersect ∂Q = 2F in at most n+ 1 codimension one simplices. This
is of course not true in general: simplices can wrap around M many times and in-
tersect F arbitrarily often, and even a homotopy rel. vertices will not change this.
As an obvious examle, look at the following situation: let γ be a closed geodesic
transverse to F , and for some large N let σ be a straight simplex contained in a
small neighborhood of γN . Then σ intersects F N times and, since σ is already
straight, this number of intersections can of course not be reduced by straight-
ening. This shows that some more involved straightening must take place, and
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that the acylindricity of F is an essential condition. The way to use acylindricity
will be to find a normalization such that many subsets of simplices are mapped
to cylinders, which degenerate and thus can be removed without changing the
homology class.

We remark that many technical points, in particular the use of multicom-
plexes, can be omitted if (in the setting of Theorem 2) one does not consider
incompressible surfaces or essential laminations, but just geodesic surfaces in hy-
perbolic manifolds. In this case, all essential parts of the proof of Theorem 1
enter without the notational complications caused by the use of multicomplexes.
Therefore we have given a fairly detailed outline of the proof for this special case
in Section 6.1. This should help to motivate the general proof in Section 6.2.
(We mention that Theorem 1 is not true without assuming amenability of π1∂0Q.
This indicates that the proof of multicomplexes in the proof of Theorem 1 seems
unavoidable.)

Acknowledgements: It is probably obvious that this paper is strongly influ-
enced by Agol’s preprint [1]. Moreover, the argument that a generalization of
Agol’s inequality would imply Corollary 5 is due to [7].

2 Preliminaries

2.1 Laminations

Let M be an n-manifold, possibly with boundary. In this paper all manifolds will
be smooth and orientable. (Hence they are triangulable by Whitehead’s theorem
and possess a locally finite fundamental class.) A (codimension 1) lamination F of
M is a foliation of a closed subset F of M , i.e., a decomposition of a closed subset
F ⊂M into immersed codimension 1 submanifolds (leaves) so that M is covered
by charts φj : Rn−1 ×R →M , the intersection of any leaf with the image of any
chart φj being a union of plaques of the form φj

(
Rn−1 × {∗}

)
. (We will denote

by F both the lamination and the laminated subset of M , i.e. the union of leaves.)
If M has boundary, we will always assume without further mentioning that F is
either transverse to ∂M (that is, every leaf is transverse to F) or tangential to
∂M (that is, ∂M is a leaf of F). If neither of these two conditions were true, then
the transverse and normal Gromov norm would be infinite, therefore all lower
bounds will be trivially true.

To construct the leaf space T of F , one considers the pull-back lamination F̃
on the universal covering M̃ . The space of leaves T is defined as the quotient of M̃
under the following equivalence relation ∼. Two points x, y ∈ M̃ are equivalent
if either they belong to the same leaf of F̃ , or they belong to the same connected

component of the metric completion M̃ − F̃ (for the path metric inherited by
M̃ − F̃ from an arbitrary Riemannian metric on M̃).
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Laminations of 3-manifolds. A lamination F of a 3-manifoldM is called essen-
tial if no leaf is a sphere or a torus bounding a solid torus, M −F is irreducible,

and ∂
(
M −F

)
is incompressible and end-incompressible in M −F , where again

the metric completion M −F of M −F is taken w.r.t. the path metric inherited
from any Riemannian metric on M , see [13], ch.1. (Note that M −F is immersed
in M , the leaves of F in the image of the immersion are called boundary leaves.)

Examples of essential laminations are taut foliations or compact, incompress-
ible, boundary-incompressible surfaces in compact 3-manifolds. (We always con-
sider laminations without isolated leaves. If a lamination has isolated leaves, then
it can be converted into a lamination without isolated leaves by replacing each
two-sided isolated leaf Si with the trivially foliated product Si × [0, 1], resp. each
one-sided isolated leaf with the canonically foliated normal I-bundle, without
changing the topological type of M .)

If F is an essential lamination, then the leaf space T is an order tree, with
segments corresponding to directed, transverse, efficient arcs. (An order tree T is
a set T with a collection of linearly ordered subsets, called segments, such that
the axioms of [13], Def. 6.9., are satisfied.) Moreover, T is an R-order tree, that
is, it is a countable union of segments and each segment is order isomorphic to
a closed interval in R. T can be topologized by the order topology on segments
(and declaring that a set is closed if the intersection with each segment is closed).
For this topology, π0T and π1T are trivial (see, for example, [27], Chapter 5, and
its references).

The order tree T comes with a fixed-point free action of π1M . Fenley ([9])
has exhibited hyperbolic 3-manifolds whose fundamental groups do not admit any
fixed-point free action on R-order trees. Thus there are hyperbolic 3-manifolds
not carrying any essential lamination.

If M is hyperbolic and F an essential lamination, then M −F has a charac-
teristic submanifold which is the maximal submanifold that can be decomposed
into I-bundles and solid tori, respecting boundary patterns (see [18], [19] for pre-
cise definitions). The complement of this characteristic submanifold is denoted
by Guts (F). It admits a hyperbolic metric with geodesic boundary and cusps.
(Be aware that some authors, like [7], include the solid tori into the guts.) If
F = F is a properly embedded, incompressible, boundary-incompressible surface,
then Agol’s inequality states that V ol (M) ≥ −2V3χ (Guts (F )). This implies,
for example, that a hyperbolic manifold of volume < 2V3 can not contain any
geodesic surface of finite area. Recently, this inequality has been improved to
V ol (M) ≥ V ol (Guts (F )) ≥ −Voctχ (Guts (F )) in [2], using estimates coming
from Perelman’s work on the Ricci flow.
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Assume that F is a codimension one lamination of an n-manifold M such that
its leaf space T is an R-order tree. (For example this is the case if n = 3 and F
is essential.) An essential lamination is called tight if T is Hausdorff. It is called
unbranched if T is homeomorphic to R. It is said to have two-sided branching ([5],
Definition 2.5.2) if there are leaves λ, λ1, λ2, µ, µ1, µ2 such that the corresponding
points in the T satisfy λ < λ1, λ < λ2, µ > µ1, µ > µ2 but λ1, λ2 are incomparable
and µ1, µ2 are incomparable. It is said to have one-sided branching if it is neither
unbranched nor has two-sided branching.

IfM is a hyperbolic 3-manifold and carries a tight lamination with empty guts,
then Calegari and Dunfield have shown ([7], Theorem 3.2.) that π1M acts effec-
tively on the circle, i.e., there is an injective homomorphism π1M → Homeo

(
S1
)
.

This implies that the Weeks manifold (the closed hyperbolic manifold of smallest
volume) can not carry a tight lamination with empty guts ([7], Corollary 9.4.).
The aim of this paper is to find obstructions to the existence of laminations with
nonempty guts.

2.2 Simplicial volume and refinements

Let M be a compact, orientable, connected n-manifold, possibly with boundary.
Its top integer (singular) homology group Hn (M,∂M ;Z) is cyclic. The image
of a generator under the change-of-coefficients homomorphism Hn (M,∂M ;Z) →
Hn (M,∂M ;R) is called a fundamental class and is denoted [M,∂M ]. If M is not
connected, we define [M,∂M ] to be the formal sum of the fundamental classes of
its connected components.

The simplicial volume ‖ M,∂M ‖ is defined as ‖ M,∂M ‖= inf {
∑r

i=1 | ai |}
where the infimum is taken over all singular chains

∑r
i=1 aiσi (with real coeffi-

cients) representing the fundamental class in Hn (M,∂M ;R).
If M−∂M carries a complete hyperbolic metric of finite volume V ol (M), then

‖M,∂M ‖= 1
Vn
V ol (M) with Vn = sup {V ol (∆) : ∆ ⊂ Hn geodesic simplex} (see

[14],[30],[3], [10]).
More generally, let P be any polyhedron. Then the invariant ‖ M,∂M ‖P is

defined in [1] as follows: denoting by C∗ (M,∂M ;P ;R) the complex of P -chains
with real coefficients, and by H∗ (M,∂M ;P ;R) its homology, there is a canonical
chain homomorphism ψ : C∗ (M,∂M ;P ;R) → C∗ (M,∂M ;R), given by some
triangulations of P which is to be chosen such that all possible cancellations of
boundary faces are preserved. ‖M,∂M ‖P is defined as the infimum of

∑r
i=1 | ai |

over all P -chains
∑r

i=1 aiPi such that ψ (
∑r

i=1 aiPi) represents the fundamental
class [M,∂M ]. Let VP := sup {V ol (∆)}, where the supremum is taken over all
straight P -polyhedra ∆ ⊂ H3. Proposition 1 is Lemma 4.1. in [1]. (The proof in
[1] is quite short, and it does not give details for the cusped case. However, the
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proof in the cusped case can be completed using the arguments in sections 5 and
6 of Francaviglia’s paper [10].)

Proposition 1. If M −∂M admits a hyperbolic metric of finite volume V ol (M),
then

‖M,∂M ‖P =
1

VP
V ol (M) .

LetM be a manifold and F a codimension one lamination ofM . Let ∆n be
the standard simplex in Rn+1, and σ : ∆n →M some continuous singular simplex.
The lamination F induces an equivalence relation on ∆n by: x ∼ y ⇐⇒ σ (x) and
σ (y) belong to the same connected component of L ∩ σ (∆n) for some leaf L of
F . We say that a singular simplex σ : ∆n → M is laminated if the equivalence
relation ∼ is induced by a lamination F |σ of ∆n. We call a lamination F of
∆n affine if there is an affine mapping f : ∆n → R such that x, y ∈ ∆n belong
to the same leaf if and only if f (x) = f (y). We say that a lamination G of
∆n is conjugate to an affine lamination if there is a simplicial homeomorphism
H : ∆n → ∆n such that H∗G is an affine lamination.
We say that a singular n-simplex σ : ∆n → M , n ≥ 2, is transverse to F if it
is laminated and it is either contained in a leaf, or F |σ is conjugate to an affine
lamination G of ∆n.
For n = 1, we say that a singular 1-simplex σ : ∆1 →M is transverse to F if it is
either contained in a leaf, or for each lamination chart φ : U → Rm−1 ×R1 (with
m-th coordinate map φm : U → R1) one has that φm ◦σ |σ−1(U): σ

−1 (U) → R1 is
locally surjective at all points of int

(
∆1
)
, i.e. for all p ∈ int

(
∆1
)
∩ σ−1 (U), the

image of φm ◦ σ |σ−1(U) contains a neighborhood of φm ◦ σ (p).
We say that the simplex σ : ∆n →M is normal to F if, for each leaf F , σ−1 (F )
consists of normal disks, i.e. disks meeting each edge of ∆n at most once. (If
F = ∂M is a leaf of F we also allow that σ−1 (F ) can be a face of ∆n). In
particular, any transverse simplex is normal.
In the special case of foliations F one has that the transversality of a singular
simplex σ is implied by (hence equivalent to) the normality of σ, as can be shown
along the lines of [23], section 1.3.
More generally, let P be any polyhedron. Then we say that a singular polyhedron
σ : P → M is normal to F if, for each leaf F , σ−1 (F ) consists of normal disks,
i.e. disks meeting each edge of P at most once (or being equal to a face of P , if
F is a boundary leaf).
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transverse normal, not transverse not normal

Definition 1. Let M be a compact, oriented, connected n-manifold, possibly with
boundary, and F a foliation or lamination on M . Let ∆n be the standard simplex
and P any polyhedron. Then

‖M,∂M ‖F := inf

{
r∑

i=1

| ai |: ψ

(
r∑

i=1

aiσi

)
represents [M,∂M ] , σi : ∆n →M transverse to F

}

and

‖M,∂M ‖norm
F ,P := inf

{
r∑

i=1

| ai |: ψ

(
r∑

i=1

aiσi

)
represents [M,∂M ] , σi : P →M normal to F

}
.

In particular, we define ‖M,∂M ‖norm
F =‖M,∂M ‖norm

F ,∆n .

All norms are finite, under the assumption that F is transverse or tangential
to ∂M .
There is an obvious inequality

‖M,∂M ‖≤‖M,∂M ‖norm
F ≤‖M,∂M ‖F .

In the case of foliations, equality ‖M,∂M ‖norm
F =‖M,∂M ‖F holds.

(We remark that all definitions extend in an obvious way to disconnected mani-
folds by summing over the connected components.)

Proposition 2 and Lemma 1 are a straightforward generalisation of [5], Theo-
rem 2.5.9, and of arguments in [1].
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Proposition 2. Let M be a compact, oriented 3-manifold.
a) If F is an essential lamination which is either unbranched or has one-sided
branching such that the induced lamination of ∂M is unbranched, then

‖M,∂M ‖norm
F ,P =‖M,∂M ‖P

for each polyhedron P .
b) If F is a tight essential lamination, then

‖M,∂M ‖norm
F ,P =‖M,∂M ‖P

for each polyhedron P .

Proof. Since F is an essential lamination, we know from [13], Theorem 6.1., that
the leaves are π1-injective, the universal covering M̃ is homeomorphic to R3 and
that the leaves of the pull-back lamination are planes, in particular aspherical.
Therefore Proposition 2 is a special case of Lemma 1.

Lemma 1. Let M be a compact, oriented, aspherical manifold, and F a lamina-
tion of codimension one.
Assume that the leaves are π1-injective and aspherical, and that the leaf space T
is an R-order tree.
a) If the leaf space T is either R or branches in only one direction, such that the
induced lamination of ∂M has leaf space R, then

‖M,∂M ‖norm
F ,P =‖M,∂M ‖P

for each polyhedron P .
b) If the leaf space is a Hausdorff tree, then

‖M,∂M ‖norm
F ,P =‖M,∂M ‖P

for each polyhedron P .

Proof. To prove the wanted equalities, it suffices in each case to show that any
(relative) cycle can be homotoped to a cycle consisting of normal polyhedra.
We denote by F̃ the pull-back lamination of M̃ and p : M̃ → T = M̃/F̃ the
projection to the leaf space.
a) First we consider the case that P=simplex ([5], Section 4.1) and F unbranched.
For this case, we can repeat the argument in [5], Lemma 2.2.8. Namely, let
us be given a (relative) cycle

∑r
i=1 aiσi, lift it to a π1M -equivariant (relative)

cycle on M̃ and then perform an (equivariant) straightening, by induction on the
dimension of subsimplices of the lifts σ̃i as follows: for each edge ẽ of any lift
σ̃i, its projection p (ẽ) to the leaf space T is homotopic to a unique straight arc
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str (p (ẽ)) in T ≃ R. It is easy to see (covering the arc by foliation charts and then
extending the lifted arc stepwise) that str (p (ẽ)) can be lifted to an arc str (ẽ)
with the same endpoints as ẽ, and that the homotopy between str (p (ẽ)) and
p (ẽ) can be lifted to a homotopy between str (ẽ) and ẽ. str (ẽ) is transverse to F ,
because its projection is a straight arc in T . These homotopies of edges can be
extended to a homotopy of the whole (relative) cycle. Thus we have straightened
the 1-skeleton of the given (relative) cycle.

Now let us be given a 2-simplex f̃ : ∆2 → M̃ with transverse edges. There is

an obvious straightening str
(
p
(
f̃
))

of p
(
f̃
)

: ∆2 → T as follows: if, for t ∈ T ,
(
pf̃
)−1

(t) has two preimages x1, x2 on edges of ∆2 (which are necessarily unique),

then str
(
p
(
f̃
))

maps the line which connects x1 and x2 in ∆2 constantly to t.

It is clear that this defines a continuous map str
(
p
(
f̃
))

: ∆2 → T .

Since leaves F̃ of F̃ are connected (π0F̃ = 0), str
(
p
(
f̃
))

can be lifted to a

map str
(
f̃
)

: ∆2 → M̃ with p
(
str

(
f̃
))

= str
(
p
(
f̃
))

. str
(
f̃
)

is transverse to

F , because its projection is a straight simplex in T .

There is an obvious homotopy between p
(
f̃
)

and str
(
p
(
f̃
))

. For each t ∈ T ,

the restriction of the homotopy to
(
pf̃
)−1

(t) can be lifted to a homotopy in M̃ ,

because π1M̃ = 0. Since π2M̃ = 0, these homotopies for various t ∈ T fit together

continuously to give a homotopy between f̃ and str
(
f̃
)
.

These homotopies of 2-simplices leave the (already transverse) boundaries
pointwise fixed, thus they can be extended to a homotopy of the whole (rela-
tive) cycle. Hence we have straightened the 2-skeleton of the given (relative)
cycle.

Assume that we have already straightened the k-skeleton, for some k ∈ N. The
analogous procedure, using πk−1F̃ = 0 for all leaves, and πkM̃ = 0, πk+1M̃ = 0,
allows to straighten the (k + 1)-skeleton of the (relative) cycle. This finishes the
proof in the case that F is unbranched.

The generalization to the case that F has one-sided branching such that the
induced lamination of ∂M is unbranched works as in [5], Theorem 2.6.6.

We remark that in the case P = simplex we get not only a normal cycle, but
even a transverse cycle.

Now we consider the case of arbitrary polyhedra P . Let
∑r

i=1 aiσi be a P-
cycle. It can be subtriangulated to a simplicial cycle

∑r
i=1 ai

∑s
j=1 τi,j. Again

the argument in [5], Lemma 2.2.8 (resp. its version for manifolds with boundary),
shows that this simplicial cycle can be homotoped such that each τi,j is transverse
(and such that boundary cancellations are preserved). But transversality of each
τi,j implies by definition that σi =

∑s
j=1 τi,j is normal (though in general not
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transverse) to F .
b) By assumption M̃/F̃ is a Hausdorff tree. We observe that its branching points
are the projections of complementary regions. Indeed, let F be a leaf of F , then F̃
is a submanifold of the contractible manifold M̃ . By asphericity and π1-injectivity
of F , F̃ must be contractible. By Alexander duality it follows that M̃− F̃ has two

connected components. Therefore the complement of the point p
(
F̃
)

in the leaf

space has (at most) two connected components, thus p
(
F̃
)

can not be a branch
point.
Again, to define a straightening of P -chains it suffices to define a canonical
straightening of singular polyhedra P such that straightenings of common bound-
ary faces will agree. Let ṽ0, . . . , ṽn be the vertices of the image of P . For each pair
{ṽi, ṽj} there exists at most one edge ẽij with vertices ṽi, ṽj in the image of P .
Since the leaf space is a tree, we have a unique straight arc str (p (ẽij)) connecting
the points p (ṽi) and p (ṽj) in the leaf space. As in a), one can lift this straight

arc str (p (ẽij)) to an arc str (ẽij) in M̃ , connecting ṽi and ṽj , which is transverse
to F . We define this arc str (ẽij) to be the straightening of ẽij. As in a), we have
homotopies of 1-simplices, which extend to a homotopy of the whole (relative)
cycle. Thus we have straightened the 1-skeleton.

Now let us be given the 3 vertices ṽ0, ṽ1, ṽ2 of a 2-simplex f̃ with straight
edges. If the projections p (ṽ0) , p (ṽ1) , p (ṽ2) belong to a subtree isomorphic to
a connected subset of R, then we can straighten f̃ as in a). If not, we have
that the projection of the 1-skeleton of this simplex has exactly one branch point,
which corresponds to a complementary region. (The projection may of course
meet many branch points of the tree, but the image of the projection, considered
as a subtree, can have at most one branch point. In general, a subtree with n
vertices can have at most n− 2 branch points.) The preimage of the complement
of this complementary region consists of three connected subsets of the 2-simplex
(”corners around the vertices”). We can straighten each of these subsets and do
not need to care about the complementary region corresponding to the branch
point. Thus we have straightened the 2-skeleton.
Assume that we have already straightened the k-skeleton, for some k ∈ N. Let us
be given the k+2 vertices ṽ0, ṽ1, . . . , ṽk+1 of a (k + 1)-simplex with straight faces.
Then we have (at most k) branch points in the projection of the simplex, which
correspond to complementary regions. Again we can straighten the parts of the
simplex which do not belong to these complementary regions as in a), since they
are projected to linearly ordered subsets of the tree. Thus we have straightened
the (k + 1)-skeleton.

Since, by the recursive construction, we have defined straightenings of sim-
plices with common faces by first defining (the same) straightenings of their com-
mon faces, the straightening of a (relative) cycle will be again a (relative) cycle,
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in the same (relative) homology class.

Remark: For ‖ M ‖F instead of ‖ M ‖norm
F , equality b) is in general wrong,

and equality a) is unknown (but presumably wrong).
If F is essential but not tight, one may still try to homotope cycles to be transverse,
by possibly changing the lamination. In the special case that the cycle is coming
from a triangulation, this has been done in [4] and [11] by Brittenham resp. Gabai.
It is not obvious how to generalize their arguments to cycles with overlapping
simplices.

3 Retracting chains to codimension zero submanifolds

3.1 Definitions

The results of this section are essentially all due to Gromov, but we follow mainly
our exposition in [22]. We start with some recollections about multicomplexes (cf.
[14], Section 3, or [22], Section 1).

A multicomplex K is a topological space | K | with a decomposition into simplices,
where each n-simplex is attached to the n−1-skeleton Kn−1 by a simplicial home-
omorphism f : ∂∆n → Kn−1. (In particular, each n-simplex has n + 1 distinct
vertices.)

As opposed to simplicial complexes, in a multicomplex there may be n-simplices
with the same n− 1-skeleton.

We call a multicomplex minimally complete if the following holds: whenever
σ : ∆n →| K | is a singular n-simplex, such that ∂0σ, . . . , ∂nσ are distinct simplices
of K, then σ is homotopic relative ∂∆n to a unique simplex in K.

We call a minimally complete multicomplex K aspherical if all simplices σ 6= τ
in K satisfy σ1 6= τ1. That means, simplices are uniquely determined by their 1-
skeleton.
Orientations of multicomplexes are defined as usual in the simplicial theory. For
a simplex σ, σ will denote the simplex with the opposite orientation.
A submulticomplex L of a multicomplex K consists of a subset of the set of
simplices closed under face maps. (K,L) is a pair of multicomplexes if K is a
multicomplex and L is a submulticomplex of K.
A group G acts simplicially on a pair of multicomplexes (K,L) if it acts on the set
of simplices of K, mapping simplices in L to simplices in L, such that the action
commutes with all face maps. For g ∈ G and σ a simplex in K, we denote by gσ
the simplex obtained by this action.

12



3.2 Construction of K (X)

We recall the construction from [22], section 1.3 (originally due to [14], page 45-
46).

For a topological space X, we denote by S∗ (X) the simplicial set of all singular
simplices in X and | S∗ (X) | its geometric realization.

For a topological space X, a multicomplex K̂ (X) ⊂| S∗ (X) | is constructed as
follows. The 0-skeleton K̂0 (X) equals S0 (X). The 1-skeleton K̂1 (X) contains one
element in each homotopy class (rel. {0, 1}) of singular 1-simplices f : [0, 1] → X
with f (0) 6= f (1). For n ≥ 2, assuming by recursion that the n-1-skeleton is
defined, the n-skeleton K̂n (X) contains one singular n-simplex in each homotopy
class (rel. boundary) of singular n-simplices f : ∆n → X with ∂f ∈ K̂n−1 (X).
We can choose simplices in K̂ (X) such that σ ∈ K̂ (X) ⇔ σ ∈ K̂ (X), where
σ denotes the simplex with the opposite orientation. We will henceforth assume
that K̂ (X) is constructed according to this condition.

According to [14], | K̂ (X) | is weakly homotopy equivalent to X.
The multicomplex K (X) is defined as the quotient

K (X) := K̂ (X) / ∼

where simplices in K̂ (X) are identified if and only if they have the same 1-skeleton.
Let p be the canonical projection p : K̂ (X) → K (X) .

K (X) is minimally complete and aspherical.
If X ′ ⊂ X is a subspace, then we have (not necessarily injective) simplicial

mappings ĵ : K̂ (X ′) → K̂ (X) and j : K (X ′) → K (X).
If π1X

′ → π1X is injective (for each path-connected component of X ′), then j
is injective ([22], Section 1.3) and we can (and will) consider K (X ′) as a submul-
ticomplex of K (X). (Since simplices in K̂ (X ′) have image in X ′, this means that
we assume to have constructed K̂ (X) such that simplices in K̂ (X) have image in
X ′ whenever this is possible.) If moreover πnX

′ → πnX is injective for all n ≥ 2
(e.g. if X ′ is aspherical), then also ĵ is injective and K̂ (X ′) can be considered as
a submulticomplex of K̂ (X).

In particular, if X and X ′ are aspherical and π1X
′ → π1X is injective,

then there is an inclusion

i∗ : Csimp
∗

(
K (X) ,K

(
X ′)) = Csimp

∗

(
K̂ (X) , K̂

(
X ′))→ Csing

∗

(
X,X ′)

into the relative singular chain complex of (X,X ′).

Infinite and locally finite chains. In this paper we will also work with infinite
chains, and in particular with locally finite chains on noncompact manifolds, as
introduced in [14], section 0.2.
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For a topological space X, a formal sum
∑

i∈I aiσi of singular k-simplices with
real coefficients (with a possibly infinite index set I, and the convention ai 6= 0
for i ∈ I) is an infinite singular k-chain. It is said to be a locally finite chain if
each point of X is contained in the image of at most finitely many σi. Infinite
resp. locally finite k-chains form real vector spaces Cinf

k (X) resp. C lf
k (X). The

boundary operator maps locally finite k-chains to locally finite k-1-chains, hence,
for a pair of spaces (X,X ′) the homology H lf

∗ (X,X ′) of the complex of locally
finite chains can be defined.
For a noncompact, orientable n-manifoldX with (possibly noncompact) boundary
∂X, one has a fundamental class [X,∂X] ∈ H lf

n (X,∂X). We will say that an
infinite chain

∑
i∈I aiσi represents [X,∂X] if it is homologous to a locally finite

chain representing [X,∂X] ∈ H lf
n (X,∂X).

For a simplicial complex K, we denote by Csimp,inf
k (K) the R-vector space of

(possibly infinite) formal sums
∑

i∈I aiσi with ai ∈ R and σi k-simplices in K.
If πnX

′ → πnX is injective for n ≥ 1, we have again the obvious inclusion i∗ :

Csimp,inf
∗

(
K̂ (X) , K̂ (X ′)

)
→ Cinf

∗ (X,X ′).

The following observation is of course a well-known application of the homotopy
extension property, but we will use it so often that we state it here for reference.

Observation 1. : Let X be a topological space and σ0 : ∆n → X a singular
simplex. Let H : ∂∆n × I → X be a homotopy with H (x, 0) = σ0 (x) for all
x ∈ ∂∆n. Then there exists a homotopy H : ∆n × I → X with H |∂∆n×I= H and
H |∆n×{0}= σ0.

If X ′ ⊂ X is a subspace and the images of σ0 and H belong to X ′, then we
can choose H such that its image belongs to X ′.

Lemma 2. Let (X,X ′) be a pair of topological spaces. Assume πnX
′ → πnX is

injective for each path-component of X ′ and each n ≥ 1.
a) Let

∑
i∈I aiτi ∈ Cinf

n (X,X ′) be a (possibly infinite) singular n-chain. Assume
that I is countable, and that each path-component of X and each non-empty path-
component of X ′ contain uncountably many points. Then

∑
i∈I aiτi ∈ Cinf

n (X,X ′)

is homotopic to a (possibly infinite) simplicial chain
∑

i aiτ
′
i ∈ Csimp,inf

n

(
K̂ (X) , K̂ (X ′)

)
.

In particular,

∑

i

aiτ
′
i ∈ Csimp,inf

n

(
K̂ (X) , K̂

(
X ′)) ⊂ Cinf

∗

(
X,X ′)

is homologous to
∑

i∈I aiτi.

b) Let σ0 ∈ K̂ (X) and H : ∆n × I → X a homotopy with H (., 0) = σ0. Consider
a minimal triangulation ∆n × I = ∆0 ∪ . . .∆n of ∆n × I into n+1 n+1-simplices.
Assume that H (∂∆n × I) consists of simplices in K̂ (X). Then H is homotopic
(rel. ∆n ×{0} ∪ ∂∆n × I) to a map H : ∆n × I → X such that H |∆i

∈ K̂ (X), in
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particular σ1 := H (., 1) ∈ K̂ (X).

Proof. a) From the assumptions it follows that there exists a homotopy of the
0-skeleton such that each vertex is moved into a distinct point of X, and such
that vertices in X ′ remain in X ′ during the homotopy. By Observation 1, this
homotopy can by induction be extended to a homotopy of the whole chain.

Now we prove the claim by induction on k (0 ≤ k < n). We assume that the
k-skeleton of

∑
i∈I aiτi consists of simplices in K̂ (X) and we want to homotope∑

i∈I aiτi such that the homotoped k+1-skeleton consists of simplices in K̂ (X).
By construction, each singular k+1-simplex σ in X with boundary a simplex in

K̂ (X) is homotopic (rel. boundary) to a unique k+1-simplex in K̂ (X). Since the
homotopy keeps the boundary fixed, the homotopies of different k+1-simplices
are compatible. By Observation 1, the homotopy of the k+1-skeleton can by
induction be extended to a homotopy of the whole chain.

If the image of the k+1-simplex σ is contained in X ′, then it is homotopic rel.
boundary to a simplex in K̂ (X ′), for a homotopy with image in X ′. Thus we
can realise the homotopy such that all simplices with image in X ′ are homotoped
inside X ′.
b) follows by the same argument as a), succesively applied to ∆0, . . . ,∆n.

We remark that there exists a canonical simplicial map

p : Csimp,inf
∗

(
K̂ (X) , K̂

(
X ′))→ Csimp,inf

∗

(
K (X) ,K

(
X ′)) .

p is defined by induction. It is defined to be the identity on the 1-skeleton. If it
is defined on the n-1-skeleton, for n ≥ 2, then, for an n-simplex τ , p (τ) ∈ K (X)
is the unique simplex with ∂ip (τ) = p (∂iτ) for i = 0, . . . , n.

3.3 Action of G = Π (A)

We repeat the definitions from [22], section 1.5. (originally due to [14]), as they
will be frequently used in the remainder of the paper.

Let (P,A) be a pair of minimally complete multicomplexes.
We define its nontrivial-loops space Ω∗A as the set of homotopy classes (rel. {0, 1})
of continuous maps γ : [0, 1] →| A | with γ (0) = γ (1) and not homotopic (rel.
{0, 1}) to a constant map.

We define

Π (A) :=





{γ1, . . . , γn} : n ∈ N, γ1, . . . , γn ∈ A1 ∪ Ω∗A
γi (0) 6= γj (0) , γi (1) 6= γj (1) for i 6= j,

{γ1 (0) , . . . , γn (0)} = {γ1 (1) , . . . , γn (1)} .




.
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If γ, γ′ are elements of A1 with γ′ 6= γ and γ (0) = γ′ (1), we denote1 γ ∗ γ′ ∈ A1

to be the unique edge of A in the homotopy class of the concatenation. If γ ∈ A1

and γ′ ∈ Ω∗A (or vice versa), with γ (1) 6= γ (0) = γ′ (1) = γ′ (0), we also de-
note γ ∗ γ′ ∈ A1 the unique edge in the homotopy class of the concatenation. If
γ, γ′ ∈ Ω∗A with γ (1) = γ (0) = γ′ (1) = γ′ (0), we denote γ ∗ γ′ ∈ Ω∗A the
concatenation of homotopy classes of loops.

This can be used to define a multiplication on Π (A) as follows:

given {γ1, . . . , γm} and {γ′1, . . . , γ
′
n}, we chose a reindexing of the unordered sets

{γ1, . . . , γm} and {γ′1, . . . , γ
′
n} such that we have: γj (1) = γ′j (0) for 1 ≤ j ≤ i and

γj (1) 6= γ′k (0) for j ≥ i+ 1, k ≥ i+ 1. (Since we are assuming that all γj (1) are
pairwise distinct, and also all γ′j (0) are pairwise distinct, such a reindexing exists
for some i ≥ 0, and it is unique up to permuting the indices ≤ i and permuting
separately the indices of γj ’s and γ′k’s with j ≥ i+ 1, k ≥ i+ 1.)
Moreover we permute the indices {1, . . . , i} such that there exists some h with
0 ≤ h ≤ i satisfying the following conditions:
- for 1 ≤ j ≤ h we have either γ′j 6= γj ∈ A1 or γ′j 6= γ−1

j ∈ Ω∗A,

- for h < j ≤ i we have either γ′j = γj ∈ A1 or γ′j = γ−1
j ∈ Ω∗A.

With this fixed reindexing we define

{γ1, . . . , γm}
{
γ′1, . . . , γ

′
n

}
:=
{
γ′1 ∗ γ1, . . . , γ

′
h ∗ γh, γi+1, . . . , γm, γ

′
i+1, . . . , γ

′
n

}
.

(Note that we have omitted all γ′j ∗ γj with j > h. The choice of γ′j ∗ γj rather
than γj ∗ γ

′
j is just because we want to define a left action on (P,A).)

We have shown in [22] (footnote to Section 1.5.1) that the product belongs to
Π (A). Moreover, the so-defined multiplication is independent of the chosen rein-
dexing. It is clearly associative. A neutral element is given by the empty set.
The inverse to {γ1, . . . , γn} is given by {γ′1, . . . , γ

′
n} with γ′i = γi if γi ∈ A1 resp.

γ′i = γ−1
i if γi ∈ Ω∗A. (Indeed, in this case h = 0, thus {γ1, . . . , γn} {γ

′
1, . . . , γ

′
n}

is the empty set.) Thus we have defined a group law on Π (A).

We remark that there is an inclusion Π (A) ⊂ map0

(
A0, [[0, 1] , | A |]|P |

)
, where

[[0, 1] , | A |]|P | is the set of homotopy classes (in | P |) rel. {0, 1} of maps from [0, 1]

to | A |, and map0

(
A0, [[0, 1] , | A |]|P |

)
is the set of maps f : A0 → [[0, 1] , | A |]|P |

with

1We follow the usual convention to define the concatenation of paths by γ ∗ γ′ (t) = γ (2t) if
t ≤ 1

2
and γ ∗ γ′ (t) = γ′ (2t − 1) if t ≥ 1

2
. Unfortunately this implies that, in order to let Π (A)

act on P , we will have the multiplication in Π (A) such that, for example, {γ} {γ′} = {γ′ ∗ γ}.
We hope that this does not lead to confusion.
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- f (y) (0) = y for all y ∈ A0 and
- f (.) (1) : A0 → A0 is a bijection.
This inclusion is given by sending {γ1, . . . , γn} to the map f defined by f (γi (0)) =
[γi] for i = 1, . . . , n, and f (y) = [cy] (the constant path) for y 6∈ {γ1 (0) , . . . , γn (0)}.
The inclusion is a homomorphism with respect to the group law defined on

map0

(
A0, [[0, 1] , | A |]|P |

)
by [gf (y)] := [f (y)] ∗ [g (f (y) (1))].

Action of Π(A) on P :

From now on we assume: P is aspherical. We define an action ofmap0

(
A0, [[0, 1] , | A |]|P |

)

on P . This gives, in particular, an action of Π (A) on P .

Let g ∈ map0

(
A0, [(0, 1) , | A |]|P |

)
. Define gy = g (y) (1) for y ∈ A0 and gx = x

for x ∈ P0 −A0. This defines the action on the 0-skeleton of P .
We extend this to an action on the 1-skeleton of P : Recall that, by minimal
completeness of P , 1-simplices σ are in 1-1-correspondence with homotopy classes
(rel. {0, 1}) of (nonclosed) singular 1-simplices in | P | with vertices in P0. Using

this correspondence, define gσ :=
[
g (σ (0))

]
∗ [σ] ∗ [g (σ (1))], where ∗ denotes

concatenation of (homotopy classes of) paths.
In [22], Section 1.5.1, we proved that this defines an action on P1 and that

there is an extension of ths action to an action on P . (The extension is unique
because P is aspherical.)

We remark, because this will be one of the assumptions to apply Lemma 7,
that the action of any element g ∈ Π(A) is homotopic to the identity. The
homotopy between the action of the identity and the action of {γ1, . . . , γr} given
by the action of

{
γt
1, . . . , γ

t
r

}
, 0 ≤ t ≤ 1, with γt

i (s) = γi (st).
The next Lemma follows directly from the construction, but we will use it so

often that we want to explicitly state it.

Lemma 3. Let (P,A) be a pair of aspherical, minimally complete multicomplexes,
with the action of G = Π(A). If σ ∈ P is a simplex, all of whose vertices are not
in A, then gσ = σ for all g ∈ G.

For a topological space and a subset P ⊂ S∗ (X), closed under face maps,
the (antisymmetric) bounded cohomology H∗

b (P ) and its pseudonorm are defined
literally like for multicomplexes in [14], Section 3.2. The following well-known fact
will be needed for applications of Lemma 7 (to the setting of Theorem 1) with
P = Kstr (∂Q) , G = Π(K (∂0Q)).

Lemma 4. a) Let (P,A) be a pair of minimally complete multicomplexes. If
each connected component of | A | has amenable fundamental group, then Π(A)
is amenable.
b) Let X be a topological space, P ⊂ S∗ (X) a subset closed under face maps, and
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G an amenable group acting on P . Then the canonical homomorphism

id⊗ 1 : Csimp
∗ (P ) → Csimp

∗ (P ) ⊗ZG Z

induces an isometric monomorphism in bounded cohomology.

Proof. a) The proof is an obvious adaptation of the proof of [22], Lemma 4.
b) This is proved by averaging bounded cochains, see [14].

3.4 Retraction to central simplices

Lemma 5. Let (N, ∂N) be a pair of topological spaces with N = Q ∪ R for two
subspaces Q,R. Let

∂0Q = Q ∩R, ∂1Q = Q ∩ ∂N, ∂1R = R ∩ ∂N, ∂Q = ∂0Q ∪ ∂1Q, ∂R = ∂0Q ∪ ∂1R.

Assume that ∂1Q → Q → N, ∂1R → R → N, ∂N → N, ∂0Q → Q, ∂0Q → R
are π1-injective, and that ∂N, ∂1Q, ∂1R, ∂0Q are aspherical (and thus the corre-
sponding K (.) can be considered as submulticomplexes of K (N).)

Consider the simplicial action of G = Π(K (∂0Q)) on K (N).
Then there is a chain homomorphism

r : Csimp,inf
∗ (K (N)) ⊗ZG Z → Csimp,inf

∗ (K (Q)) ⊗ZG Z

in degrees ∗ ≥ 2, mapping Csimp,inf
∗ (GK (∂N))⊗ZGZ to Csimp,inf

∗ (GK (∂1Q))⊗ZG

Z such that
- if σ is a simplex in K (N), then r (σ ⊗ 1) = κ ⊗ 1, where either κ is a simplex
in K (Q) or κ = 0,
- if σ is a simplex in K (Q), then r (σ ⊗ 1) = σ ⊗ 1,
- if σ is a simplex in K (R), then r (σ ⊗ 1) = 0.

Proof. This is [22], Proposition 6. (We have replaced the assumption ker (π1∂0Q→ π1Q) =
ker (π1∂0Q→ π1R) from [22] by the stronger assumption of π1-injectivity, since
this will be true in all our applications and we have no need for the more gen-
eral assumption.) The Conclusion is stated in [22] for locally finite chains, but of
course r extends linearly to infinite chains.

Remark: If some edge of σ is contained in K (∂0Q) = K (Q) ∩K (R), then

σ ⊗ 1 = 0 ∈ Csimp,inf
∗ (K (N)) ⊗ZG Z,

see [22], Section 1.5.2. (The proof is essentially the same as that of Lemma 15
below.) In particular, if σ is contained in both K (Q) and K (R), then r (σ ⊗ 1) =
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r (0) = 0.

Fundamental cycles in K (N) and K (Q). Let N be a (possibly noncom-
pact) connected, orientable n-manifold with (possibly noncompact) boundary ∂N .
Then H lf

n (N, ∂N) ≃ Z by Whitehead’s theorem and a generator is called [N, ∂N ].
(It is only defined up to sign, but this will not concern our arguments.) Recall
that an infinite chain is said to represent [N, ∂N ] if it is homologous to a locally
finite chain representing [N, ∂N ].

If ∂N → N is π1-injective and ∂N is aspherical, thenCsimp,inf
∗

(
K̂ (N) , K̂ (∂N)

)
⊂

Csing,inf
∗ (N, ∂N), see Section 3.2. Thus it makes sense to say that some chain

z ∈ Csimp,inf
∗

(
K̂ (N) , K̂ (∂N)

)
represents the fundamental class [N, ∂N ].

If ∂1Q → Q is π1-injective and Q and ∂1Q are aspherical, and if G :=

Π (K (∂0Q)), then Csimp,inf
∗ (GK (∂1Q)) = Csimp,inf

∗

(
GK̂ (∂1Q)

)
⊂ Csing,inf

∗ (∂Q),

becauseGmaps simplices in im (K (∂Q) → K (Q)) to simplices in im (K (∂Q) → K (Q)).

Thus it makes sense to say that some chain z ∈ Csimp,inf
∗ (K (Q) , GK (∂1Q)) rep-

resents the fundamental class [Q, ∂Q].
The projection p : K̂ (N) → K (N) is defined at the end of 3.2.

Lemma 6. Let Nn≥2 be an orientable n-manifold with boundary, and Q,R ⊂ N
orientable n-manifolds with boundary, such that N = Q ∪ R satisfies the as-
sumptions of Lemma 5 and ∂0Q, ∂1Q, ∂1R are n-1-dimensional submanifolds (with
boundary) of ∂Q resp. ∂R. Assume, in addition, that Q is aspherical.

If
∑

i aiσi ∈ Csimp,inf
n

(
K̂ (N) , K̂ (∂N)

)
represents [N, ∂N ], then

∑

i

air (p (σi)) ⊗ 1 ∈ Csimp,inf
n (K (Q) , GK (∂1Q)) ⊗ZG Z

represents 2 [Q, ∂Q] ⊗ 1
and

∂
∑

i

air (p (σi)) ⊗ 1 ∈ Csimp,inf
n (GK (∂Q)) ⊗ZG Z

represents 3 [∂Q] ⊗ 1.

2This means that it represents the image of h ⊗ 1 under the canonical ho-
momorphism Hsing,inf

n (Q,∂Q) ⊗ZG Z → Hn

(
Csing,inf

∗ (Q, ∂Q) ⊗ZG Z
)
, where h ∈

Hsimp,inf
n (K (Q) , GK (∂1Q)) represents [Q, ∂Q] ∈ Hsing

n (Q, ∂Q)
3This means that it represents the image of h ⊗ 1 under the canonical homomor-

phism Hsimp,inf
n (GK (∂1Q)) ⊗ZG Z → Hn

(
Csimp,inf

∗ (GK (∂1Q)) ⊗ZG Z
)
, where h ∈

Hsimp,inf
n (GK (∂1Q)) represents [∂Q] ∈ Hsing

n (∂Q) .
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Proof. Since p and r are chain maps, it suffices to check the claim for some chosen

representative of [N, ∂N ]. So let z ∈ Csimp,inf
∗

(
K̂ (N) , K̂ (∂N)

)
be a representa-

tive of [N, ∂N ] chosen such that

p (z) = zQ + zR

where zQ represents [Q, ∂Q] and zR represents [R, ∂R] and such that

∂zQ = w1 +w2, ∂zR = −w2 + w3

with w1 ∈ Csimp,inf
n−1 (K (∂1Q)) , w2 ∈ Csimp,inf

n−1 (K (∂0Q)) , w3 ∈ Csimp,inf
n−1 (K (∂1R))

representing [∂1Q] , [∂0Q] , [∂1R], respectively.
From Lemma 5:

r (p (z) ⊗ 1) = zQ ⊗ 1,

which implies the first claim, and

∂r (p (z) ⊗ 1) = ∂zQ ⊗ 1 = w1 ⊗ 1 + w2 ⊗ 1.

Since w1 + w2 represents [∂Q], this implies the second claim.

(Remark: From the Remark after Lemma 5 we have w2 ⊗ 1 = 0. This implies
∂r (p (z) ⊗ 1) = ∂zQ ⊗ 1 = w1 ⊗ 1, that is, ∂r (p (z) ⊗ 1) represents at the same
time [∂Q] ⊗ 1 and [∂1Q] ⊗ 1.)

3.5 Using amenability

Lemma 7 is well-known in slightly different formulations and we reprove it here
only for completeness. We will apply4 Lemma 7 in the proof of Theorem 1 with
X = ∂Q,G = q∗ (Π (K (∂0Q))) and K = GKstr (∂1Q). (The following lemma has
of course also a relative version, but we will not need that for our argument.)

Lemma 7. : Let X be a closed, orientable manifold and K ⊂ S∗ (X) closed under
face maps. Assume that
- there is an amenable group G acting on K, such that the action of each g ∈ G
on | K | is homotopic to the identity

4If a group G acts simplicially on a multicomplex M , then C∗ (M) ⊗ZG Z are abelian groups
with well-defined boundary operator ∂∗ ⊗ 1, even though M/G may not be a multicomplex, like
for the action of G = ΠX (X) on K (X), for a topological space X.

We remark that C∗ (M) ⊗ZG Z ≃ C∗ (M) ⊗RG R is just the quotient chain complex for the
G-action. In particular, even though C∗ (M) is an RG-module, it does not make any difference
whether we tensor over ZG or RG.
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- there is a fundamental cycle z ∈ Csimp
∗ (K) such that z ⊗ 1 is homologous to a

cycle h =
∑s

j=1 bjτj ⊗ 1 ∈ Csimp
∗ (K) ⊗ZG Z.

Then

‖ X ‖≤
s∑

j=1

| bj | .

Proof. If ‖ X ‖= 0, there is nothing to prove.
Thus we may assume ‖ X ‖6= 0, which implies ([14], p.17) that there is β ∈
Hn

b (X), a bounded cohomology class dual to [X] ∈ Hn (X), with ‖ β ‖= 1
‖X‖ .

Let p : Csimp
∗ (K) → Csimp

∗ (K) ⊗ZG Z be the homomorphism defined by
p (σ) = σ ⊗ 1. Since G is amenable we have, by the proof of Lemma 4b) in [14],
an ’averaging homomorphism’ Av : H∗

b (K) → H∗
b (C∗ (K) ⊗ZG Z) such that Av

is left-inverse to p∗ and Av is an isometry. Hence we have

‖ Av (β) ‖=‖ β ‖=
1

‖ X ‖
.

Moreover, denoting by
[∑s

j=1 bjτj ⊗ 1
]

the homology class of
∑s

j=1 bjτj ⊗ 1, we

have obviously

| Av (β)




s∑

j=1

bjτj ⊗ 1


 |≤‖ Av (β) ‖

s∑

j=1

| bj |

and therefore

‖ X ‖=
1

‖ Av (β) ‖
≤

∑s
j=1 | bj |

| Av (β)
[∑s

j=1 bjτj ⊗ 1
]
|
.

It remains to prove Av (β)
[∑s

j=1 bjτj ⊗ 1
]

= 1.

For this we have to look at the definition of Av, which is as follows: Let γ ∈
C∗

b (K) be a bounded cochain. By amenability there exists a bi-invariant mean
av : B (G) → R on the bounded functions on G with infg∈Gδ (g) ≤ av (δ) ≤
supg∈Gδ (g) for all δ ∈ B (G). Then, given any p (σ) ∈ C∗ (K) ⊗ZG Z one can
fix an identification between G and Gσ, the set of all σ′ with p (σ′) = p (σ),
and thus consider the restriction of γ to Gσ as a bounded cochain on G. Define
Av (γ) (p (σ)) to be the average av of this bounded cochain on G ≃ Gσ. (This
definition is independent of all choices, see [17].)
Now, if z =

∑s
j=1 bjτj is a fundamental cycle, then we have β (z) = 1.

If g ∈ G is arbitrary, then left multiplication with g is a chain map on Csimp
∗ (K),

as well as on Csing
∗ (X). Since the action of g on | K | is homotopic to the identity,

it induces the identity on the image of Csimp
∗ (K) → Csing

∗ (X). Thus, for each
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cycle z ∈ Csimp
∗ (K) representing [X] ∈ Hsing

∗ (X), the cycle gz ∈ Csimp
∗ (K) must

also represent [X].
If gz represents [X], then β (gz) = β ([X]) = 1. In conclusion, we have β (p (z′)) =
1 for each z′ with p (z′) = p (z). By definition of Av, this implies Av (β) (p (z)) = 1
for each fundamental cycle z.

In particular, Av (β)
[∑s

j=1 bjτj ⊗ 1
]

= 1, finishing the proof of the lemma.

Remark: In the proof of Theorem 1, we will work with Csimp
∗ (K)⊗ZGZ rather

than Csimp
∗ (K). This is analogous to Agol’s construction of ”crushing the cusps

to points” in [1]. However Csimp
∗ (K (Q)) ⊗ZΠ(∂0Q) Z 6= Csimp

∗ (K (Q/∂0Q)), thus
one can not simplify our arguments by working directly with Q/∂0Q.

4 Disjoint planes in a simplex

In this section, we will discuss the possibilities how a simplex can be cut by
planes without producing parallel arcs in the boundary. (More precisely, we pose
the additional condition that the components of the complement can be coloured
by black and white such that all vertices belong to black components, and we
actually want to avoid only parallel arcs in the boundary of white components.)
For example, for the 3-simplex, it will follow that there is essentially only the
possibility in Case 1, pictured below, meanwhile in Case 2 each triangle has a
parallel arc with another triangle, regardless how the quadrangle is triangulated.

Case 1 Case 2

Let ∆n ⊂ Rn+1 be the standard simplex5 with vertices v0, . . . , vn. It is con-

5As usual, vi is the vertex with all coordinates, except the i-th, equal to zero, and ∂i∆
n
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tained in the plane E =
{
(x1, . . . , xn+1) ∈ Rn+1 : x1 + . . .+ xn+1 = 1

}
.

In this section we will be interested in n-1-dimensional affine planes P ⊂ E
whose intersection with ∆n either contains no vertex, consists of exactly one
vertex, or consists of a face of ∆n. For such planes we define their type as follows.

Definition 2. Let P ⊂ E be an n-1-dimensional affine plane such that P ∩ ∆n

either contains no vertex, consists of exactly one vertex, or consists of a face of
∆n.
If P ∩ ∆n = ∂0∆

n, then we say that P is of type {0}.

If P ∩ ∆n = ∂j∆
n with j ≥ 1, then we say that P is of type

{
01 . . . ĵ . . . n

}
.

If P ∩ {v0, . . . , vn} = {v0}, then we say that P is of type {0}.
If P ∩ {v0, . . . , vn} = ∅ or P ∩ {v0, . . . , vn} = {vj} with j ≥ 1, then we say that P
is of type {0a1 . . . ak} with a1, . . . , ak ∈ {1, . . . , n} if:

vi belongs to the same connected component of ∆n − (P ∩ ∆n) as v0
if and only if i ∈ {a1, . . . , ak}.

Observation 2. Let P1, P2 be two planes of type {0a1 . . . ak} resp. {0b1 . . . bl} and
let Q1 = P1 ∩ ∆n 6= ∅, Q2 = P2 ∩ ∆n 6= ∅. Then Q1 ∩Q2 = ∅ implies that either
{a1, . . . , ak} = {b1, . . . , bl} or exactly one of the following conditions holds:
- {a1, . . . , ak} ⊂ {b1, . . . , bl},
- {b1, . . . , bl} ⊂ {a1, . . . , ak},
- {a1, . . . , ak} ∪ {b1, . . . , bl} = {1, . . . , n}.

Proof. ∆n−Q1 consists of two connected components, C1 and C2. W.l.o.g. assume
that v0 ∈ C1. ∆n−Q2 consists of two connected components, D1 and D2. W.l.o.g.
assume that v0 ∈ D1. In particular, C1 ∩D1 6= ∅.

Since Q1 ∩Q2 = ∅, it follows that Q2 is contained in one of C1 or C2, and Q1

is contained in one of D1 or D2.
Case 1: Q1 ⊂ D1. Then either we have C1 ⊂ D1, which implies {a1, . . . , ak} ⊂
{b1, . . . , bl}, or we have C2 ⊂ D1, which implies {1, . . . , n} − {a1, . . . , ak} ⊂
{b1, . . . , bl}, hence {a1, . . . , ak} ∪ {b1, . . . , bl} = {1, . . . , n}.
Case 2: Q1 ⊂ D2. This implies Q2 ⊂ C1 and after interchanging Q1 and Q2 we
are in Case 1.

Notational remark: ’arc’ will mean the intersection of an n-1-dimensional
affine plane P ⊂ E (such that P ∩ ∆n 6= ∅ either contains no vertex, consists of
exactly one vertex or consists of a face) with a 2-dimensional subsimplex τ2 ⊂ ∆n.
If an arc consists of only one vertex, we call it a degenerate arc.

denotes the subsimplex spanned by all vertices except vi. We will occasionally identify singular
1-simplices σ : ∆1 → M with paths e : [0, 1] → M by the rule e (t) = σ (t, 1 − t). In particular,
e (0) = σ (v0) = ∂1σ and e (1) = σ (v1) = ∂0σ.
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Definition 3. (Parallel arcs) Let P1, P2 ⊂ E be n-1-dimensional affine planes.
Let τ2 be a 2-dimensional subsimplex of ∆n with vertices vr, vs, vt. We say that
disjoint arcs e1, e2 obtained as intersections of P1 resp. P2 with (the same) τ2 are
parallel arcs if one of the following holds:
- both are nondegenerate and any two of {vr, vs, vt} belong to the same connected
component of τ2 − e1 if and only if they belong to the same connected component
of τ2 − e2,
- one, say e1 is nondegenerate, the other, say with vertices vs, vt is contained in a
face, and vr belongs to another connected component of τ2 − e1 as both vs and vt,
- one, say e1, is nondegenerate, the other is degenerate, say equal to vr, and both
vs, vt belong to another connected component of τ2 − e1 as vr,
- both are degenerate and equal,
- both are contained in a face and equal,
- one is degenerate, the other is contained in a face.

Lemma 8. Let ∆n ⊂ Rn+1 be the standard simplex. Let P1, P2 ⊂ E be n-1-
dimensional affine planes with Qi = Pi ∩ ∆n 6= ∅ for i = 1, 2.
Let P1 be of type {0a1 . . . ak} with 1 ≤ k ≤ n− 2 and P2 of type {0b1 . . . bl} with l
arbitrary.
Then either Q1 ∩Q2 6= ∅, or Q1 and Q2 have a parallel arc.

Proof. Assume that Q1 ∩Q2 = ∅.
By Observation 2, there are 4 possible cases if Q1 ∩Q2 = ∅.
Case 1: {0a1 . . . ak} = {0b1 . . . bl}. Then we clearly have parallel arcs.
Case 2: {0a1 . . . ak} is a proper subset of {0b1 . . . bl}, i.e. 1 ≤ k < l ≤ n − 1
and a1 = b1, . . . , ak = bk. There is at least one index, say i, not contained
in {0b1 . . . bl}. Consider the 2-dimensional subsimplex τ2 ⊂ ∆n with vertices
v0, va1

, vi. It intersects P1 and P2 in parallel arcs, because P1 and P2 both separate
v0 and vak

from vi.
Case 3: {0b1 . . . bl} is a proper subset of {0a1 . . . ak}, i.e. 0 ≤ l < k ≤ n−2 and a1 =
b1, . . . , al = bl. There are two indices i, j not contained in {0a1 . . . ak}. Consider
the 2-dimensional subsimplex τ2 ⊂ ∆n with vertices v0, vi, vj . It intersects P1 and
P2 in parallel arcs, because P1 and P2 both separate v0 from vi and vj .
Case 4: {a1, . . . , ak} ∪ {b1, . . . , bl} = {1, . . . , n}. By k ≤ n − 2, there are two
indices i, j with i, j 6∈ {0a1 . . . ak}. Hence i, j ∈ {b1, . . . , bl}. Moreover, there
exists an index h such that h ∈ {a1, . . . , ak} but h 6∈ {b1, . . . , bl}. (If not, we would
have {a1, . . . , ak} ⊂ {b1, . . . , bl}, hence {1, . . . , n} = {a1, . . . , ak} ∪ {b1, . . . , bl} ⊂
{b1, . . . , bl}, contradicting Q2 6= ∅.) Consider the 2-dimensional subsimplex τ2 ⊂
∆n with vertices vi, vj , vh. It intersects P1 and P2 in parallel arcs, because both
P1 and P2 separate vi and vj from vh..
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Definition 4. (Canonical colouring of complementary regions)
Let P1, P2, . . . ⊂ E be a (possibly infinite) set of n-1-dimensional affine planes
with Qi := Pi ∩∆n 6= ∅ and Qi ∩Qj = ∅ for all i 6= j. Assume that each Qi either
contains no vertices or consists of exactly one vertex.

A colouring of
- the connected components of ∆n − ∪iQi by colours black and white, and
- of all Qi by black,
is called a canonical colouring (associated to P1, P2, . . .) if:
- all vertices of ∆n are coloured black,
- each Qi is incident to at least one white component.

Definition 5. (White-parallel arcs) Let {Pi : i ∈ I} be a set of of n − 1-
dimensional affine planes Pi ⊂ E, with Qi := Pi ∩∆n 6= ∅ for i ∈ I. Assume that
Qi∩Qj = ∅ for all i 6= j ∈ I, and that we have a canonical colouring associated to
{Pi : i ∈ I}. We say that arcs ei, ej obtained as intersections of Pi, Pj (i, j ∈ I)
with some 2-dimensional subsimplex τ2 of ∆n are white-parallel arcs if they are
parallel arcs and, moreover, belong to the boundary of the closure of the same
white component.

We mention two consequences of Lemma 8. These will not be needed for the
proof of Lemma 10, but they will be necessary for the proof of Theorem 1.

Corollary 1. Let ∆n ⊂ Rn+1 be the standard simplex. Let P1, . . . , Pm ⊂ E be a
finite set of n-1-dimensional affine planes and let Qi = Pi ∩ ∆n for i = 1, . . . ,m.

Assume that Qi∩Qj = ∅ for all i 6= j, and that we have an associated canonical
colouring, such that Qi and Qj do not have a white-parallel arc for i 6= j.

Then either m = 0, or
m = n+ 1 and P1 is of type {0}, Pn+1 is of type {0 1 . . . n− 1}, and Pi is of type{
01 . . . ̂i− 1 . . . n

}
for i = 2, . . . , n.

Proof. If the conclusion were not true, there would exist a plane P1 of type
{0a1 . . . ak} with 1 ≤ k ≤ n− 2. Let W be the white component of the canonical
colouring, which is incident to P1. Because, for a canonical colouring, no vertex
belongs to a white component, there must be at least one more plane P2 incident
to W . Since Q1 ∩Q2 = ∅, from Lemma 8 we get that Q1 and Q2 have a parallel
arc. Because Q1 and Q2 are incident to W , the arc is white-parallel.

Corollary 2. Let ∆n ⊂ Rn+1 be the standard simplex. Let P1, P2, . . . ⊂ E be a
(possibly infinite) set of n-1-dimensional affine planes and let Qi = Pi ∩ ∆n for
i = 1, 2, . . .. Assume that we have an associated canonical colouring.

Let Pi be of type
{
0ai

1 . . . a
i
c(i)

}
, for i = 1, 2, . . .. Then

- either c (1) ∈ {0, n− 1},
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- or whenever, for some i ∈ {2, 3, . . .}, P1 and Pi bound a white component of
∆n − ∪jQj , then they must have a white-parallel arc.

Proof. Assume that c (1) 6∈ {0, n− 1}. Let W be the white component bounded
by P1. W is bounded by a finite number of planes, thus we can apply Corollary 1,
and conclude that P1 has a white-parallel arc with each other plane adjacent to
W .

Definition 6. Let P ⊂ E be an n-1-dimensional affine plane, and T a triangula-
tion of the polytope Q := P ∩ ∆n. We say that T is minimal, if all vertices of T
are vertices of Q. We say that an edge of some simplex in T is an exterior edge
if it is an edge of Q.

Observation 3. Let P ⊂ E be an n-1-dimensional affine plane, and T a trian-
gulation of the polytope Q := P ∩∆n. If T is minimal, then each edge of Q is an
(exterior) edge of (exactly one) simplex in T .

Proof. By minimality, the triangulation does not introduce new vertices. Thus
every edge of Q is an edge of some simplex.

Observation 4. Let P ⊂ E be an n-1-dimensional affine plane with Q := P ∩
∆n 6= ∅. Assume that P is of type {0a1 . . . ak}.
a) Each vertex of Q arises as the intersection of P with an edge e of ∆n. The
vertices of e are vi and vj with i ∈ {0, a1, . . . , ak} and j 6∈ {0, a1, . . . , ak}. (We
will denote such a vertex by (vivj).)
b) Two vertices (vi1vj1) and (vi2vj2) of Q are connected by an edge of Q (i.e. an
exterior edge of any triangulation) if either i1 = i2 or j1 = j2.

Proof. a) holds because e has to connect vertices in distinct components of ∆n−Q.
b) holds because the edge of Q has to belong to some 2-dimensional subsimplex
of ∆n, with vertices either vi1 , vj1 , vj2 or vi1 , vi2 , vj1 .

Remark: if, for an affine hyperplane P ⊂ E, Q = P ∩ ∆n consists of ex-
actly one vertex, then we will consider the minimal triangulation of Q to consist
of one (degenerate) n-1-simplex. This convention helps to avoid needless case
distinctions.

Lemma 9. Let {Pi ⊂ E : i ∈ I} be a set of n-1-dimensional affine planes and let
Qi := Pi ∩ ∆n for i ∈ I. Assume that Qi ∩Qj = ∅ for all i 6= j and that we have
an associated canonical colouring. Assume that we have fixed, for each i ∈ I, a
minimal triangulation Qi = ∪aτia of Qi.

If P1 is of type
{
0a1

1 . . . a
1
c(1)

}
with 1 ≤ c (1) ≤ n − 2, then for each sim-

plex τ1a ⊂ Q1 there exists some j ∈ I and some simplex τjb ⊂ Qj (of the fixed
triangulation of Qj) such that τia and τjb have a white-parallel arc.
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Proof. Let w1, . . . , wn be the n vertices of the n-1-simplex τ1k. By Observation
4a), each wl arises as intersection of Q1 with some edge (vrl

vsl
) of ∆n, and the

vertices vrl
, vsl

satisfy rl ∈
{
0, a1

1, . . . , a
1
c(1)

}
and sl 6∈

{
0, a1

1, . . . , a
1
c(1)

}
.

For the canonical colouring, there must be a white component W bounded by
P1. We distinguish the cases whether W and v0 belong to the same connected
component of ∆n −Q1 or not.
Case 1: W and v0 belong to the same connected component of ∆n −Q1.

Since c (1) ≤ n − 2, there exist at most n − 1 possible values for rl. Hence
there exists l 6= m ∈ {1, . . . , n} such that vrl

= vrm.
Let e be the edge of τ1k ⊂ Q1 connecting wl and wm. By Observation 4b), e

is an exterior edge. Consider the 2-dimensional subsimplex τ2 ⊂ ∆n with vertices
vrl
, vsl

, vsm . We have that P1 intersects τ2 in e, i.e. in an arc separating vrl
from

the other two vertices of τ2.
Note that rl ∈

{
0, a1

1, . . . , a
1
c(1)

}
, hence vrl

belongs to the same component of

∆n −Q1 as v0. In particular, vrl
belongs to the same component of ∆n −Q1 as

W . On the other hand, since the colouring is canonical, all vertices are coloured
black and vrl

can not belong to the white component W . Thus there must be
some plane Pj such that Qj bounds W and separates vrl

from Q1. (The possiblity
Pj ∩ ∆n = {vrl

} is allowed.) In particular, some (possibly degenerate) exterior
edge f of Qj separates vrl

from vsl
, vsm . Thus e and f are white-parallel arcs. By

Observation 3, f is an edge of some τjl.

Case 2: W and v0 don’t belong to the same connected component of ∆n −Q1.
Since n−c (1) ≤ n−1, there exist some l 6= m ∈ {1, . . . , n} such that vsl

= vsm .
Let e be the edge of τ1k ⊂ Q1 connecting wl and wm. e is an exterior edge by

Observation 4b). Consider the 2-dimensional subsimplex τ2 ⊂ ∆n with vertices
vrl
, vrm , vsl

. P1 intersects τ2 in e, i.e. in an arc separating vsl
from the other two

vertices of τ2.
We have that sl 6∈

{
0, a1

1, . . . , a
1
c(1)

}
, hence vsl

does not belong to the same

component of ∆n−Q1 as v0. This implies that vsl
belongs to the same component

of ∆n − Q1 as W . On the other hand, since the colouring is canonical, vsl
can

not belong to the white component W and there must be some plane Pj such
that Qj bounds W and separates vsl

from Q1. In particular, some exterior edge
f of Qj separates vsl

from vrl
, vrm . Thus e and f are white-parallel arcs. By

Observation 3, f is an edge of some τjl.

Lemma 10. Let {Pi : i ∈ I} be a set of n-1-dimensional affine planes with Qi :=

Pi ∩ ∆n 6= ∅ for i ∈ I. Let Pi be of type
{
0a

(i)
1 . . . a

(i)
ki

}
for i ∈ I. Assume that

Qi ∩ Qj = ∅ for i 6= j ∈ I, and that we have an associated canonical colouring.

Assume that for each Qi one has fixed a minimal triangulation Qi = ∪
t(i)
k=1τik.
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For each i ∈ I, let

Di = ♯ {τik ⊂ Qi : there is no τjl ⊂ Qj such that τik, τjl have a white-parallel arc} .

Then ∑

i∈I

Di = 0 or
∑

i∈I

Di = n+ 1.

Proof. First we remark that the number of planes may be infinite, but we may
of course remove pairs of planes Pi, Pj whenever they are of the same type and
bound the same white component. This removal (of Pi, Pj and the common
white component) does not affect

∑
i∈I Di. Since there are only finitely many

different types of planes, we may w.l.o.g. assume that we start with a finite number
P1, . . . , Pm of planes. (It may happen that after this removal no planes and no
white components remain. In this case

∑
i∈I Di∈I = 0.) So we assume now that

we have a finite number of planes P1, . . . , Pm, and no two planes of the same type
bound a white region.

The first case to consider is that all planes are of type {0a1 . . . ak} with k = 0
or k = n − 1. Since all vertices are coloured black, this means that m = n + 1
and (upon renumbering) P1 is of type {0}, Pn+1 is of type {0 1 . . . n− 1}, and Pi

is of type
{
01 . . . ̂i− 1 . . . n

}
for i = 2, . . . , n. Hence D1 = . . . = Dn+1 = 1 and

∑n+1
i=1 Di = n+ 1.

Now we assume that there exists Pi, w.l.o.g. P1, of type
{
0a

(1)
1 . . . a

(1)
k1

}
with

1 ≤ c (1) ≤ n − 2. Let W be the white component bounded by P1 and let
w.l.o.g. P2, . . . , Pl be the other planes boundingW . Then Lemma 9 says that each
simplex in the chosen triangulation of Q1 has a parallel arc with some simplex
in the chosen triangulation of each of Q2, . . . , Ql. In particular, D1 = 0. For
j ∈ {2, . . . , l}, if 1 ≤ c (j) ≤ n − 2, the same argument shows that Dj = 0. If
j ∈ {2, . . . , l} and c (j) = 0 or c (j) = n− 1, then Qj consists of only one simplex.
By Corollary 2, this simplex has a parallel arc with (some exterior edge of) Q1

and thus (by Observation 3) with (some) simplex of the chosen triangulation of
Q1. This shows Dj = 0 also in this case. Altogether we conclude

∑l
j=1Dj = 0

and thus
∑m

i=1Di =
∑m

i=l+1Di. Hence we can remove6 the white component W
and its bounding planes P1, . . . , Pl to obtain a smaller number of planes and a
new canonical colouring without changing

∑m
i=1Di. Since we start with finitely

many planes, we can repeat this reduction finitely many times and will end up
either with an empty set of planes or with a set of planes of type {0a1 . . . ak} with
k = 0 or k = n− 1. Thus either

∑m
i=1Di = 0 or

∑m
i=1Di = n+ 1.

6To remove a white component means that this component together with the neighbouring
black components will form one new black component.

28



We have thus proved that, in presence of a canonical colouring, the number
of n-1-simplices without white-parallel arcs in a minimal triangulation of the Qi’s
is 0 or n + 1. We remark that in the proof of Theorem 1 we will actually count
only those triangles which neither have a white-parallel arc nor a degenerate arc.
Thus, in general, we may remain with even less than n+ 1 n-1-simplices.

5 A straightening procedure

In this section we will always work with the following set of assumptions.

Assumption I: Q is an aspherical n-dimensional manifold with aspherical bound-
ary ∂Q. We have n-1-dimensional submanifolds ∂0Q, ∂1Q ⊂ ∂Q such that ∂Q =
∂0Q ∪ ∂1Q, ∂∂0Q = ∂∂1Q and ∂1Q 6= ∅ is aspherical.

The example that one should have in mind is a nonpositively curved manifold
Q with totally geodesic boundary ∂1Q and cusps corresponding to ∂0Q.

In the case of nonpositively curved manifolds with totally geodesic bound-
ary, there is a well-known straightening procedure (explained for closed hyper-
bolic manifolds in [3], Lemma C.4.3.), which homotopes each relative cycle into a
straight relative cycle.

However, we will need a more subtle straightening procedure, which considers
relative cycles with a certain 0-1-labeling of their edges and straightens the 1-
labeled edges into certain distinguished 1-simplices. This straightening procedure
will be explained in Section 5.3. Before, we explain a construction which will
morally (although not literally) ”reduce” the proof of Theorem 1 to the case that
∂0Q ∩ C is path-connected, for each path-component C of ∂Q.

5.1 Making ∂0Q ∩ C connected

Construction 1. Let Assumption I be satisfied. Then there exists a continuous
map of triples q : (Q, ∂Q, ∂1Q) → (Q, ∂Q, ∂1Q) which is (as a map of triples)
homotopic to the identity and such that, for each path-component C of ∂Q, the
image A := q (∂0Q ∩ C) is path-connected.

Moreover, for each path-component F of ∂1Q, the path-components of ∂F ⊂
∂0Q∩ ∂1Q can be numbered by EF

0 , . . . , E
F
s and one can choose points xEF

i
∈ EF

i

such that q
(
xEF

i

)
≡ xEF

0

for i = 0, . . . , s.

Proof. For each path-component F of ∂1Q, number the path-components of ∂F ⊂
∂0Q ∩ ∂1Q by EF

0 , . . . , E
F
s , where s depends on F . Choose one point xF

E ∈ E for
each path-component E ⊂ F of ∂0Q ∩ ∂1Q. Whenever E0, Ei is a pair of path-
components of ∂0Q∩∂1Q adjacent to the same path-component F of ∂1Q, choose
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a 1-dimensional submanifold lEF
0

EF
i
⊂ ∂1Q with ∂lEF

0
EF

i
=
{
xEF

0

}
∪
{
xEF

i

}
. The

lEF
0

EF
i

may be chosen succesively such that they are disjoint from each other (apart

from the common vertex xEF
0

) and disjoint from ∂0Q (apart from the vertices xEF
0

and xEF
i
).

For each pair
{
EF

0 , E
F
i

}
let h : lEF

0
EF

i
→
{
xEF

0

}
be the constant map from

lEF
0

EF
i

to xEF
0

. For each path-component F of ∂1Q, the union

s⋃

i=1

lEF
0

EF
i

is an embedded wedge of arcs in ∂1Q, hence it is contractible. In particular, h is
homotopic to the identity. By the homotopy extension property exists g : F → F
with g |l

EF
0

EF
i

= h ≡ xE0
for all lEF

0
EF

i
, and g ∼ id by a homotopy extending the

homotopies between h and id.
Thus we defined g on each path-component F of ∂1Q with F ∩ ∂0Q 6= ∅. On

path-components F of ∂1Q with F ∩ ∂0Q = ∅ we define g = id. Hence we have
defined g on all of ∂1Q.

On path-components C of ∂0Q with C ∩ ∂1Q = ∅, we define f = id. Again by
the homotopy extension property exists f : ∂Q→ ∂Q with f |∂1Q= g, f |C= id for
path-components C of ∂0Q with C∩∂1Q = ∅, and f ∼ id by a homotopy extending
the homotopy of g. (Of course, f does not preserve those path-components of ∂0Q
which intersect ∂1Q.)

Once again by the homotopy extension property exists q : Q→ Q with q ∼ id
such that q extends f and the homotopy between q and id extends the homotopy
between f and id.

Due to the stepwise construction, q is a map of triples, homotopic to the
identity by a homotopy of triples. Moreover, A := q (∂0Q ∩ C) is path-connected
for each component C of ∂Q. Indeed, any two points in ∂0Q∩C can be connected
by a sequence of paths which either have image in ∂0Q or belong to ∪s

i=1lEF
0

EF
i

for some path-component F of ∂1Q ∩ C. The image of these paths under q, in
both cases, is in A.

Remark: q induces a simplicial map q : K (Q) → K (Q) and a homomor-
phism q∗ : Π (K (∂0Q)) → Π(K (A)) defined by q∗ ({γ1, . . . , γn}) := {q (γ1) , . . . , q (γn)}
such that

q∗ (g) q (σ) = q (gσ)

holds for each σ ∈ K (Q) , g ∈ Π(K (∂0Q)).

Proof. Continuous maps q : Q → Q induce simplicial maps q : K (Q) → K (Q).
(The simplicial map agrees with q on the 0-skeleton, and it maps each 1-simplex
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e ∈ K1 (Q) to the unique 1-simplex of K1 (Q) that is in the homotopy class rel.
{0, 1} of q (e).)

Let e ∈ K1 (Q). By construction {γ1, . . . , γn} e =
[
α ∗ e ∗ β

]
for some α, β ∈

{γ1, . . . , γn} ∪
{
ce(0), ce(1)

}
. Thus

{q (γ1) , . . . , q (γn)} q (e) =
[
q (α) ∗ q (e) ∗ q

(
β
)}

= q ({γ1, . . . , γn} e) .

This implies the claim for the 1-skeleton and thus, by asphericity of K (Q), for all
σ ∈ K (Q).

5.2 Definition of Kstr (Q)

Let Q, ∂Q, ∂1Q, ∂0Q satisfy Assumption I.
Recall that we have defined in Section 3.2 an aspherical multicomplex K (Q) ⊂

S∗ (Q) with the property that (for aspherical Q) each singular simplex in Q, with
boundary in K (Q) and pairwise distinct vertices, is homotopic rel. boundary to
a unique simplex in K (Q).

The aim of this subsection is to describe a selection procedure yielding a subset
Kstr

∗ (Q) ⊂ S∗ (Q). The final purpose of the straightening procedure will be to
produce a large number of (weakly) degenerate simplices, in the sense of the
following definition.

Definition 7. Let Q be an compact manifold with boundary ∂Q. We say that a
simplex in S∗ (Q) is degenerate if one of its edges is a constant loop. We say that
it is weakly degenerate if it is degenerate or its image is contained in ∂Q.

Notational remark: for subsetsKstr
∗ (Q) ⊂ S∗ (Q) we will denoteKstr

∗ (∂0Q) :=
Kstr

∗ (Q)∩S∗ (∂0Q) ,Kstr
∗ (∂1Q) := Kstr

∗ (Q)∩S∗ (∂1Q) ,Kstr
∗ (∂0QQ) := Kstr

∗ (Q)∩
S∗ (∂0Q) .

Lemma 11. Let Q, ∂Q, ∂1Q, ∂0Q satisfy Assumption I. Let K (Q) ⊂ S∗ (Q) be

as defined in Section 3.2. Let q : Q → Q and
{
xEF

i
∈ ∂0Q ∩ ∂1Q : 0 ≤ i ≤ s

}
be

given by Construction 1.
Then there exists a subset Kstr

∗ (Q) ⊂ S∗ (Q), closed under face maps, such
that:
i) If C is a path-component of ∂0Q with C∩∂1Q = ∅, then Kstr

0 (Q) contains each
point in C,
ii) for a path-component F of ∂1Q with F ∩ ∂0Q = ∅, there is exactly one point
xF ∈ Kstr

0 (Q) ∩ F ,
for a path-component F of ∂1Q with F ∩ ∂0Q 6= ∅, we have Kstr

0 (Q) ∩ F ={
xEF

0

, . . . , xEF
s

}
,
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iii) Kstr
0 (Q) = Kstr

0 (∂Q),
iv) Kstr

1 (Q) consists of
- all 1-simplices e ∈ K (Q) with ∂e ∈ Kstr

0 (Q), and
- exactly one 1-simplex for each nontrivial homotopy class (rel. boundary) of loops
e with ∂0e = ∂1e ∈ Kstr

0 (Q),
- the constant loop for the homotopy class of the constant loop at x, if x ∈ Kstr

0 (Q),
v) for n ≥ 2, if σ ∈ Sn (Q) is an n-simplex with ∂σ ∈ Kstr

n−1 (Q), then σ is
homotopic rel. boundary to a unique τ ∈ Kstr

n (Q),
vi) if σ ∈ Kstr

n (Q) is homotopic rel. boundary to some τ ∈ Kn (Q), then σ = τ ,
vii) if σ ∈ Kstr

n (Q) is homotopic rel. boundary to a simplex τ ∈ Sn (∂1Q), then
σ ∈ Kstr

n (∂1Q); if σ ∈ Kstr
1 (Q) is homotopic rel. boundary to a simplex τ ∈

S1 (∂0Q), then σ ∈ Kstr
1 (∂0Q),

viii) Kstr
∗ (Q) is aspherical, i.e. if σ, τ ∈ Kstr

∗ (Q) have the same 1-skeleton, then
σ = τ .

Proof. Kstr
∗ (Q) is defined by induction on the dimension of simplices as follows.

Definition of Kstr
0 (Q):

Choose Kstr
0 (Q) such that conditions i),ii),iii) are satisfied. Note that we have

chosen a nonempty set of 0-simplices since we are assuming ∂1Q 6= ∅.

Definition of Kstr
1 (Q):

For an ordered pair
(x, y) ∈ Kstr

0 (Q) ×Kstr
0 (Q)

with x 6= y, there exists in each homotopy class (rel. boundary) of arcs e with

e (0) = x, e (1) = y

a unique simplex in K1 (Q). Choose these 1-simplices to belong to Kstr
1 (Q).

(Uniqueness implies that vi) ) is true for n = 1.) Moreover, for pairs

(x, x) ∈ Kstr
0 (Q) ×Kstr

0 (Q)

choose one simplex in each homotopy class (rel. boundary) of loops e with

e (0) = e (1) = x.

For the homotopy class of the constant loop choose the constant loop.
Choose the 1-simplices in ∂0Q and/or ∂1Q whenever this is possible. (If a 1-
simplex is homotopic into both ∂0Q and ∂1Q, then it is necessarily homotopic
into ∂0Q ∩ ∂1Q. Indeed, a disk realizing a homotopy between 1-simplices in ∂0Q
and ∂1Q can be made transversal to ∂0Q∩ ∂1Q and then intersects ∂0Q∩ ∂1Q in
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an arc resp. loop.) Hence vii) is satisfied for n = 1.

Definition of Kstr
n (Q) for n ≥ 2, assuming that Kstr

n−1 (Q) is defined:
For an n+ 1-tuple κ0, . . . , κn of n− 1-simplices in Kstr

n−1 (Q), satisfying

∂iκj = ∂j−1κi

for all i, j, there are two possibilities:
- if no edge of any κi is a loop, then, by asphericity of Q, there is a unique
n-simplex

σ ∈ Kn (Q)

with
∂iσ = κi

for i = 0, . . . , n. In this case set κ := σ. Uniqueness implies that vi) is satisfied
for n. (By the construction in Section 3.2 κ ∈ Kn (∂1Q) if κ is homotopic rel.
boundary into ∂1Q.)

- otherwise, choose an n-simplex

κ ∈ Sn (Q)

with
∂iκ = κi

for i = 0, . . . , n. By asphericity of Q, κ exists and is unique up to homotopy rel.
boundary. Choose the simplices in ∂1Q whenever this is possible.

By construction, Kstr
∗ (Q) is closed under face maps and satisfies the conditions

i)-vii). Condition viii) follows by induction on the dimension of subsimplices of σ
and τ from condition v).

The simplices in Kstr
∗ (Q) will be called the straight simplices.

We remark that Kstr
∗ (Q) is not a multicomplex because simplices in Kstr

∗ (Q) need
not have pairwise distinct vertices. (Note also that simplices in K (Q) belong to
Kstr (Q) if and only if all their vertices belong to Kstr

0 (Q), by construction.)

Observation 5. Let Q, ∂Q, ∂1Q, ∂0Q satisfy Assumption I. Let Kstr
∗ (Q) ⊂ S∗ (Q)

satisfy the conditions i)-viii) from Lemma 11. Then
q : Q→ Q induces a simplicial map q : Kstr (Q) → Kstr (Q), compatible with the
simplicial map q : K (Q) → K (Q) from Section 5.1.
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Proof. By construction, q maps Kstr
0 (Q) to itself. Indeed:

- if C is a path-component of ∂0Q with C ∩ ∂1Q = ∅, then q (v) = v for each
v ∈ C,
- if F is a path-component F of ∂1Q with F ∩ ∂0Q = ∅, then q (v) = v for each
v ∈ F (in particular for the unique v ∈ F ∩Kstr

0 (Q)),
- if F is a path-component of ∂1Q with F ∩∂0Q 6= ∅, then we have Kstr

0 (Q)∩F ={
xEF

0

, . . . , xEF
s

}
, and q

(
xEF

i

)
= xEF

0

for i = 0, . . . , s by Construction 1.

Hence q induces a simplicial map on Kstr (Q). (The simplicial map agrees
with q on the 0-skeleton, and it maps each 1-simplex e ∈ Kstr

1 (Q) to the unique
1-simplex of Kstr

1 (Q) that is in the homotopy class rel. {0, 1} of q (e). Since
Kstr (Q) is aspherical, this determines the simplicial map q uniquely.)

5.3 Definition of the straightening

Definition 8. Let (Q, ∂1Q) be a pair of topological spaces and let z =
∑

i∈I aiτi ∈
Cinf

n (Q) a (possibly infinite) singular chain.
a) A set of cancellations of z is a symmetric set C ⊂ Sn−1 (Q) × Sn−1 (Q) with
(η1, η2) ∈ C ⇒ η1 = η2 and η1 = ∂kτi1, η2 = ∂lτi2 for some i1, i2 ∈ I, k, l ∈
{0, . . . , n}.
b) If z =

∑
i∈I aiτi ∈ Cinf

n (Q) and C is a set of cancellations for z, then the as-
sociated simplicial set Υz,C is the simplicial set generated7 by {∆i : i ∈ I}, subject
to the identifications ∂k∆i1 = ∂l∆i2 if and only if (∂kτi1, ∂lτi2) ∈ C.
c) Let z =

∑
i∈I aiτi ∈ Cinf

n (Q). Choose a minimal presentation for ∂z (i.e. no
further cancellation is possible). Let

J = J∂z :=

{
(i, a) ∈ I × {0, . . . , n} :

∂aτi occurs with non-zero coefficient in the chosen presentation of ∂z

}
.

Let C be a set of cancellations for z. Then the simplicial set ∂Υz,C is defined as the
set consisting of | J | n-1-simplices ∆i,a, (i, a) ∈ J , together with all their iterated
faces and degenerations, subject to the identifications ∂a∂a1

τi1 = ∂a∂a2
τi2 for all

a = 0, . . . , n− 1, whenever (∂a1
τi1 , ∂a2

τi2) ∈ C and (i1, a1) ∈ J .
d) If z =

∑
i∈I aiτi ∈ Cinf

n (Q) is a relative cycle, then a set of cancellations

C is called sufficient if the formal sum
∑

i∈I

∑n
k=0 (−1)k ai∂kτi can be reduced

to a chain in Cinf
n−1 (∂Q) by substracting (possibly infinitely many) multiples of

(∂a1
τi1 − ∂a2

τi2) with (∂a1
τi1, ∂a2

τi2) ∈ C.

Observation 6. Let (Q, ∂1Q) be a pair of topological spaces.
a) If z =

∑
i∈I aiτi ∈ Cinf

n (Q) is a singular chain, C a set of cancellations, and

7That is, the subset of Ssing
∗ (Q) which contains the | I | n-simplices ∆i, i ∈ I , together with

all simplices obtained by iterated applications of face and degeneracy operators, cf. [25], Example
1.5.
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Υ := Υz,C the associated simplicial set, then the geometric realisation | Υ | is
obtained from | I | copies of the standard n-simplex ∆i, i ∈ I, with identifications
∂a1

∆i1 = ∂a2
∆i2 if and only if (∂a1

τi1, ∂a2
τi2) ∈ C. Moreover, for a minimal pre-

sentation of ∂z and ∂Υ := ∂Υz,C, | ∂Υ | is the subspace of | Υ | containing all
simplices ∂a1

∆i1 with (i1, a1) ∈ J .
b) There exists an associated continuous map τ :| Υ |→ Q with τ | ∆i = τi (upon

the identification ∆i = ∆n). If z is a relative cycle, i.e. ∂z ∈ Cinf
n−1 (∂1Q), then τ

maps | ∂Υ | to ∂1Q.
c) Let z1 =

∑
i∈I aiτi, z2 =

∑
i∈I aiσi ∈ Cinf

n (Q, ∂1Q) be relative cycles and C1, C2

sufficient sets of cancellations of z1 resp. z2. Assume that (∂a1
τi1, ∂a2

τi2) ∈ C1

if and only if (∂a1
σi1 , ∂a2

σi2) ∈ C2, and that there exist minimal presentations of
∂z1, ∂z2 such that Jz1

= Jz2
.

If the associated continuous maps
τ, σ :| Υ |→ Q are homotopic,

for a homotopy mapping | ∂Υ | to ∂Q, then
∑

i∈I aiτi and
∑

i∈I aiσi ∈ Cinf
∗ (Q, ∂Q)

are relatively homologous.

We emphasize that we do not assume that C is a complete list of cancellations,
the simplicial map τ∗ : Csimp

∗ (Υ) → Csing
∗ (Q) need not be injective.

After having set up the necessary notations, we now start with the actual defini-
tion of the straightening. We first mention that there is of course an analogue of
the classical straightening ([3], Lemma C.4.3.) in our setting.

Observation 7. Let Q, ∂1Q, ∂1Q, ∂0Q satisfy Assumption I. Let Kstr
∗ (Q) ⊂ S∗ (Q)

satisfy the conditions i)-viii) from Lemma 11.
Then there exists a ’canonical straightening’ map

strcan : Csimp,inf
∗ (K (Q)) → Csimp,inf

∗

(
Kstr (Q)

)
,

mapping Csimp,inf
∗ (K (∂1Q)) to Csimp,inf

∗
(
Kstr (∂1Q)

)
, with the following proper-

ties:
i) strcan is a chain map,

ii) if z =
∑

i∈I aiτi ∈ Csimp,inf
∗ (K (Q)) and

∑
i∈I aiσi :=

∑
i∈I aistrcan (τi), then

the maps
τ, σ :| Υ |→ Q

(defined by Observation 6b) after fixing a set of cancellations C and a minimal
presentation of ∂z) are homotopic.

Moreover, if z =
∑

i∈I aiτi is a relative cycle with ∂z ∈ Csimp,inf
∗ (K (∂1Q)),

then the same is true for
∑

i∈I aiσi and

τ, σ : (| Υ |, | ∂Υ |) → (Q, ∂1Q)
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are homotopic as maps of pairs.
In particular,

∑
i∈I aistrcan (τi) is relatively homologous to

∑
i∈I aiτi,

Proof. We define strcan, and the homotopy to the identity, by induction on the
dimension of simplices. (During the construction we take care that strcan and the
homotopy preserve K (∂1Q).)

0-simplices.
If C is a path-component of ∂0Q with C ∩ ∂1Q = ∅, then we define strcan (v) = v
for each 0-simplex v in C. The homotopy H (v) is for each v given by the constant
map.

If C is a path-component of ∂0Q with C ∩ ∂1Q 6= ∅, then there is at least
one path-component F of ∂1Q with C ∩F 6= ∅. By Construction 1 and condition
ii) from Lemma 11, for each such F , there is a straight 0-simplex xEF

i
∈ C ∩ F .

Choose one such straight 0-simplex (among the xEF
i
’s) for each path-component C

of ∂0Q, denote it xC , and for each v ∈ C we define strcan (v) := xC ∈ Kstr
0 (Q)∩C

and we choose the homotopy H(v) to belong to C.
If v ∈ ∂1Q, then there is (at least) one straight 0-simplex in the same path-

component F of ∂1Q, we choose strcan (v) ∈ F ∩Kstr
0 (Q) and there exists H (v) ∈

K1 (∂1Q) with ∂H (v) = v − strcan (v).
If v 6∈ ∂Q, then we define strcan (v) to be some straight 0-simplex in ∂Q and

we fix arbitrarily some H (v) ∈ K1 (Q) with ∂H (v) = v − strcan (v).

1-simplices.
For e ∈ K1 (Q) we define

strcan (e) :=
[
H (∂1e) ∗ e ∗H (∂0e)

]
,

where, as always, [.] denotes the unique 1-simplex in Kstr
1 (Q), which is homotopic

rel. boundary to the path in the brackets.
e is homotopic to strcan (e) by the canonical homotopy which is inverse to

the homotopy moving H (∂1e) resp. H (∂0e) into constant maps. In particular,
the restriction of this homotopy to ∂1e, ∂0e gives H (∂1e) ,H (∂0e). Thus, for
different edges with common vertices, the homotopies are compatible. We thus
have constructed a homotopy for the 1-skeleton Υ1.

We note that, for v ∈ ∂1Q, the homotopy H (v) is either constant or H (v) ∈
K1 (∂1Q), Thus if τ ∈ K1 (∂1Q) then strcan (τ) ∈ Kstr

1 (∂1Q) and the homotopy
between τ and strcan (τ) takes place in ∂1Q.
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n-simplices.
We assume inductively, that for some n ≥ 1, we have defined strcan on K∗≤n (Q),
mapping K∗≤n (∂1Q) to Kstr

∗≤n (∂1Q), and satisfying i),ii),iii).
Let τ ∈ K (Q) be an n+1-simplex. Then we have by ii) a homotopy between

∂τ and strcan (∂τ). By Observation 1 this homotopy extends to τ . The resulting
simplex τ ′ satisfies ∂τ ′ ∈ Kstr

n (Q). Condition v) from Lemma 11 means that τ ′ is
homotopic rel. boundary to a unique simplex strcan (τ) ∈ Kstr

n+1 (Q). This proves
the inductive step.

If τ ∈ K (∂1Q), then we can inductively assume that the homotopy of ∂τ
has image in ∂1Q. Then condition vii) from Lemma 11 implies strcan (τ) ∈
Kstr

n+1 (∂1Q). Moreover, since ∂1Q is aspherical, the homotopy of τ can be chosen
to have image in ∂1Q.

By construction, for any set of cancellations C, the induced maps τ and σ are
homotopic. In particular, if we chose a sufficient set of cancellations in the sense of
Definition 8d), then Observation 6c) implies that

∑r
i=1 aistrcan (τi) is (relatively)

homologous to
∑r

i=1 aiτi.

However, we want to define a more refined straightening, which will be defined
only on relative cycles with some kind of additional information.

Before stating the definition of ”distinguished 1-simplices” we remark that
there is a left and right action of the pseudogroup Γ := Ω (∂Q) (as defined in
Section 3.3) on Kstr

1 (Q): if e ∈ Kstr
1 (Q) , γ1 ∈ π1 (∂Q, ∂1e) , γ2 ∈ π1 (∂Q, ∂0e),

then let γ1eγ2 be the unique straight 1-simplex homotopic rel. {0, 1} to γ1 ∗ e ∗
γ2. (The left action agrees with the action defined in Section 3.3.) The cosets
ΓKstr

1 (Q) Γ in Definition 9 are with respect to this action.
For x, y ∈ Kstr

0 (Q) we will denote Kstr
1,xy :=

{
e ∈ Kstr

1 (Q) : ∂1e = x, ∂0e = y
}
.

Definition 9. Let Q, ∂Q, ∂1Q, ∂0Q satisfy Assumption I.

Let q : Q→ Q and
{
xEF

i
∈ ∂0Q ∩ ∂1Q

}
be given by Construction 1.

Let Kstr
∗ (Q) ⊂ S∗ (Q) satisfy conditions i)-viii) from Lemma 11.

A set D ⊂ Kstr
1 (Q) is called a set of distinguished 1-simplices if

ix) ∂0e, ∂1e ∈ Kstr
0 (Q) for each e ∈ D,

x) for each
(x, y) ∈ Kstr

0 (Q) ×Kstr
0 (Q)

we have that
Dxy := {e ∈ D : ∂1e = x, ∂0 = y}
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contains exactly one element in each double coset (w.r.t. Γ = Ω (∂Q))

ΓfΓ ∈ ΓKstr
1,xy (Q) Γ,

xi) for all x ∈ Kstr
0 (Q), the constant loop cx belongs to D,

xii) if e ∈ D, then e ∈ D, where e denotes the 1-simplex with the opposite orien-
tation,

xiii) if F,F ′ are path-components of ∂1Q and
{
xEF

i
∈ ∂0Q ∩ F

}
,

{
x

EF ′

j

∈ ∂0Q ∩ F ′

}

are given8 by Construction 1, then q

(
Dx

EF
i

x
EF ′

j

)
= Dx

EF
0

x
EF ′

0

for all xEF
i
, x

EF ′

j

,

xiv) if x1, x2 ∈ C1, y1, y2 ∈ C2 for some path-components C1, C2 of ∂Q, then
for each e1 ∈ Dx1y1

exists some e2 ∈ Dx2y2
with q (e2) = gq (e1) for some

g ∈ H := q∗ (Π (K (∂0Q))).

Observation 8. Let the assumptions of Definition 9 be satisfied. Then a set D
of distinguished 1-simplices exists.

Proof. For each path-component C of ∂Q we fix some xC ∈ Kstr
0 (C).

For each pair {C1, C2} of path-components we fix one simplex e with

∂1e = xC1
, ∂0e = xC2

in each coset of ΓKstr
1,xC1

xC2

(Q) Γ to belong to DxC1
xc2

.

(For all chosen 1-simplices e ∈ DxC1
xC2

, we choose e to belong to DxC2
xC1

. If
C1 = C2, then in particular for the coset of the constant loop we choose the con-
stant loop to belong to DxC1

xC2
.)

For each path-component C of ∂Q and each path-component F of C ∩ ∂1Q,

we have that q (xC) and q
(
xEF

0

)
belong to the path-connected set q (∂0Q ∩ C).

Therefore we have a sequence of 1-simplices α1, . . . , αm ∈ K1 (∂0Q) with images
in distinct path-components of ∂0Q ∩ C, such that

∂1q (α1) = q (xC) , ∂0q (α1) = ∂1q (α2) , . . . , ∂0q (αm−1) = ∂1q (αm) , ∂0q (αm) = q
(
xEF

0

)
.

In order to prepare the definition of the Dx,y’s, we first describe, for each
x ∈ C ∩Kstr

0 (Q) a sequence {α1, . . . , αk} of 1-simplices:
- if C ∩ ∂1Q = ∅, then k = 1 and for each x ∈ C we choose arbitrarily a 1-simplex
α1 in C with ∂1α1 = xC , ∂0α1 = x,

8If F ∩ ∂0Q = ∅ and/or F ′ ∩ ∂0Q = ∅, then there is only one straight 0-simplex xEF

0

resp.

x
EF ′

0

in F resp. F ′. In particular, if F ∩∂0Q = ∅ and F ′∩∂0Q = ∅, then condition xiii) is empty.
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- if C ∩ ∂0Q = ∅, then C ∩Kstr
0 (Q) = {xC} by Lemma 11, condition ii), and we

let k = 0,
- if C ∩∂0Q∩∂1Q 6= ∅, then by condition ii) from Lemma 11 we have x = xEF

i
for

some path-component F of ∂1Q and some i, thus we have the above-constructed
sequence α1, . . . , αm with ∂1q (α1) = q (xC) , ∂0q (α1) = ∂1q (α2) , . . . , ∂0q (αm−1) =

∂1q (αm) , ∂0q (αm) = q
(
xEF

i

)
, where the last equality holds true because q

(
xEF

i

)
=

xEF
0

= q
(
xEF

0

)
.

Let x, y ∈ Kstr
0 (Q). Let C1, C2 be the path-components of ∂Q with x ∈

C1, y ∈ C2.
We have constructed sequences of 1-simplices α1, . . . , αk ∈ K1 (∂Q) resp.

β1, . . . , βl ∈ K1 (∂Q), such that ∂1q (α1) = q (xC1
) , ∂0q (α1) = ∂1q (α2) , . . . , ∂0q (αk−1) =

∂1q (αk) , ∂0q (αk) = q (x) resp. ∂1q (β1) = q (xC2
) , ∂0q (β1) = ∂1q (β2) , . . . , ∂0q (βk−1) =

∂1q (βk) , ∂0q (βk) = q (y). Note that all q (αi) and q (βi) are either constant or
contained in q (K1 (∂0Q)).

Let H := q∗ (Π (K (∂0Q))). Define

g := {q (α1) , q (α1)} . . . {q (αk) , q (αk)}
{
q (βl) , q

(
βl

)}
. . .
{
q (β1) , q

(
β1

)}
∈ H.

(If k = l = 0, this means just g = 1.)
We have that g = g−1 and that

ge ∈ Kstr
1,q(x)q(y) (Q) ⇐⇒ e ∈ Kstr

1,q(xC1
)q(xC2

) (Q) .

By construction, the g associated to xEF
i
, x

EF ′

j

agrees with the g associ-

ated to xEF
0

, x
EF ′

0

.

We are given DxC1
xC2

and we want to define Dxy such that condition xiii) is
satisfied.

First, if C1 ∩ ∂1Q = ∅ or C2 ∩ ∂1Q = ∅, then we can fix an arbitrary choice of
Dx,y satisfying conditions x),xi,xii). (Condition xiii) is empty in this case.)

So let us assume C1 ∩ ∂1Q 6= ∅ and C2 ∩ ∂1Q 6= ∅. We note that

q : (Q, ∂Q, ∂1Q) → (Q, ∂Q, ∂1Q)

is homotopic to the identity as a map of triples, by the construction in Section 5.1.
This implies that cosets of ΓKstr

1,xy (Q) Γ are in 1-1-correspondence (by applying
q) to cosets of ΓKstr

1,q(x)q(y)Γ. It is thus sufficient to describe q (Dxy) ⊂ Kstr
1,q(x)q(y).

Let
ΓfΓ ∈ ΓKstr

1,q(x)q(y) (Q) Γ

be a double coset. Then the double coset

Γ (gf) Γ ∈ ΓKstr
1,q(xC1

)q(xC2
) (Q) Γ
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is the image under q of some double coset

Γe′Γ ∈ ΓKstr
1,xC1

xC2

(Q) Γ

Let e be the unique distinguished simplex in Γe′Γ. Then we choose gq (e) to be
the distinguished simplex in ΓfΓ. This is possible because gq (e) belongs to the
double coset ΓfΓ. Indeed

q (e) ∈ Γ (gf) Γ

means that q (e) = q∗ (γ1) gfq∗ (γ2) for some loops γ1 and γ2 based at xC1
resp.

xC2
, and this implies gq (e′) = q∗ (γ′1) fq∗ (γ′2) with

γ′1 := [αm ∗ . . . ∗ α1 ∗ γ1 ∗ α1 ∗ . . . ∗ αm] , γ′2 :=
[
βn ∗ . . . ∗ β1 ∗ γ2 ∗ β1 ∗ . . . ∗ βn

]
.

This defines Dxy. By construction, condition xiv) is satisfied if e1 ∈ DxC1
xC2

.
In general, if e1 ∈ Dx1y1

, then we get e ∈ DxC1
xC2

and g1 ∈ H with q (e1) = g1q (e)

and e2 ∈ Dx2y2
, g2 ∈ H with q (e2) = g2q (e), thus q (e2) = g2g

−1
1 q (e1).

Condition xiii) is implied because q
(
xEF

i

)
= xEF

0

, q

(
x

EF ′

j

)
= x

EF ′

0

and the g

associated to xEF
i
, x

EF ′

j

agrees with the g associated to xEF
0

, x
EF ′

0

.

One checks easily that xi) and xii) are true for Dxy since they are true for DxC1
xC2

.

Definition 10. Let Q, ∂Q, ∂0Q, ∂1Q satisfy Assumption I. Let z =
∑

i∈I aiτi ∈
Cinf

n (Q) be a singular chain and Υ the associated simplicial set (for some set of
cancellations C).

We say that a labeling of the elements of the 1-skeleton Υ1 by 0’s and 1’s is
admissible, if ∂e1 ∩ ∂e2 = ∅ for all 1-labeled vertices e1, e2.

Lemma 12. Let Q, ∂Q, ∂1Q, ∂0Q satisfy Assumption I. Let q : Q → Q be given
by Construction 1.

Let Kstr
∗ (Q) ⊂ S∗ (Q) satisfy conditions i)-viii) from Lemma 11, and let D ⊂

Kstr
1 (Q) be a set of distinguished 1-simplices.

Let z =
∑

i∈I aiτi ∈ Csimp,inf
∗ (K (Q)) be a relative cycle with ∂z ∈ Csimp,inf

∗ (K (∂1Q)).
Let a set of cancellations C for z and a minimal presentation of ∂z be given. Let

Υ, ∂Υ be the associated simplicial sets, τ : (| Υ |, | ∂Υ |) → (Q, ∂1Q) the associated
continuous mapping.

Assume that we have an admissible 0-1-labeling of Υ1.
Then there exists a relative cycle

z′ =
∑

i∈I

aiτ
′
i ∈ Csimp,inf

∗

(
Kstr (Q) ,Kstr (∂1Q)

)
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such that:
i) the associated continuous mappings

τ, τ ′ : (| Υ |, | ∂Υ |) → (Q, ∂1Q)

are homotopic by a homotopy mapping | ∂Υ | to ∂Q,
ii) if an edge of some τi is labeled by 1, then the corresponding edge of τ ′i belongs
to D,

(Remark: The homotopy in i) does not necessarily map | ∂Υ | to ∂1Q, but to
∂Q.)

Proof. First we apply the ’canonical straightening’ strcan from Observation 7.
The resulting chain

∑
i∈I aistrcan (τi) satisfies i), but not necessarily ii).∑

i∈I aistrcan (τi) inherits the admissible labeling from
∑

i∈I aiτi. Thus we can
w.l.o.g. restrict to the case that all τi belong to Kstr (Q).

Let
e ∈ Kstr

1 (Q)

be a 1-labeled edge, let x = ∂1e ∈ Kstr
0 (Q) , y = ∂0e ∈ Kstr

0 (Q). By Definition 9,
the coset ΓeΓ contains a unique distinguished 1-simplex str (e) ∈ Dxy. (We use
the notation from Definition 9, in particular Γ := Ω (∂Q).)

str (e) ∈ ΓeΓ means9 that there are loops γ1, γ2 ⊂ ∂Q based at x resp. y such
that str (e) ∼ γ1 ∗ e ∗ γ2 rel. {0, 1}. There is an obvious homotopy between e and
γ1 ∗ e ∗ γ2, which moves ∂1e along γ1 and ∂0e along γ2. (Of course, we change the
homotopy class relative boundary, so we can not keep the endpoints fixed during
the homotopy.) If e and/or ∂0e and/or ∂1e have image in ∂1Q, then their images
remain in ∂Q (and end up in ∂1Q) during the homotopy.

Using Observation 1, the so-constructed homotopy between e and str (e) can
be extended to a homotopy from

τ : (| Υ |, | ∂Υ |) → (Q, ∂1Q)

to some
τ̂ : (| Υ |, | ∂Υ |) → (Q, ∂1Q) ,

such that τ̂ is a simplicial map from Υ to S∗ (Q). (If a 0-labeled edge has one or
both vertices adjacent to 1-labeled edges, then the 0-labeled edge just follows the
homotopy of the vertices. 0-labeled edges that are not adjacent to 1-labeled edges
can remain fixed during the homotopy.) The homotopy maps | ∂Υ | to ∂Q.

9If ∂0e, ∂1e 6∈ ∂1Q, then str (e) ∈ ΓeΓ means, of course, str (e) = e. Similarly, if only one
vertex of e belongs to ∂1Q, then only that vertex is moved during the homotopy.
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Next we apply homotopies rel. boundary to the (already homotoped images
of) all 0-labeled edges f ∈ Kstr

1 (Q), to homotope them to edges in Kstr
1 (Q). If f

and/or ∂0f and/or ∂1f have image in ∂1Q, then their images remain in ∂Q (and
end up in ∂1Q) during the homotopy.

Now we have a simplicial map τ̂ : Υ → S∗ (Q), such that all 1-simplices are
mapped to Kstr

1 (Q), and such that

τ̂ (e) ∈ D ⊂ Kstr
1 (Q)

holds for all 1-labeled edges e. Then we can, as in the proof of Observation 7, by
induction on n, apply homotopies rel. boundary to all n-simplices to homotope
them into Kstr

n (Q). Simplices in ∂1Q remain in ∂Q (and end up in ∂1Q) during
the homotopy.

We obtain a homotopy (of pairs), which keeps the 1-skeleton fixed, to a sim-
plicial map

τ ′ : Υ → Kstr (Q) ,

mapping ∂Υ to Kstr (∂1Q) and satisfying i),ii).

A somewhat artificial formulation of the conclusion of Lemma 12 is that we
have constructed a chain map

str : Csimp,inf
∗ (Υ, ∂Υ) → Csimp,inf

∗

(
Kstr (Q) ,Kstr (∂1Q)

)
.

Unfortunately, this somewhat artificial formulation can not be simplified because
str depends on the chain

∑
i∈I aiτi. That is, we do not get a chain map str :

Csimp,inf
∗ (K (Q) ,K (∂1Q)) → Csimp,inf

∗
(
Kstr (Q) ,Kstr (∂1Q)

)
.

5.4 Straightening of crushed cycles

Recall from Section 3.5 that . ⊗ZG Z means the tensor product with the trivial
ZG-module Z, that is, the quotient under the G-action. We first state obvious
generalizations of Observation 6 to the case of tensor products with a factor with
trivial G-action.

Observation 9. Let (Q, ∂1Q) be a pair of topological spaces. Let G be a group
acting on a pair (K,∂K) with K ⊂ S∗ (Q) and ∂K ⊂ S∗ (∂1Q) both closed under
face maps.
i) If

z =
∑

i∈I

aiτi ⊗ 1 ∈ Csimp,inf
∗ (K,∂K) ⊗ZG Z

is a relative cycle, then

ẑ =
∑

i∈I

∑

g∈G

ai (gτi) ∈ Csimp,inf
∗ (K,∂K)
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is a relative cycle.
If C is a sufficient set of cancellations for z, then there exists a set of cancellations
Ĉ for ẑ such that (η1, η2) ∈ Ĉ implies (η1 ⊗ 1, η2 ⊗ 1) ∈ C.
If ∂z =

∑
a,i cai∂aτi⊗1 is a minimal presentation for ∂z, then ∂ẑ =

∑
g∈G

∑
a,i cai∂a (gτi)

is a minimal presentation for ẑ.
ii) Let Υ̂, ∂Υ̂ be the simplicial sets associated to ẑ, the sufficient set of cancella-
tions Ĉ and the minimal presentation of ∂ẑ. They come with an obvious G-action.

Then we have an associated continuous mapping τ̂ :
(
| Υ̂ |, | ∂Υ |

)
→ (Q, ∂1Q).

Corollary 3. Let Q, ∂Q, ∂1Q, ∂0Q satisfy Assumption I. Let q : Q→ Q be given
by Construction 1.

Let Kstr
∗ (Q) ⊂ S∗ (Q) satisfy conditions i)-viii) from Lemma 11, and let D ⊂

Kstr
1 (Q) be a set of distinguished 1-simplices.
Let G := Π (K (∂0Q)) with its action on Kstr (Q) defined in Observation 5,

and let H := q∗ (G) as defined in Section 5.1. Let
∑

i∈I

aiτi ⊗ 1 ∈ Csimp,inf
n (K (Q) , GK (∂1Q)) ⊗ZG Z

be a relative cycle. Fix a sufficient set of cancellations C and a minimal presen-
tation for ∂z. Let Υ̂, ∂Υ̂ be defined by Observation 9. Assume that we have a
G-invariant admissible 0-1-labeling of the edges of Υ̂.

Then there is a well-defined chain map

q ◦ str : Csimp,inf
∗

(
Υ̂
)
⊗ZG Z → Csimp,inf

∗

(
HKstr (Q)

)
⊗ZH Z,

mapping Csimp,inf
∗

(
∂Υ̂
)
⊗ZG Z to Csimp,inf

∗
(
GKstr (∂1Q)

)
⊗ZH Z, such that:

i) if e ∈ Υ̂1 is a 1-labeled edge, str (e⊗ 1) = f ⊗ 1, then f ∈ D.
ii) if Q is an orientable manifold with boundary ∂Q, and if

∑

i∈I

aiτi ⊗ 1 ∈ Csimp,inf
∗ (K (Q) , GK (∂1Q)) ⊗ZG Z

represents10 the image of [Q, ∂Q] ⊗ 1, then

∑

i∈I

aiq ◦ str (τi ⊗ 1) ∈ Csimp,inf
∗

(
HKstr (Q) ,HKstr (∂1Q)

)
⊗ZH Z

represents the image of [Q, ∂Q] ⊗ 1 and

∂
∑

i∈I

aiq ◦ str (τi ⊗ 1) ∈ Csimp,inf
∗

(
HKstr (∂1Q)

)
⊗ZH Z

represents the image of [∂Q] ⊗ 1.

10Cf. the footnotes in Section 3.4
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Proof. We can apply Lemma 12 to the infinite chain
∑

i∈I,g∈H ai (gτi). Thus

Lemma 12 provides us with a chain map str : Csimp,inf
∗

(
Υ̂
)
→ Csimp,inf

∗
(
Kstr (Q)

)
,

given by
str (gτi) := (gτi)

′ .

q :
(
Kstr (Q) ,Kstr (∂1Q)

)
→
(
Kstr (Q) ,Kstr (∂1Q)

)
is defined by Observation 5.

(Remark: we actually have q ◦ str (gτi) ∈ Kstr (Q). We need HKstr (Q) in the
statement of Corollary 3 just to have the tensor product well-defined.)

We are going to define q ◦ str (σ ⊗ z) := q (str (σ)) ⊗ z for each σ ∈ Υ̂, z ∈ Z.
For this to be well-defined, we have to check the following claim:

for each σ ∈ K, g ∈ G, there exists h ∈ H with q (str (gσ)) = hq (str (σ)).

By condition viii) from Lemma 11 (asphericity of Kstr (Q)), it suffices to check
this for the 1-skeleton.

It is straightforward to check the claim for the 0-skeleton.
If σ = v ∈ S0 (∂0Q) then v and gv belong to the same path-component C

of ∂0Q, hence str (v) and str (gv) belong to the same path-component C. Let
γ : [0, 1] → ∂0Q be a path with γ (0) = str (v) , γ (1) = str (gv). Let γ′ be
the unique 1-simplex in K (∂0Q) which is homotopic rel. boundary to γ. Let

g′ :=
{
γ′, γ′

}
∈ G = Π(K (∂0Q)). Then g′str (v) = str (gv), which implies

q (str (gv)) = hq (str (v)) with h = q∗ (g′) ∈ H.
If σ = v 6∈ ∂0Q, then gv = v, hence q (str (gv)) = q (str (v)).

The proof for 1-simplices consists of two steps. In the first step we prove
that for e ∈ K1 (Q) , g ∈ G we have strcan (ge) = g′strcan (e) with g′ ∈ G. In
the second step we show that, if e ∈ Kstr

1 (Q) and g ∈ G, then there exists
h ∈ H with q (str (ge)) = hq (str (e)). Hence altogether we will get q (str (ge)) =
q (str (strcan (ge))) = q (str (g′ strcan (e))) = h q (str (strcan (e))) = h q (str (e)).

First step: This is fairly obvious.
First case: If both vertices of e do not belong to ∂0Q, then also both vertices of
strcan (e) do not belong to ∂0Q, and we have ge = e, gstrcan (e) = str (e), which
implies the claim.
Second Case: If both vertices of e belong to ∂0Q, then strcan (e) ∼ α1 ∗ e ∗
α2, strcan (ge) ∼ β1 ∗ ge ∗ β2 for some paths α1, α2, β1, β2 in ∂0Q. Moreover,
by the definition of the action (Section 3.3) we have ge ∼ γ2 ∗ e ∗ γ1 for some
γ1, γ2 ∈ K1 (∂0Q). Thus strcan (ge) ∼ β1 ∗ γ1 ∗ α

−1
1 ∗ strcan (e) ∗ α−1

2 ∗ γ2 ∗ β2, in
particular strcan (ge) = g′strcan (e) for some g′ ∈ G.
Third case: Finally we consider the case that one vertex, say ∂0e belongs to
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∂0Q, but ∂1e does not belong. Then we are in the situation of the second
case with γ2 = 1, α2 = β2 (except that α2 is not contained in ∂0Q). We get
strcan (ge) ∼ β1 ∗ γ1 ∗α

−1
1 ∗ strcan (e). Since β1 ∗ γ1 ∗α

−1
1 is contained in ∂0Q, this

implies that strcan (ge) = g′strcan (e) for some g′ ∈ G.

Second step: Let e ∈ Kstr
1 (Q).

If e is a 1-labeled edge, with x = ∂1e, y = ∂0e ∈ Kstr
0 (Q), then we have by

condition xiv) from Definition 9 that

q (str (ge)) = hq (e2)

for some e2 ∈ Dxy and some h ∈ H. But e2 belongs to the same coset in
ΓKstr

1 (Q) Γ as e, thus e2 = str (e) which proves the claim for e.
If f is adjacent to one 1-labeled edge e and q (str (ge)) = hq (str (e)), then

q (str (gf)) = hq (str (f)) because the homotopy of f resp. gf just followed the
homotopy of e resp. ge: e.g. if ∂1f = ∂1e and q (str (ge)) ∼ q∗ (α)∗q (str (e))∗q∗ (β)
with α, β ∈ K1 (∂0Q), then q (str (gf)) ∼ q∗ (α) ∗ q (str (f)). Similarly if f is
adjacent to two 1-labeled edges.

Finally, if a 0-labeled straight 1-simplex f is not adjacent to a 1-labeled
edge, then str (f) = f and str (gf) = gf , which implies str (gf) = gstr (f)
and q (str (gf)) = q∗ (g) str (f).

Thus we have proved q (str (gf)) = hq (str (f)) with some h ∈ H for any 0-
labeled edges f .

Thus q ◦str is well-defined and satisfies i) by Lemma 12. To prove ii), we first ob-
serve that, if

∑
i∈I aiτi represents [Q, ∂Q], then, by Observation 6c) and condition

i) from Lemma 12 (together with q ∼ id), we have that

∑

i∈I

aiq ◦ str (τi) =
r∑

i=1

aiq
(
τ ′i
)

represents [Q, ∂Q] and the claim follows. Thus it suffices to check: if
∑

i∈I aiτi⊗1 is
(relatively) homologous to

∑
j∈J bjκj ⊗1, then q◦str (

∑
i∈I aiτi ⊗ 1) is (relatively)

homologous to q ◦ str
(∑

j∈J bjκj ⊗ 1
)
.

So let

∑

i∈I

aiτi ⊗ 1 −
∑

j∈J

bjκj ⊗ 1 = ∂
∑

k∈K

ckηk ⊗ 1 mod Csimp,inf
∗ (GK (∂1Q)) ⊗ZG Z

for some chain
∑

k∈K ckηk ⊗ 1 ∈ Csimp,inf
∗ (K (Q)) ⊗ZG Z. In complete analogy

with Lemma 12, we may extend str to the simplicial set built by the gηk’s, their
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faces and degenerations, and obtain a singular chain q (str (
∑

k∈K ckηk)) whose
boundary is

∂q◦str


∑

k∈K

ckηk


 = q◦str

(∑

i∈I

aiτi ⊗ 1

)
−q◦str


∑

j∈J

bjκj ⊗ 1


 mod Csimp,inf

∗

(
HKstr (∂1Q)

)
⊗ZHZ.

This gives the first claim of ii). The second claim of ii) follows because ∂ maps
[Q, ∂Q] to [∂Q].

5.5 Removal of 0-homologous chains

Definition 11. Let Q be an n-dimensional compact manifold with boundary ∂Q.
We define rmv : S∗ (Q) → S∗ (Q) by

rmv (σ) = 0

if σ is weakly degenerate ( Definition 7) and

rmv (σ) = σ

else.

Lemma 13. Assume that Q is a n-dimensional compact manifold with boundary
∂Q. Let Kstr

∗ (Q) ⊂ S∗ (Q) satisfy the conditions i)-viii) from Lemma 11. Then

rmv : Csimp
∗

(
Kstr (Q) ,Kstr (∂0Q) ∪Kstr (∂1Q)

)
→ Csimp

∗

(
Kstr (Q) ,Kstr (∂0Q) ∪Kstr (∂1Q)

)
,

defined by
rmv ([σ]) := [rmv (σ)] ,

is a well-defined chain map. Moreover, if

r∑

j=1

ajτj ∈ Csimp
∗

(
Kstr (Q) ,Kstr (∂0Q) ∪Kstr (∂1Q)

)
⊂ Csing

∗ (Q, ∂Q)

represents [Q, ∂Q], then
∑r

j=1 ajrmv (τj) represents [Q, ∂Q].

Proof. If σ ∈ Kstr (∂0Q) ∪ Kstr (∂1Q), then rmv (σ) ∈ Kstr (∂0Q) ∪Kstr (∂1Q),
thus rmv is well-defined.
In a first step, we prove that rmv is a chain map.

Assume that rmv (σ) = 0.
If σ has image in ∂Q, then rmv (σ) = 0 and rmv (∂σ) = 0, thus ∂rmv (σ) =
rmv (∂σ).
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If some edge e of σ, say connecting the i-th and j-th vertex, is a constant loop, then
all faces of σ except possibly ∂iσ and ∂jσ have a constant edge. Thus rmv (∂kσ) =
0 if k 6∈ {i, j}. Moreover, since e is constant, corresponding edges of ∂iσ and
∂jσ are homotopic rel. boundary and thus agree (possibly up to orientation) by
condition v) from Lemma 11. By induction on the dimension of subsimplices we
get, again using condition v) from Lemma 11, that ∂iσ = (−1)i−j ∂jσ. Altogether
we get rmv (∂σ) = 0, thus ∂rmv (σ) = rmv (∂σ).

Assume that rmv (σ) = σ. Since no edge of σ is a constant loop, of course
also no edge of a face ∂iσ is a constant loop. If the image of ∂iσ is not contained
in ∂Q, this implies rmv (∂iσ) = ∂iσ = ∂irmv (σ). If ∂iσ has image in ∂Q, then of
course [∂iσ] = [0] = [∂irmv (σ)], which implies rmv (∂iσ) = ∂irmv (σ).
Now we prove that rmv sends relative fundamental cycles to relative fundamental
cycles.

Let
∑r

j=1 ajτj be a straight relative cycle, representing the relative homology
class [Q, ∂Q].

We denote by J1 ⊂ {1, . . . , r} the indices of those τj which have a constant
edge. The sum

∑
j∈J1

ajτj is a relatively 0-homologous relative cycle. Indeed,
each face of ∂iτk not contained in ∂Q has to cancel against some face of some τl,
because

∑r
j=1 ajτj is a relative cycle. If ∂iτk is degenerate, then necessarily l ∈ J1.

Moreover, if τk is degenerate and ∂iτk is nondegenerate, then we have proved in
the first step that ∂iτk cancels against some ∂jτk.

Thus
∑

j∈J1
ajτj represents some relative homology class. The isomorphism

Hn

(
Csing
∗ (Q, ∂Q)

)
→ R is given by pairing with the volume form of an arbitrary

Riemannian metric. After smoothing the relative cycle, we can apply Sard’s
lemma, and conclude that degenerate simplices have volume 0. Thus

∑
j∈J1

ajτj
is 0-homologous.

We denote by J2 ⊂ {1, . . . , r} the indices of those τj which are contained in

∂Q. For j ∈ J2 we have [τj] = [0] ∈ Csing
∗ (Q, ∂Q).

Thus
∑

j 6∈J1∪J2
ajτj is another representative of the homology class [Q, ∂Q].

But, by Definition 11, it also represents (rmv)∗ ([Q, ∂Q]).

Consider a subgroup H ⊂ Π(K (A)) for some A ⊂ ∂Q. (E.g. A = q (∂0Q) in
the setting of Construction 1, and H = q∗ (Π (K (∂0Q))) ⊂ Π(K (A)).

A 1-simplex e is a constant loop if and only if he is a constant loop for all
h ∈ H. This implies that a simplex σ is degenerate if and only if hσ is degenerate
for all hσ. Moreover, H maps simplices in ∂Q to simplices in ∂Q. Thus rmv (σ) =
0 if and only if rmv (hσ) = 0 for all h ∈ H, that is, rmv is well defined on

Csimp,inf
∗

(
HKstr (Q)

)
⊗ZH Z for each subgroup H.

Lemma 14. Assume that Q is a n-dimensional compact manifold with boundary
∂Q. Let the assumptions of Corollary 3 be satisfied. Then we can extend rmv to
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a well-defined chain map

rmv : Csimp,inf
∗

(
HKstr (Q) ,HKstr (∂1Q)

)
⊗ZHZ → Csimp,inf

∗

(
HKstr (Q) ,HKstr (∂1Q)

)
⊗ZHZ

by defining

rmv (σ ⊗ z) =

{
0 : rmv (σ) = 0

σ ⊗ z : else

}
.

Moreover, if
∑

j∈J ajτj ⊗ 1 ∈ Csimp,inf
∗

(
HKstr (Q) ,HKstr (∂1Q)

)
⊗ZH Z repre-

sents the image of [Q, ∂Q] ⊗ 1, then
∑

∈J ajrmv (τj ⊗ 1) represents the image of
[Q, ∂Q] ⊗ 1.

Proof. Well-definedness of rmv follows from the remark before Lemma 14. The
same proof as for Lemma 13 shows that rmv is a chain map.

If
∑r

j=1 ajτj represents [Q, ∂Q], then the second claim follows from Lemma
13. If

∑
j∈J ajτj ⊗ 1 is homologous to

∑s
i=1 biκi ⊗ 1 and

∑s
i=1 biκi represents

[Q, ∂Q], then (because rmv is a chain map) rmv
(∑

j∈J ajτj ⊗ 1
)

is homologous

to rmv (
∑s

i=1 biκi ⊗ 1), which implies the second claim.

The proof of Theorem 1 will pursue the idea of straightening a given cycle
such that many simplices either become weakly degenerate or will have an edge in
∂0Q. In the first case, they will disappear after application of rmv. In the second
case, they disappear in view of the following observation, which is a variant of an
argument used in [14].

Lemma 15. a) Let Assumption I be satisfied for a manifold Q and consider the
action of G = Π(K (∂0Q)) on K (Q). Let σ ∈ K (Q) be a simplex.

If str (σ) has an edge in ∂0Q, then

str (σ ⊗ 1) = 0 ∈ Csimp,inf
∗ (K (Q)) ⊗ZG Z.

b) If q : Q→ Q is given by Construction 1, H = q∗ (G), and σ ∈ K (Q) a simplex
such that q (str (σ)) has an edge in q (∂0Q), then

q (str (σ ⊗ 1)) = 0 ∈ Csimp,inf
∗ (K (Q)) ⊗ZH Z.

Proof. a) Let γ be the edge of str (σ) with image in ∂0Q, then g = {γ, γ} is
an element of G = Π(K (∂0Q)) and gstr (σ) = str (σ). In the simplicial chain

complex Csimp,inf
∗ (K (Q)), one has str (σ) = −str (σ). Thus gstr (σ) = −str (σ),

which implies str (σ ⊗ 1) = str (σ) ⊗ 1 = 0.
b) Let γ be the edge of q (str (σ)) with image in q (∂0Q). Let γ′ be the corre-
sponding edge of str (σ). Let g = {γ′, γ ′} ∈ G and h = q∗ (g) = {γ, γ} ∈ H. The
same argument as in a) shows hq (str (σ)) = −q (str (σ)).
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6 Proof of Main Theorem

6.1 Motivating examples

Example 1: Let M be a connected, orientable, hyperbolic n-manifold, F an
orientable, geodesic n-1-submanifold, Q = M − F . For simplicity we assume
that M and F are closed, thus Q is a hyperbolic manifold with geodesic boundary
∂1Q 6= ∅, and ∂0Q = ∅.

Outline of proof of ‖ M ‖norm
F ≥ 1

n+1 ‖ ∂Q ‖: Start with a fundamental
cycle

∑r
i=1 aiσi of M , such that σ1, . . . , σr are normal to F . Since we want to

consider laminations without isolated leaves, we replace F by a trivially foliated
product neighborhood F . We can assume after a suitable homotopy that each
component of σ−1

i (∂Q) either contains no vertex of ∆n or consists of exactly one
vertex, and that each vertex of ∆n belongs to σ−1

i (F), for i = 1, . . . , r.
Each σ−1

i (Q) consists of polytopes, which can each be further triangulated
(without introducing new vertices) in a coherent way (i.e., such that boundary
cancellations between different σi’s will remain) into τi1, . . . , τis(i).∑r

i=1 ai

(
τi1 + . . .+ τis(i)

)
is a relative fundamental cycle for Q.

For each σi, preimages of the boundary leaves of F cut ∆n into regions which
we colour with black (components of σ−1

i (F)) and white (components of σ−1
i (Q)).

Moreover, if σ−1
i (∂Q) contains vertices, these vertices are coloured black. This is

a canonical colouring (Definition 4).
The edges of the simplices τi,j fall into two classes: ’old edges’, i.e. subarcs of

edges of σi, and ’new edges’, which are contained in the interior of some subsimplex
of σi of dimension ≥ 2.

We define the labeling of the edges of τij such that ’old edges’ are labelled
1 and ’new edges’ are labelled 0. This is an admissible labeling (Definition 10).
With this labeling, we apply the straightening procedure11 from Section 5 to

get a straight cycle
∑r

i=1 ai

(
str (τi1) + . . . + str

(
τis(i)

))
. (Thus ’old edges’ are

straightened to distinguished 1-simplices.)
After straightening we remove all weakly degenerate simplices (simplices con-

tained in ∂Q or having a constant edge), i.e. we apply the map rmv from Section
5.4. By Lemma 13, this does not change the homology class. In particular, the
boundary of the relative cycle, ∂

∑
i,j airmv (str (τij)) still represents the funda-

mental class [∂Q] of ∂Q.
Claim: for each σi, after straightening there remain at most n + 1 faces of

nondegenerate simplices str (τij) contributing to ∂
∑

i,j airmv (str (τij)).

11Under the assumptions of Example 1, straight simplices can be chosen to be the totally
geodesic simplices with vertices in Sstr

0 (Q). Distinguished simplices are chosen according to
Observation 8.
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In view of Lemma 10, it suffices to show the following subclaim: if, for a fixed
i, T1 = ∂k1

τij1, T2 = ∂k2
τij2 are faces of some τij1 resp. τij2 such that T1, T2 have

a white-parallel arc (Definition 6), then rmv (str (τij1)) = 0, rmv (str (τij2)) = 0.
and in particular the corresponding straightened faces str (T1) , str (T2) do not
occur (with nonzero coefficient) in ∂

∑
i,j rmv (str (τij)). (Notational remark: for

a subsimplex T of an affine subset S ⊂ ∆n we get a singular simplex σi |T by
restricting σi to T . We denote by str (T ) the straightening of σi |T .)

To prove the subclaim, let W be the white region of ∆n containing T1 and T2

in its boundary. By assumption of the subclaim, there is a white square bounded
by two arcs e1 ⊂ T1, e2 ⊂ T2 and two arcs f1, f2 which are subarcs of edges of ∆n.
(The square is a formal sum of two triangles, U1 + U2, which are 2-dimensional
faces of some τij’s.)

e2

f1

e1

f2

square

We want to show that all edges of str (τij1) belong to Sstr
1 (∂Q). Note that

T1, T2 ⊂ ∂W are mapped to ∂Q. Let x1 ∈ Sstr
0 (Q) resp. x2 ∈ Sstr

0 (Q) be
the unique elements of Sstr

0 (Q) in the same connected component C1 resp. C2

of ∂Q as σi (T1) resp. σi (T2). In particular ∂0str (e1) = x1 = ∂1str (e1) and
∂0str (e2) = x2 = ∂1str (e2). Thus e1 and e2 are straightened to loops str (e1)
resp. str (e2) based at x1 resp. x2. The straightenings of the other two arcs,
str (f1) , str (f2) connect x1 to x2, and they are distinguished 1-simplices because
they arise as straightenings of ’old edges’. Thus str (f1) = str (f2), by uniqueness
of distinguished 1-simplices in each coset ΓKstr

1 (Q) Γ of Γ = Ω (∂Q). This is why
we have performed the straightening construction in Section 5 such that there
should be only one distinguished 1-simplex, in each coset, for any given pair of
connected components.
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This means that the square is straightened to a cylinder.
But (Q, ∂Q) is acylindrical, thus either both str (e1) and str (e2) are constant

(in which case rmv (str (τij1)) = rmv (str (τij2)) = 0), or the cylinder must be
homotopic into ∂Q. In the latter case, str (f1) must (be homotopic into and
therefore) be contained in ∂Q. In particular, ∂0str (f1) and ∂1str (f1) belong to
the same component of ∂Q. This implies ∂0str (f1) = ∂1str (f1). Since str (f1) is
a distinguished 1-simplex, this implies that str (f1) is constant.

Let P1, P2 be the affine planes whose intersections with ∆n contain T1 resp.
T2. We have now that there is an arc f1 connecting P1 ∩ ∆n to P2 ∩ ∆n such
that str (f1) is contained in ∂Q. This implies that for each other arc f connecting
P1∩∆n to P2∩∆n its straightening str (f) must (be homotopic into and therefore)
be contained in ∂Q.

If P1 and P2 are of the same type, then all edges of str (τij1) connect P1 ∩∆n

to P2 ∩ ∆n, hence all edges of str (τij1) belong to Sstr
1 (∂Q). If P1 and P2 are not

of the same type, then existence of a parallel arc implies that at least one of them,
say P1, must be of type {0a1 . . . ak} with k 6∈ {0, n − 1}. Then, if P3 is any other
plane bounding W , it follows from Corollary 2 that P3 has a white-parallel arc
with P1. Thus, repeating the argument in the last paragraph with P1 and P3 in
place of P1 and P2, we obtain that for each arc f connecting P1∩∆n to P3∩∆n its
straightening str (f) must (be homotopic into and therefore) be contained in ∂Q.
Hence, for each τij1 in the chosen triangulation of W , its 1-skeleton is straightened
into ∂Q.

Since straight simplices σ (of dimension ≥ 2) with ∂σ in the geodesic boundary
∂Q, must be in ∂Q, this implies by induction that the k-skeleton of str (τij1) is in
∂Q, for each k. In particular, str (τij1) ∈ Sstr

n (∂Q). Hence rmv (str (τij1)) = 0.
We have proved the subclaim.

By Lemma 10, the subclaim implies the claim. Since
∑r

i=1 ai∂
∑

j rmv (str (τij))
represents the fundamental class [∂Q], we conclude ‖ ∂Q ‖≤ (n+ 1)

∑r
i=1 | ai |.

The simplifications of Example 1 in comparison to the proof in Section 6.2 are
essentially all due to the fact that ∂0Q = ∅. We remark that in Example 2, if F
is not geodesic, then Q 6= N and thus ∂0Q 6= ∅ (even though ∂M = ∅, ∂F = ∅).
Thus the generalization to ∂0Q 6= ∅ would be necessary even if one only wanted
to consider closed manfifolds M and F .

Example 2: Let M be a connected, closed, hyperbolic 3-manifold, F ⊂ M a
closed, incompressible surface, N = M − F,Q = Guts (N).
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Outline of proof of ‖ M ‖norm
F ≥ 1

4 ‖ ∂Q ‖: Start with a fundamental cycle∑r
i=1 aiσi of M , such that σ1, . . . , σr are normal to F . As in Example 1 we get

a relative fundamental cycle
∑r

i=1 ai

(
τi1 + . . .+ τis(i)

)
of N . We can not apply

the argument from Example 1 to N because N is not acylindrical. Therefore we
would like to work with a relative fundamental cycle for the acylindrical manifold
Q.

N is aspherical. Using Lemma 2, we can assume that all τij belong to K (N).
Then we can apply the retraction r from Lemma 5. Since r is only defined after
tensoring .⊗ZG Z, we get r (τij ⊗ 1) = κij ⊗ 1 with κij ∈ K (Q) only determined
up to choosing one κij in its G-orbit.

Since Q is aspherical, we have K (Q) = K̂ (Q), that is, the κij can be con-
sidered as simplices in Q and we can apply Lemma 6b) to obtain a fundamental
cycle for ∂Q.

The rest of the proof then basically boils down to copying the proof of Example
1 (with τij replaced by κij), but taking care of the ambiguity in the choice of κij .
The details can be found in the next section.

6.2 Proof

We refer to the introduction for the statement of Theorem 1 and the relevant
definitions. In this section we are going to prove Theorem 1.

Proof:
If n = 1, then Theorem 1 is trivially true. Hence we can restrict to the case

n ≥ 2.
If ∂1Q were empty, then ∂Q = ∂0Q and amenability of π1∂0Q would imply

‖ ∂Q ‖= 0, in particular Theorem 1 would be trivially true. Hence we can restrict
to the case ∂1Q 6= ∅. In particular, Q satisfies Assumption I from Section 5.

Consider a relative cycle
∑r

i=1 aiσi, representing [M,∂M ], such that σ1, . . . , σr

are normal to F . Our aim is to show:
∑r

i=1 | ai |≥
1

n+1 ‖ ∂Q ‖.

Denote
N = M −F .

Since each σi is normal to F , we have for each i = 1, . . . , r that, after application
of a simplicial homeomorphism hi : ∆n → ∆n, the image of σ−1

i (N) consists
of polytopes, which can each be further triangulated in a coherent way (i.e.,
such that boundary cancellations between different σi’s will remain) into simplices
θij, j ∈ Ĵi. (It is possible that | Ĵi |= ∞, because N may be noncompact.) We
choose these triangulations of the σ−1

i (N) to be minimal (Definition 6), that is,
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we do not introduce new vertices. (Indeed, compatible minimal triangulations
of the σ−1

i (N) do exist: one starts with common minimal triangulations of the
common faces and extends them to minimal triangulations of each polytope.)

Because boundary cancellations are preserved, we have that

r∑

i=1

ai

∑

j∈Ĵi

θij

is a countable (possibly infinite) relative cycle representing the fundamental class
[N, ∂N ] in the sense of section 3.2.
We fix a sufficient set of cancellations CM for the relative cycle

∑r
i=1 aiσi, in the

sense of Definition 8. This induces a sufficient set of cancellations CN for the
relative cycle

∑r
i=1

∑
j∈Ĵi

aiθij.

If ∂M is a leaf of F , then all faces of z contributing to ∂z are contained in
∂N . We call these faces exterior faces. We can assume that, for each i,
- each component of σ−1

i (∂N) either contains no vertex of ∆n, or consists of ex-
actly one vertex, or consists of an exterior face,
- and each vertex of ∆n belongs to σ−1

i (F).
Indeed, by a small homotopy of the relative fundamental cycle

∑r
i=1 aiσi, preserv-

ing normality, we can obtain that no component of σ−1
i (∂N) contains a vertex of

∆n, except for exterior faces. Afterwards, if some vertices of
∑r

i=1 aiσi do not be-
long to F , we may homotope a small neighborhood of the vertex, until the vertex
(and no other point of the neighborhood) meets ∂N . This, of course, preserves
normality to F .

Since each σi is normal to F , in particular each σi is normal to the union of
boundary leaves

∂1N := ∂N − (∂M ∩ ∂N).

Thus for each σi, after application of a simplicial homeomorphism hi : ∆n → ∆n,
the image of σ−1

i (∂1N) consists of a (possibly infinite) set

Q1, Q2, . . . ⊂ ∆n,

such that
Qi = Pi ∩ ∆n

for some affine hyperplanes P1, P2, . . .. We define a colouring by declaring that
(images under hi of) components of

σ−1
i (int (N)) := σ−1

i (N − ∂1N)

are coloured white and (images under hi of) components of σ−1
i (F) are coloured

black. (In particular, all Qi are coloured black.) Since we assume that all vertices
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of ∆n belong to σ−1
i (F), and since each boundary leaf is adjacent to at least one

component of σ−1
i (int (N)), this is a canonical colouring (Definition 4).

By Lemma 2a), we can homotope the relative cycle
∑r

i=1

∑
j∈Ĵi

θij ∈ Cinf
n (N, ∂N)

to a relative cycle
r∑

i=1

ai

∑

j∈Ĵi

θ̂ij

such that each θ̂ij is a simplex of K̂ (N), as defined in Section 3.2, and such that

the boundary ∂
∑r

i=1

∑
j∈Ĵi

θij is homotoped into K̂ (∂N). Then consider

r∑

i=1

∑

j∈Ĵi

aiτij :=
r∑

i=1

∑

j∈Ĵi

aip
(
θ̂ij

)
∈ Csimp,inf

n (K (N)) ,

where p : K̂ (N) → K (N) is the projection defined at the end of Section 3.2, and

τij := p
(
θ̂ij

)
for all i, j.

Consider Q ⊂ N as in the assumptions of Theorem 1. We denote

G := Π (K (∂0Q)) .

We have by assumption that N = Q∪R is an essential decomposition (as de-
fined in the introduction), which means exactly that the assumptions of Lemma 5
are satisfied. Thus, according to Lemma 5, there exists a retraction

r : Csimp,inf
n (K (N)) ⊗ZG Z → Csimp,inf

n (K (Q)) ⊗ZG Z

for n ≥ 2, mapping Csimp,inf
n (GK (∂N)) ⊗ZG Z to Csimp,inf

n (GK (∂1Q)) ⊗ZG Z,
such that, for each simplex τij ∈ K (N), we either have r (τij ⊗ 1) = 0 or

r (τij ⊗ 1) = κij ⊗ 1

for some simplex κij ∈ K (Q) . (Recall that we assume from the beginning n ≥ 2.)
Thus

r




r∑

i=1

ai

∑

j∈Ĵi

τij ⊗ 1


 =

r∑

i=1

ai

∑

j∈Ji

κij ⊗ 1

with Ji ⊂ Ĵi for all i. (It may still be possible that | Ji |= ∞.)
We remark that κij is only determined up to choosing one κij in its G-orbit.

Since r is a chain map, we get a sufficient set of cancellations for∑r
i=1 ai

∑
j∈Ji

κij ⊗ 1 by

CQ :=
{
(∂kκi1j1 ⊗ 1, ∂lκi2j2 ⊗ 1) : (∂kτi1j1, ∂lτi2j2) ∈ CN

}
.
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By assumption, Q is aspherical. We can therefore apply Lemma 6 and have
that

∂




r∑

i=1

ai

∑

j∈Ji

κij ⊗ 1


 ∈ Csimp,inf

∗ (GK (∂1Q)) ⊗ZG Z

represents (the image of) [∂Q] ⊗ 1.
Lemma 4a) gives that G is amenable. Together with Lemma 7 this implies

‖ ∂Q ‖≤
r∑

i=1

| ai | (n+ 1) | Ji | .

In the remainder of the proof, we will use Lemma 14 to improve this inequality
and, in particular, get rid of the unspecified (possibly infinite) numbers | Ji |.

Q, ∂Q, ∂0Q, ∂1Q satisfy Assumption I from Section 5. Thus there exists a
simplicial set

Kstr
∗ (Q) ⊂ S∗ (Q)

satisfying conditions i)-viii) from Lemma 11, and a set

D ⊂ Kstr
1 (Q)

of distinguished 1-simplices (Definition 9).
Recall that, for each i, ∑

j∈Ĵi

θi,j

was defined by choosing a triangulation of σ−1
i (N). The simplices θi,j thus have

’old edges’, i.e. subarcs of edges of σi, and ’new edges’, whose interior is contained
in the interior of some subsimplex of σi of dimension ≥ 2.

Associated to z =
∑r

i=1 ai

∑
j∈Ĵi

θij and CN (and an arbitrary minimal pre-

sentation of ∂z) are, by Definition 8, simplicial sets ΥN , ∂ΥN .
The only possibility that two ’old edges’ have a vertex in ΥN in common is

that this vertex is a vertex of σi.
So the labeling of edges of

r∑

i=1

ai

∑

j∈Ĵi

θij

by labeling ’old edges’ not containig a vertex of any σi with label 1 and all other
edges with label 0 is an admissible labeling (Definition 10).
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Associated to

w =
r∑

i=1

ai

∑

j∈Ji

κij ⊗ 1

and CQ (and an arbitrary minimal presentation of ∂w) there are simplicial sets
Υ, ∂Υ. By our definition of CQ, Υ is isomorphic to a simplicial subset of ΥN ,
namely to the subset generated by the set

{
τ ∈ ΥN : r (τ ⊗ 1) 6= 0

}

together with all iterated faces and degenerations. In particular, the admissible
0-1-labeling of ΥN induces an admissible 0-1-labeling of Υ.

By Construction 1, there is a map of triples q : (Q, ∂Q, ∂1Q) → (Q, ∂Q, ∂1Q)
which is (as a map of triples) homotopic to the identity, and such that q (∂0Q ∩ C)
is path-connected for each path-component C of ∂Q.

We denote

A := q (∂0Q) ,H := q∗ (G) = q∗ (Π (K (∂0Q))) ⊂ Π(K (A)) .

We observe that H is a quotient of G, hence amenable, even though Π (K (A))
need not be amenable.

Let Υ̂, ∂Υ̂ be defined by Observation 9. By Corollary 3, there is a chain map

q ◦ str : Csimp,inf
∗

(
Υ̂
)
⊗ZG Z → Csimp,inf

∗

(
HKstr (Q)

)
⊗ZH Z,

mapping Csimp,inf
∗

(
∂Υ̂
)
⊗ZG Z to Csimp,inf

∗
(
HKstr (∂1Q)

)
⊗ZH Z, such that

∂
r∑

i=1

ai

∑

j∈Ji

q (str (κij)) ⊗ 1

represents (the image of) [∂Q] ⊗ 1 and such that 1-labeled edges are mapped to
distinguished 1-simplices. (We keep in mind that κij is only determined up to
G-action, thus q (str (κij)) is determined only up to choosing one simplex in its
H-orbit.)

We then apply Lemma 14 to get the cycle

∂
r∑

i=1

ai

∑

j∈Ji

rmv (q (str (κij)) ⊗ 1) ∈ Csimp,inf
∗

(
HKstr (∂1Q)

)
⊗ZH Z

representing (the image of) [∂Q]⊗ 1. We want to show that it is actually a finite
chain of l1-norm at most (n+ 1)

∑r
i=1 | ai |.
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Claim: For each i,
∂
∑

j∈Ji

rmv (q (str (κij)) ⊗ 1)

is the formal sum of at most n+ 1 n-1-simplices L⊗ 1 with coefficient 1.

The claim will be a consequence of the following subclaim and Lemma 10.

Subclaim: Assume that for some fixed i ∈ I, for the chosen triangulation

σ−1
i (N) =

⋃

j∈Ĵi

θij,

and the associated canonical colouring, there exist j1, j2 ∈ Ĵi, k1, k2 ∈ {0, . . . , n}
such that the faces

T1 = ∂k1
θij1 ∈ Sn−1 (∂N) , T2 = ∂k2

θij2 ∈ Sn−1 (∂N)

have a white-parallel arc (Definition 6). Then

rmv (q (str (κij1)) ⊗ 1) = 0, rmv (q (str (κij2)) ⊗ 1) = 0.

We are going to prove the subclaim.

∂kl
θijl

∈ Sn−1 (∂N)

implies (by Lemma 5 and Construction 1)

∂kl
q (str (κijl

)) ∈ HKstr
∗ (∂1Q)

for l = 1, 2. Argueing by contradiction, we assume that

rmv (q (str (κij1)) ⊗ 1) 6= 0.

By assumption of the subclaim, there are white-parallel arcs e1, e2 of T1 resp.
T2. This means that there are arcs e1, e2 in a 2-dimensional subsimplex τ2 ⊂ ∆n

of the standard simplex, and that there are arcs f1, f2, which are subarcs of some
edge of τ2, such that

∂0e1 = ∂1f2, ∂0f2 = ∂0e2, ∂1e2 = ∂0f1, ∂1f1 = ∂1e1

and such that
e1, f2, e2, f1
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bound a square in the boundary of a white component. (Cf. the picture in section
6.1. We will use the same letter for an affine subset of ∆n and for the singular
simplex obtained by restricting σi to this subset.) The square is of the form
U1 + U2, where U1, U2 are n-2-fold iterated faces of some θij’s. Hence

∂U1 = e1 + f2 + ∂2U1

and
∂U2 = −e2 − f1 − ∂2U1,

i.e.
∂ (U1 + U2) = e1 + f2 − e2 − f1

and
∂2U1 = −∂2U2.

We emphasize that we assume e1 resp. e2 to be edges of θij1 resp. θij2 but that
f1, f2 need not be edges of θij1 or θij2.

Notational convention: for each iterated face f = ∂k1
. . . ∂kl

θij with i ∈ I, j ∈ Ji,
we will denote f ′ the n− l-simplex with

f ′ ⊗ 1 = ∂k1
. . . ∂kl

κij ⊗ 1 = r (∂k1
. . . ∂kl

τij ⊗ 1) = r
(
∂k1

. . . ∂kl
p
(
θ̂ij

)
⊗ 1

)
.

(The last two equations are true because r, p and the homotopy from
∑

i,j aiθij

to
∑

i,j θ̂ij are chain maps.) In other words, if f is an iterated face of some τij ,
then f ′ is, up to the ambiguity by the H-action, the corresponding iterated face
of κij .

By Lemma 5 we have e′1, e
′
2 ∈ GK (∂1Q). Thus we can (and will) choose

κij1 , κij2 in theirG-orbits such that we have e′1, e
′
2 ∈ K (∂1Q), hence str (e′1) , str (e′2) ∈

Kstr (∂1Q).
Since r, p and the homotopy are chain maps, we have

∂2U
′
1 ⊗ 1 = −∂2U

′
2 ⊗ 1.

That is,
∂2U

′
1 = g∂2U ′

2

for some g ∈ G.
Since U ′

1 and U ′
2 belong to different κij ’s, say κij1 and κij2, we can, upon

replacing κij2 by gκij2 , assume that ∂2U
′
1 = ∂2U ′

2, that is, U ′
1 + U ′

2 is a square.
(Since g maps ∂e′2 to ∂e′1, this second choice of κij2 in its G-orbit preserves the
condition that e′2 ∈ Kstr (∂1Q).)

58



F

F

xl xl

xk xk

cylinder

Let F resp. F ′ be the path-components of ∂1Q with e′1 ⊂ F resp. e′2 ⊂ F ′.
Then we have ∂1str (f ′1) , ∂0str (f ′2) ∈ F, ∂0str (f ′1) , ∂1str (f ′2) ∈ F ′.

We note that f ′1 and f ′2 are edges with label 1. By condition (i) of Corollary
3, this implies that str (f ′1) and str (f ′2) are distinguished 1-simplices.

By Condition ix) and Condition xiii) of Definition 9 we have that

∂1q
(
str

(
f ′1
))

= xEF
0

= ∂0q
(
str

(
f ′2
))
, ∂0q

(
str

(
f ′1
))

= x
EF ′

0

= ∂1q
(
str

(
f ′2
))
.

That is, q (str (e′1))) and q (str (e′2)) are loops in ∂1Q, based at xEF
0

resp. x
EF ′

0

.

Since the square q (str (U ′
1 + U ′

2)) realizes a homotopy between q (str (f ′1)) and
q (str (f ′2)), we have that

q
(
str

(
f ′1
))

= γ1q
(
str

(
f ′2
))
γ2

with
γ1 = q

(
str

(
e′1
)
)
)
, γ2 = q

(
str

(
e′2
)
)
)
∈ Ω (∂1Q) ⊂ Γ = Ω (∂Q) .

By condition x) from Definition 9 this implies

q
(
str

(
f ′1
))

= q
(
str

(
f ′2
))
.

This means that q (str (U ′
1)) + q (str (U ′

2)) is a cylinder with the boundary
circles q (str (e′1)) and q (str (e′2)) in ∂1Q.

(This is why we have performed the straightening construction in Section 5
such that there should be only one distinguished 1-simplex in each coset.)
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The assumption rmv (q ◦ str (κij1) ⊗ 1) 6= 0 implies that the loops q (str (e′1))
and q (str (e′2)) are not 0-homotopic.
Indeed, if one of them, say q (str (e′1)), were a 0-homotopic (thus constant) loop,
then also q (str (e′2)) would be a 0-homotopic (thus constant) loop, because they
are homotopic through the cylinder. But q (str (e′1)) , q (str (e′2)) are edges of
q (str (κij1)) resp. q (str (κij2)). In particular, q (str (κij1)) and q (str (κij2)) would
have a constant loop as an edge. By Lemma 14 and Definition 7, this would prove
the wanted equalities rmv (q ◦ str (κij1) ⊗ 1) = 0, rmv (q ◦ str (κij2) ⊗ 1) = 0.

Thus we can assume that q (str (e′1)) and q (str (e′2)) are not 0-homotopic, that
is, the cylinder

q
(
str

(
U ′

1

))
+ q

(
str

(
U ′

2

))

is π1-injective as a map of pairs. Since (Q, ∂1Q) is a pared acylindrical manifold,
the cylinder must then be homotopic into ∂Q, as a map of pairs

(
S1 × [0, 1] ,S1 × {0, 1}

)
→ (Q, ∂1Q) .

Since ∂1Q is acylindrical, the cylinder must then either degenerate (S1 ×
[0, 1] → ∂Q homotopes to a map that factors over the projection S1 × [0, 1] → S1,
in particular q (str (e′1)) = q (str (e′2))) or be homotopic into ∂0Q (and hence into
q (∂0Q), since q ∼ id). In the second case the vertices xEF

0

, x
EF ′

0

must belong to

∂0Q and we get by condition vii) from Lemma 11 that q (str (e′1)) , q (str (e′2)) ∈
Kstr

1 (∂0Q). By Lemma 15 this implies that q (str (κij1))⊗1 = 0, q (str (κij2))⊗1 =
0.
Thus we can assume that the cylinder degenerates. In particular q (str (f ′1)) , q (str (f ′2)) ∈
Kstr

1 (∂1Q).

Let P1, P2 be the affine planes whose intersections with ∆n contain T1 resp. T2.
Let W be the white component whose boundary contains the white-parallel arcs
of T1, T2. We have seen that there is are arcs f1, f2 connecting P1∩∆n to P2∩∆n

such that
q
(
str

(
f ′1
))
, q
(
str

(
f ′2
))

∈ Kstr
1 (∂1Q) .

This implies that for each other arc f connecting P1∩∆n to P2∩∆n the straight-
ening q (str (f ′)) must be (homotopic into and therefore by condition vii) from
Lemma 11) contained in ∂1Q.

If P1 and P2 are of the same type (Definition 2), then this shows that for all
arcs f ⊂W :

q
(
str

(
f ′
))

∈ Kstr
1 (∂1Q)

If P1 and P2 are not of the same type, then the existence of a parallel arc implies
that at least one of them, say P1, must be of type {0a1 . . . ak} with k 6∈ {0, n − 1}.

60



Then, for each plane P3 6= P1 with P3∩∆n ⊂ ∂W , it follows from Corollary 2 that
P3∩∆n has a white-parallel arc with P1∩∆n. Thus, repeating the argument with
P1 and P3 in place of P1 and P2, we prove that there are arcs in ∂1Q connecting
P1 ∩ ∆n to P3 ∩ ∆n, and consequently for each arc f ⊂ W connecting P1 ∩ ∆n

to P3 ∩ ∆n, the straightening str (f ′) must be (homotopic into and therefore)
contained in ∂1Q.

Consequently, also for arcs connecting P2 ∩ ∆n to P3 ∩ ∆n, we have that
q (str (f ′)) must be (homotopic into and therefore) contained in ∂1Q. This finally
shows that the 1-skeleta of q (str (κij1)) and q (str (κij2)) belong to Kstr

1 (∂1Q).
By π1-injectivity of ∂1Q → Q, asphericity of K (∂1Q), and condition vii) from
Lemma 11, this implies that the 2-skeleta of q (str (κij1)) and q (str (κij2)) be-
long to Kstr

1 (∂1Q). Inductively, if the k-skeleta of q (str (κij1)) and q (str (κij2))
belong to Kstr

k (∂1Q), then by asphericity of K (Q), asphericity of K (∂1Q), and
condition vii) from Lemma 11 we obtain that the k+1-skeleta of q (str (κij1)) and
q (str (κij2)) belong to Kstr

k+1 (∂1Q). This provides the inductive step and thus our
inductive proof shows that q (str (κij1)) and q (str (κij2)) belong to Kstr (∂1Q).

By Definition 7, Definition 11 and Lemma 14 this implies

rmv (q (str (κij1)) ⊗ 1) = 0, rmv (q (str (κij2)) ⊗ 1) = 0.

So we have shown the subclaim: if T1 = ∂k1
θij1, T2 = ∂k2

θij2 have a white-
parallel arc, then rmv (q (str (κij1)) ⊗ 1) = 0, rmv (q (str (κij2)) ⊗ 1) = 0. In par-
ticular,

q
(
str

(
T ′

1

))
, q
(
str

(
T ′

2

))

do not occur (with non-zero coefficient) in

∂
∑

j∈Ji

rmv (q (str (κij)) ⊗ 1) .

By Lemma 10, for a canonical colouring associated to a set of affine planes P1, P2, . . .,
and a fixed triangulation of each Qi = Pi∩∆n, we have at most n+1 n-1-simplices
whose 1-skeleton does not contain a white-parallel arc. Therefore the subclaim im-
plies the claim.

Thus we have presented [∂Q] ⊗ 1 as a finite chain of l1-norm at most
(n+ 1)

∑r
i=1 | ai |. By Lemma 4a) we know that G = Π(K (∂0Q)) is amenable.

Hence H = q∗ (G) is amenable. Thus Lemma 7, applied to X = ∂Q and K =
HKstr (∂1Q) with its H-action, implies

‖ ∂Q ‖≤ (n+ 1)
r∑

i=1

| ai | .
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QED

We remark that Theorem 1 is not true without assuming amenability of π1∂0Q.
Counterexamples can be found, for example, using [20] or [21], Theorem 6.3.

In [1], Theorem 1 has been proven for incompressible surfaces in hyperbolic 3-
manifolds. We compare the steps of the proof in [1] with the arguments in our
paper:
Step 1 in [1] is the normalization procedure, which we have restated in Lemma 1.
Step 2 in [1] consists in choosing compatible triangulations of the polytopes
σ−1

i (N).
Step 3 in [1] boils down to the statement that, for each component Qi of Q, there
exists a retraction r : N̂ → p−1 (Qi), for the covering p : N̂ → N correspond-
ing to π1Qi. Such a statement can not be correct because it would (together
with step 7 from [1]) imply ‖ N ‖≥‖ Q ‖ whenever Q is a π1-injective subman-
ifold of N . This inequality is true for submanifolds with amenable boundary,
but not in general. In fact, one only has the more complicated retraction r :
C∗ (K (N) ,K (N ′))⊗ZG Z → C∗ (K (Q) ,K (∂Q))⊗ZG Z, with G = Π(K (∂0Q)).
This more complicated retraction is the reason that much of the latter arguments
become notationally awkward, although conceptually not much is changing. More-
over, the action of the group G is basically the reason that Theorem 1 is true only
for amenable G.
Basically, the reason why the retraction r : N̂ → Q does not exist, is as fol-
lows. Let Rj be the connected components of N̂ − p−1 (Qi). Then Rj is homo-
topy equivalent to each connected component of ∂Rj . If ∂Rj were connected for
each j, this homotopy equivalence could be extended to a homotopy equivalence
r : N̂ → p−1 (Qi). However, in most cases ∂Rj will be disconnected, and then
such an r can not exist.
We note that also the weaker construction of cutting off simplices does not work.
A simplex may intersect Qi in many components and it is not clear which com-
ponent to choose.
Step 5 in [1] is the straightening procedure, it corresponds to sections 5.2-5.4 in
this paper. We remark that the straightening procedure must be slightly more
complicated than in [1] because it is not possible, as suggested in [1], to homotope
all edges between boundary components of ∂Q into shortest geodesics. This is the
reason why we can only straighten chains with an admissible 0-1-labeling of their
edges (and why our straightening homomorphism in Section 5.3 is only defined
on Csimp

∗ (| Υ |) and not on all of Csing
∗ (Q)).

Step 6 in [1] consists in removing degenerate simplices. This corresponds to Sec-
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tion 5.5 in this paper.
Step 7 in [1] proves that each triangle in σ−1

i (∂N) contributes only once to the
constructed fundamental cycle of ∂Q. Since, in our argument, we do not work
with the covering p : N̂ → N , we have no need for this justification.
Step 8 in [1] counts the remaining triangles per simplex (after removing degener-
ate simplices). It seems to have used the combinatorial arguments which we work
out for arbitrary dimensions in Section 4.
We mention that the arguments of Section 4 are the only part of the proof
which gets easier if one restricts to 3-manifolds rather than arbitrary dimensions.
Moreover, the proof for laminations is the same as for hypersurfaces except for
Lemma 1. Thus, upon these two points it seems that even in the case of in-
compressible surfaces in 3-manifolds the proof of Theorem 1 can not be further
simplified.

7 Specialization to 3-manifolds

Guts of essential laminations. We start with recalling the guts-terminology.
Let M be a compact 3-manifold with (possibly empty) boundary consisting of
incompressible tori, and F an essential lamination transverse or tangential to
the boundary. N = M −F is a, possibly noncompact, irreducible 3-manifold
with incompressible, aspherical boundary ∂N . We denote ∂0N = ∂N ∩ ∂M and
∂1N = ∂N − ∂0N . (Thus ∂1N is the union of boundary leaves of the lamination.)
By the proof of [12], Lemma 1.3., the noncompact ends of N are essential I-
bundles over noncompact subsurfaces of ∂1N . After cutting off each of these ends
along an essential, properly fibered annulus, one obtains a compact 3-manifold
to which one can apply the JSJ-decomposition of [18], [19]. Hence we have a
decomposition of N into the characteristic submanifold Char (N) (which consists
of I-bundles and Seifert fibered solid tori, where the fibrations have to respect
boundary patterns as defined in [19], p.83) and the guts of N , Guts (N). The
I-fibered ends of N will be added to the characteristic submanifold, which thus
may become noncompact, while Guts (N) is compact. (We mention that there are
different notions of guts in the literature. Our notion is compatible with [1], [2],
but differs from the definition in [12] or [7] by taking the Seifert fibered solid tori
into the characteristic submanifold and not into the guts. Thus, solid torus guts
in the paper of Calegari-Dunfield is the same as empty guts in our setting.) If
∂0N∩∂Q 6= ∅ consists of annuli A1, . . . , Ak, then, to be consistent with the setting
of Theorem 1, we add components Ai × [0, 1] to Char (N) (without changing the
homeomorphism type of N), which implies ∂0N ∩ ∂Q = ∅.

For Q = Guts (N) we denote ∂1Q = ∂1N ∩ ∂Q = ∂N ∩ ∂Q = Q ∩ ∂N
and ∂0Q = ∂Q− ∂1Q. For R = Char (N) we denote ∂1R = ∂N ∩ ∂R and
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∂0R = ∂R− ∂1R. ∂0N ∩ ∂Q = ∅ implies then ∂0Q = Q ∩R.
∂0Q consists of essential tori and annuli, in particular π1∂0Q is amenable. The

guts of N has the following properties: the pair (Q, ∂1Q) is a pared acylindrical
manifold as defined in Definition 3, Q, ∂1Q, ∂1R are aspherical, and the inclusions
∂0Q → Q, ∂1Q → Q,Q → N , ∂0R → R, ∂1R → R,R → N are π1-injective (see
[18],[19]). It follows from Thurston’s hyperbolization theorem for Haken mani-
folds that Q admits a hyperbolic metric with geodesic boundary ∂1Q and cusps
corresponding to ∂0Q. (In particular, χ (∂Q) ≤ 0, thus ∂Q is aspherical, and ∂1Q
is a hyperbolic surface, thus acylindrical.)

Theorem 2 : Let M be a compact 3-manifold with (possibly empty) boundary
consisting of incompressible tori, and let F be an essential lamination of M .
Then

‖M,∂M ‖norm
F ≥ −χ (Guts (F)) .

More generally, if P is a polyhedron with f faces, then

‖M,∂M ‖norm
F ,P ≥ −

2

f − 2
χ (Guts (F)) .

Proof. Let N = M −F . Since F is essential, N is irreducible (hence aspherical,
since ∂N 6= ∅) and has incompressible, aspherical boundary. Let R = Char (N)
be the characteristic submanifold and Q = Guts (N) be the complement of the
characteristic submanifold of N . The discussion before Theorem 2 shows that the
decomposition N = Q ∪R satisfies the assumptions of Theorem 1.

From the computation of the simplicial volume for surfaces ([14], section 0.2.)
and χ (Q) = 1

2χ (∂Q) (which is a consequence of Poincare duality for the closed
3-manifold Q ∪∂Q Q), it follows that

−χ (Guts (F)) = −
1

2
χ (∂Guts (F)) =

1

4
‖ ∂Guts (F) ‖ .

Thus, the first claim is obtained as application of Theorem 1 to Q = Guts (F).
The second claim, that is the generalisation to arbitrary polyhedra, is obtained

as in [1]. Namely, one uses the same straightening as above, and asks again how
many nondegenerate 2-simplices may, after straightening, occur in the intersection
of ∂Q with some polyhedron Pi. In [1], p. 11, it is shown that this number is at
most 2f − 4, where f is the number of faces of Pi. The same argument as above
shows then

∑r
i=1 | ai |≥

1
2f−4 ‖ ∂Guts (F) ‖, giving the wanted inequality.
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The following corollary applies, for example, to all hyperbolic manifolds obtained
by Dehn-filling the complement of the figure-eight knot in S3. (Note that Hatcher
has proved in [16] that each hyperbolic manifold obtained by Dehn-filling the
complement of the figure-eight knot in S3 carries essential laminations.)

Corollary 4. If M is a finite-volume hyperbolic manifold with V ol (M) < 2V3 =
2.02..., thenM carries no essential lamination F with ‖M,∂M ‖norm

F ,P =‖M,∂M ‖P

for all polyhedra P, and nonempty guts. In particular, there is no tight essential
lamination with nonempty guts.

Proof. The derivation of Corollary 4 from Theorem 2 is exactly the same as in [1]
for the usual (non-laminated) Gromovnorm. Namely, by [29] (or [1], end of Section

6) there exists a sequence Pn of straight polyhedra in H3 with limn→∞
V ol(Pn)
fn−2 =

V3, with fn denoting the number of faces of Pn. Assuming that M carries a
lamination F with ‖M,∂M ‖norm

F ,Pn
=‖M,∂M ‖Pn for all n, one gets

−χ (Guts (F)) ≤
fn − 2

2
‖M,∂M ‖F ,Pn=

fn − 2

2
‖M,∂M ‖Pn

≤
fn − 2

2

V ol (M)

V ol (Pn)
→

V ol (M)

2V3
< 1.

On the other hand, if Guts (F) is not empty, then it is a hyperbolic manifold with
nonempty geodesic boundary, hence

χ (Guts (F)) ≤ −1,

giving a contradiction.

Definition 12. The Weeks manifold is the closed 3-manifold obtained by
(
−5

1 ,−
5
2

)
-

surgery at the Whitehead link ([28], p.68).

It is known that the Weeks manifold is hyperbolic and that its hyperbolic vol-
ume is approximately 0.94... (It is actually the hyperbolic 3-manifold of smallest
volume.)

Corollary 5. ([7], Conjecture 9.7.): The Weeks manifold admits no tight lami-
nation F .

Proof. According to [7], the Weeks manifold can not carry a tight lamination
with empty guts. Since tight laminations satisfy ‖ M ‖norm

F ,P =‖ M ‖ for each
polyhedron (see Lemma 1), and since the Weeks manifold has volume smaller
than 2V3, it follows from Corollary 4 that it can not carry a tight lamination with
nonempty guts neither.
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The same argument shows that a hyperbolic 3-manifold M with
- V ol (M) < 2V3, and
- no injective homomorphism π1M → Homeo+

(
S1
)

can not carry a tight lamination, because it was shown by Calegari-Dunfield in [7]
that the existence of a tight lamination with empty guts implies the existence of an
injective homomorphism π1M → Homeo+

(
S1
)
. Some methods for excluding the

existence of injective homomorphisms π1M → Homeo+
(
S1
)

have been developed
in [7] (which yielded in particular the nonexistence of such homomorphisms for
the Weeks manifold, used in the corollary above), but in general it is still hard to
apply this criterion to other hyperbolic 3-manifolds of volume < 2V3.

As indicated in [6], an approach to a generalization of some of the above ar-
guments to essential, non-tight laminations, yielding possibly a proof for nonex-
istence of essential laminations on the Weeks manifold, could consist in trying
to define a straightening of cycles (as in the proof of Lemma 1) upon possibly
changing the essential lamination.

As a consequence of a recent paper of Tao Li, one can at least exclude the
existence of transversely orientable essential laminations on the Weeks manifold.

Corollary 6. The Weeks manifold admits no transversely orientable essential
lamination F .

Proof. According to [24], Theorem 1.1, the following statement is true: if a closed,
orientable, atoroidal 3-manifold M contains a transversely orientable essential
lamination, then it contains a transversely orientable tight essential lamination.
Hence Corollary 6 is a direct consequence of Corollary 5.

8 Higher dimensions

We want to finish this paper with showing that Theorem 1 is interesting also
in higher dimensions. While in dimension 3 the assumptions of Theorem 1 hold
for each essential lamination, it is likely that this will not be the case for many
laminations in higher dimensions. However, the most straightforward, but al-
ready interesting application of the inequality is Corollary 7 which means that,
for a given negatively curved manifold M , we can give an explicit bound on the
topological complexity of geodesic hypersurfaces. Such a bound seems to be new
except, of course, in the 3-dimensional case where it is due to Agol ([1]) and (with
nonexplicit constants) to Hass ([15]).

Corollary 7. Let M be a compact Riemannian n-manifold of negative sectional
curvature and finite volume. Let F ⊂ M be a geodesic n − 1-dimensional hyper-
surface of finite volume. Then ‖ F ‖≤ n+1

2 ‖M ‖.
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Proof. Consider N = M − F . (N, ∂N) is acylindrical. This is well-known and can
be seen as follows: assume that N contained an essential cylinder, then the double
DN = N ∪∂1N N would contain an essential 2-torus. But, since N is a negatively
curved manifold with geodesic boundary, we can glue the Riemannian metrics to
get a complete negatively curved Riemannian metric on DN . In particular, DN
contains no essential 2-torus, giving a contradiction.

Moreover, the geodesic boundary ∂N is π1-injective and negatively curved,
thus aspherical. Therefore we can choose Q = N , in which case the other as-
sumptions of Theorem 1 are trivially satisfied. From Theorem 1 we conclude
‖ M ‖norm

F ≥ 1
n+1 ‖ ∂N ‖. The boundary of N consists of two copies of F , hence

‖ ∂N ‖= 2 ‖ F ‖. The leaf space of F̃ ⊂ M̃ is a Hausdorff tree, thus Lemma 1b)
implies ‖M ‖norm

F =‖M ‖. The claim follows.

This statement should be read as follows: for a given manifold M (with
given volume) one has an upper bound on the topological complexity of com-
pact geodesic hypersurfaces.

For hyperbolic manifolds one can use the proportionality principle and the
Chern-Gauß-Bonnet Theorem to reformulate Corollary 7 as follows: If M is a
closed hyperbolic n-manifold and F a closed n-1-dimensional geodesic hypersur-
face, then V ol (M) ≥ Cnχ (F ) for a constant Cn depending only on n.
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