
ON MEASURE HOMOLOGY OF MILDLY WILD SPACES

THILO KUESSNER, JANUSZ PRZEWOCKI, AND ANDREAS ZASTROW

Abstract. We prove injectivity of the canonical map from singular
homology to measure homology for certain “mildly wild” spaces, that
is, certain spaces not having the homotopy type of a CW-complex, but
having countable fundamental groups.

Measure homology H∗(X), also called Milnor-Thurston homology, of a
spaceX is a variant of the usually studied singular homology groupsH∗(X; R).
While the latter are defined as the homology theory of the chain complex
of finite linear combinations of singular simplices with the canonical bound-
ary operator, measure homology uses the chain complex of quasicompactly
determined signed measures of bounded variation on the space of singu-
lar simplices map(∆k,X), again with the canonical boundary operator (see
Section 1.1).

Singular chains (with real coefficients) can be considered as finite sums of
(real multiples of) Dirac measures, so there is a canonical homomorphism

ι∗ : H∗(X; R) → H∗(X).

It was proven in [30] and [11] that measure homology satisfies the Eilenberg-
Steenrod axioms and thus that ι∗ is an isomorphism whenever X is a CW-
complex.

An example from [25] shows that ι∗ is not always injective. However, the
example constructed there is in some sense an artificial one: it relies on the
existence of non-measurable sets and ultimately on the axiom of choice. So
one may ask whether for more natural spaces one can still prove injectivity
of ι∗ as it holds for CW-complexes.

The picture below shows the convergent arcs space CA. It is formed
by one arc l∞ and a sequence of arcs (ln)n∈N with the same endpoints as
l∞ and pointwise converging to l∞. Although the arcs provide a natural
cell decomposition, CA is not a CW-complex because its topology is not
the weak topology from the cell decomposition: the union

⋃
n∈N

ln is not a
closed subset.

l∞

l1

l2
l3
l4

. . .

It was shown in [30, Section 6] that H1(CA; R) → H1(CA) is not surjec-
tive. On the other hand, [24, Theorem 2.8] computes the measure homology
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of CA and the proof implies in particular that H∗(CA; R) → H∗(CA) is
injective.

The convergent arcs space is a “mildly wild” space in the sense that it is
semi-locally simply connected and that it has countable fundamental group.
When we collapse the arc l∞ to a point, then we obtain the Hawaiian ear-
ring (pictured below to the left), which is not semi-locally simply connected
connected and which has uncountable (and very complicated) fundamental
group. This is an example of a “really wild” space. More generally, one
could consider shrinking wedges of manifolds: the Hawaiian earring is the
shrinking wedge of circles, and the Barratt-Milnor sphere (pictured below
to the right) is the shrinking wedge of spheres. The Barratt-Milnor sphere
is semi-locally simply connected and has countable (actually trivial) funda-
mental group, however its higher homotopy groups are not countable.

Although ultimately we would like to say something about injectivity
of ι∗ for “really wild” spaces of uncountable fundamental group like the
Hawaiian earring, in this paper we will pursue a more modest goal: we will
prove injectivity of the canonical homomorphism for two classes of “mildly
wild” spaces, i.e., spaces which have countable fundamental group and thus
a fortiori are semi-locally simply connected. So our results do not apply
to the Hawaiian earring, but they apply to various generalizations of the
convergent arc space.

The proofs of our two cases are independent and will use different meth-
ods.

The first result is the following.

Theorem 0.1. Let X be a topological space, which is T1, second count-
able, has countable fundamental group and admits a contractible generalized

universal covering space X̃ in the sense of [5].
Then the kernel of ι∗ : H∗(X; R) → H∗(X) is contained in the zero-norm

subspace with respect to the Gromov norm on H∗(X; R).
In particular, if for some k the Gromov norm on k-th homology is an

actual norm, that is ‖x‖ 6= 0 for all x ∈ Hk(X; R)\{0}, then ιk : Hk(X; R) →
Hk(X) is injective.

We will recall the definition of the Gromov norm in Section 2.2. The
assumption on non-vanishing of the Gromov norm seems to be a more severe
restriction than the others. Therefore the following result may be more
useful
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Theorem 0.2. Let X be a topological space with a basepoint x0 ∈ X. As-
sume that X is a countable union

X =
⋃

n∈N

Yn

of aspherical, closed subsets Yn, n ∈ N which have the structure of finite
CW-complexes, such that x0 ∈ Yn for all n, and such that all intersections

YI :=
⋂

i∈I

Yi, I ⊂ N

are sub-CW-complexes of each Yi with i ∈ I. Assume that
i) no x ∈ X is a limit of a sequence xν ∈

⋂
n∈Iν

Yn for pairwise distinct
index sets Iν ⊂ N,
ii) for all I ⊂ N with |I| ≥ 2, there are CW-neighborhoods UI of YI which
are open subsets of X, and
iii) the inclusions induce an isomorphism

⊕
n∈N

Hk(Yn) = Hk(X).
Then ι∗ : Hk(X; R) → Hk(X) is injective.

The notion of CW-neighborhood will be explained in Section 4.2. Open-
ness of CW-neighborhoods, as well as the condition H∗(X) = ⊕nH∗(Yn),
rules out examples like the Hawaiian earring.

An example of spaces to which we apply these results are the convergent
Y -spaces defined in Definition 2.8, which are not CW-complexes and which
are sort of a generalization of the convergent arcs space CA. They are
constructed by gluing countably many copies of a CW-complex along finitely
many points such that all the copies Yn of Y accumulate at one copy Y∞.

This kind of example would satisfy the assumptions of Theorem 0.1 (in
particular that about non-vanishing of the Gromov norm) only under ad-
ditional assumptions (e.g., when Y is a negatively curved manifold, see
Section 2.8). However we will see in Section 4.4 that it satisfies all as-
sumptions of Theorem 0.2 whenever Y is an aspherical, compact, smooth
manifold, and we thus get injectivity of ι∗ for any convergent Y -space X.

In [31], the third author will exhibit an example of a space X, which is a
countable union of CW-complexes, but with no point x0 in the intersection
of all of them, such that ι∗ is not injective. (This is also the first such
example which does not rely on existence of non-measurable sets.)

A technical device in the proof of Theorem 0.2 is that we can reduce the
problem of computing measure homology (and the dual notion of measurable
cohomology) to computing it for the subcomplex of simplices with all vertices
in a given basepoint (Lemma 3.2 and Corollary 3.4). We think that this
result should be of independent interest. To prove this result we are imposing
a condition that X can be covered by finitely many Borel sets of compact
closure contractible in X. This may look like a technical condition, but it
may not be avoidable as Example 3.3 shows.

When applied to CW-complexes our argument is similar but simpler than
the one in [19] which did not restrict to simplices with vertices in a basepoint
and therefore needed a larger effort to prove the technical [19, Lemma A.1] on
existence of a measurable section. Our argument, together with countability
of the fundamental group, actually also provides such a measurable section
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from pointed simplices inX to pointed simplices in its (generalized) universal
covering.

For the proof of Theorem 0.1 we show that (under the made assumptions)
the action of the deck transformation group on a generalized universal cov-
ering space has a Borel-measurable fundamental domain. This might be
of independent interest, here we use it to show in Section 2.6 that (in the
case of countable fundamental groups) the homomorphism from measurable
bounded cohomology to bounded cohomology is an isometric isomorphism.

We remark that the reader interested in Theorem 0.2 may skip Section 2
and just read Section 3 and Section 4.

Conventions: spaces of simplices will be equipped with the compact-open
topology and ”measurable” will always mean Borel-measurable with respect
to that topology. ”Measures” will always mean signed measures, i.e., dif-
ferences of two non-negative measures. A ”G-module” will always mean a
Banach space V which is a module over the group ring ZG and such that
‖ gv ‖≤‖ v ‖ for all g ∈ G, v ∈ V .

1. Preliminaries

1.1. Measure homology. Let us start with recalling the definition of mea-
sure homology (or Milnor-Thurston-homology) from [30, Definition 1.8].

Definition 1.1. For a topological space X and k ∈ N we denote its set
of singular k-simplices, i.e., of continuous maps from the standard simplex
∆k to X, by map(∆k,X). We equip map(∆k,X) with the compact-open-
topology and the corresponding σ-algebra of Borel sets.

Definition 1.2. For a topological space X and k ∈ N let

Ck(X) =
{
µ | µ is a compactly determined measure on map(∆k,X), ‖ µ ‖< ∞

}
.

Here, a compactly determined measure is one that vanishes on any mea-
surable subset of the complement of some (not necessarily measurable) com-
pact set. (We follow the convention that a compact set need not be Haus-
dorff but satisfies the Heine-Borel covering property. Such sets are some-
times called quasicompact, therefore the definition in [30] speaks of qua-
sicompactly determined measures.) The variation of a signed measure is
‖µ‖ := maxA µ(A) − minB µ(B), where the maximum resp. minimum are
taken over all measurable sets.

It is proved in [30, Corollary 2.9] that the canonical boundary operator

∂ =
∑k

i=0 ∂i extends to an operator dk : Ck(X) → Ck−1(X). Then one defines
measure homology as

Hk(X) = ker(dk)/im(dk−1).

1.2. Generalized universal covering spaces.

Definition 1.3. ([5, Section 1.1]) A generalized universal covering space of

a path-connected topological space X is a topological space X̃ with a con-

tinuous surjection p : X̃ → X such that

(i) X̃ is locally path-connected and simply-connected,
(ii) if Y is path-connected and locally path-connected, then every pointed
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continuous map f : (Y, y) → (X,x) with f∗(π1(Y, y)) = 1 admits unique
pointed liftings, that is, for each x̃ ∈ p−1(x) there is a unique pointed con-

tinuous map g : (Y, y) → (X̃, x̃) with p ◦ g = f .

A generalized universal covering space, if it exists, is in one-to-one corre-
spondence with the homotopy classes of paths in X which emanate from a
fixed x0 ∈ X. (For more details see [5, Section 2].)

A generalized universal covering is a Serre fibration, thus one has πkX̃ ∼=
πkX for k ≥ 2, see [5, Section 1.2]. Moreover the deck transformation group

of p : X̃ → X is isomorphic to the fundamental group π1X, and it acts freely
and transitively on each fiber, see [5, Proposition 2.14].

For our arguments, the most important property of the generalized uni-
versal covering space will be that the lifts of a singular simplex σ : ∆k → X

form exactly a G-orbit of singular simplices in X̃ , where G ∼= π1(X,x0)
is the deck transformation group. Moreover the lifts of the simplices with
all vertices in x0 ∈ X are exactly the simplices with vertices in Gx̃0, for a

preimage x̃0 ∈ X̃ of x0.

1.3. Relatively injective modules and bounded cohomology.

Definition 1.4. For a topological space X we let

Ck
b (X) := B(map(∆k,X),R) =

{
f : map(∆k,X) → R | f is bounded

}

be the vector space of bounded cochains. It is a Banach space with the norm
‖f‖ = sup

{
|f(σ)| : σ ∈ map(∆k,X)

}
. The usual coboundary operator

δkf(σ) =

k∑

i=0

(−1)if(∂iσ)

makes C∗
b (X) a cochain complex and its cohomology is denoted by H∗

b (X)
and called the bounded cohomology of X.

If X comes with an action of a group G, then Ck
b (X) becomes a G-module

via the induced action. In particular, if X̃ → X is a generalized universal
covering space and G ∼= π1(X,x0) its group of deck transformations, then

Ck
b (X̃) is naturally understood as a G-module and this will always be meant

when we refer to Ck
b (X̃) as a G-module. For readers familiar with [22] we

want to mention that, although π1(X,x0) can be topologized as a non-

discrete topological group acting continuously on X̃ , this is not what we are
going to do and we rather consider G as a discrete group. In particular, for
the proof of Lemma 1.8 it will be sufficient to consider the module B(G,V )
of bounded functions rather than the module of continuous, bounded func-
tions and so we will not need the general results on continuous bounded
cohomology from [22] but only the results on bounded cohomology from
[14].

It is often useful to compute bounded cohomology via other resolutions.
The general setting for this to work are strong resolutions by relatively
injective modules.

Definition 1.5. Let G be a topological group. A G-module U is called
relatively injective if any diagram of the form
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V1
i

σ

α

V2

β

U

can be completed. Here i : V1 → V2 is an injective morphism of G-modules,
σ : V2 → V1 is a bounded (not necessarily G-equivariant) linear operator
with σ ◦ i = id and ‖σ‖ ≤ 1, α is a G-morphism, and we want β to be a
G-morphism with β ◦ i = α and ‖β‖ ≤ ‖σ‖.

Definition 1.6. A strong resolution of a G-module U is an exact sequence
of G-modules and G-morphisms

0 U
δ−1

U0

δ0
U1

δ1
U2

δ2 . . .

for which there exists a sequence of linear (not necessarily G-equivariant)
operators κn : Un → Un−1 such that δn−1κn +κn+1δn = id and ‖κn‖ ≤ 1 for
all n ≥ 0 and κ0δ−1 = id.

According to [22, Lemma 7.2.6] the trivial G-module R has a strong res-
olution by relatively injective G-modules, and any two such resolutions are
chain homotopy equivalent. In particular the cohomology of theG-invariants
of the resolution does not depend on the chosen resolution. This cohomol-
ogy is, by definition, the continuous bounded cohomology of G, denoted by
H∗

cb(G). As said, we only consider the bounded cohomology H∗
b (G) defined

by equipping G with the discrete topology. We will need the following two
facts, which can be found for example in [14] or in the more general setting
of continuous bounded cohomology in [22].

Lemma 1.7. i) ([14, Lemma 3.2.2]) For any Banach space V , the G-module
B(G,V ) of bounded functions with values in V is relatively injective.

ii) ([14, Lemma 3.3.2]) Let

0 → U → U1 → U2 → . . .

be a strong resolution of the G-module U and

0 → V → V1 → V2 → . . .

be a complex of relatively injective G-modules, then any G-morphism U → V
can be extended to a G-morphism of complexes and any two such extensions
are G-chain homotopic.

The following lemma is well-known for CW-complexes and more generally
for semi-locally simply connected spaces, and we are going to show that the
same proof also works for spaces that admit a generalized universal covering
space in the sense of Section 1.2.

Lemma 1.8. Let X̃ → X be a generalized universal covering space and G
its group of deck transformations. Then

0 → R → C0
b (X̃) → C1

b (X̃) → C2
b (X̃) → . . .

is a strong resolution by relatively injective G-modules. In particular one
has an isometric isomorphism H∗

b (X) = H∗
cb(G).
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Proof: We will prove this by copying the argument in the proof of [14,
Theorem 4.1].

By Lemma 1.7i), B(G,V ) is relatively injective for each Banach space V .

By the axiom of choice there exists a set F ⊂ X̃ meeting each G-orbit

exactly once. Let map((∆k, v0), (X̃, F )) be the set of those singular sim-
plices which send the first vertex of the standard simplex to F . We make

Bk(X̃, F ) := B(map((∆k, v0), (X̃, F )),R) a Banach space by equipping it
with the sup-norm. Then there is an obvious isomorphism

Ck
b (X̃) = B(G,Bk(X̃, F ))

and thus Ck
b (X̃) is a relatively injective G-module.

By simple connectivity of X̃ and [14, Theorem 2.4] there is a contracting

algebraic homotopy for C∗
b (X̃). Hence we have a strong resolution.

2. Measurable bounded cohomology - proof of Theorem 1

2.1. Definitions. In the previous section we defined bounded cohomology,
now we are going to define measurable bounded cohomology.

Definition 2.1. LetX be a topological space and againmap(∆k,X) equipped
with the compact-open-topology and the corresponding σ-algebra of Borel-
measurable sets. We let

Ck
b (X) =

{
f : map(∆k,X) → R | f is Borel measurable and bounded

}

be the measurable bounded cochains.

The usual coboundary operator makes Ck
b (X) into a cochain complex and

its cohomology is denoted by H∗
b (X), see [19, Section 3.4]. The inclusion ι

induces a homomorphism

ι∗ : H∗
b(X) → H∗

b (X; R)

from the measurable bounded cohomology to the bounded cohomology.

2.2. Connecting the Gromov norm to measurable bounded coho-

mology. The following arguments are well-known, cf. [19, Section 3]. We
will need them for the proof of Theorem 0.1.

For a topological space X there is an l1-norm on its singular chain com-
plex C∗(X; R) defined by ‖

∑r
i=1 aiσi‖1 =

∑r
i=1 |ai|. The Gromov norm on

homology H∗(X; R) is defined as ‖α‖ = inf {‖z‖1 : [z] = α}, i.e., one takes
the infimum of the l1-norm over all cycles z representing the homology class
α. We denote NHk(X) = {α ∈ Hk(X; R) : ‖α‖ = 0}.

Lemma 2.2. Let X be a topological space and k ∈ N. If

ι∗ : Hk
b (X) → Hk

b (X; R)

is an epimorphism, then

ker(ι∗ : Hk(X; R) → Hk(X)) ⊂ NHk(X).
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Proof: Assume there is some α ∈ Hk(X; R) with ‖α‖ 6= 0 and ι∗(α) = 0.
By [10, Section 1.1] the l1-norm on Hk(X; R) is dual to the norm on Hk

b (X),

which for φ ∈ Hk
b (X) is defined as infimum of ‖f‖ over all bounded cocycles

f representing φ. In particular, there is some φ ∈ Hk
b (X) with 〈φ, α〉 = 1.

By assumption there is some ψ ∈ Hk
b (X) with ι∗ψ = φ. Then

1 = 〈φ, α〉 = 〈ι∗ψ,α〉 = 〈ψ, ι∗α〉 = 0,

yielding a contradiction.

2.3. Construction of a measurable fundamental domain. The follow-
ing Lemma 2.3 will be used in this paper for Proposition 2.7 in Section 2.6,
though we think that it might be of independent interest.

Properly discontinuous group actions have a measurable fundamental do-
main, see [1, Chapter 7, Par. 2, Ex. 12]. However, the action of the group
of deck transformations on a generalized universal covering space is in gen-
eral not properly discontinuous. We are going to show that (under weak
assumptions) one can nevertheless adapt the argument and obtain a mea-
surable fundamental domain.

Lemma 2.3. Let X be a second-countable T1-space and assume that there is
only an at most countable set of points, at which X is not semi-locally simply

connected. If there exists a generalized universal covering space p : X̃ → X,

then the action of the deck transformation group Γ ∼= π1(X,x0) on X̃ has a
Borel-measurable fundamental domain.

Proof:

Let N be the countably many points where X is not semi-locally simply
connected. To any x ∈ X \ N and each x̃ ∈ p−1(x) there is an open

neighborhood Ũx̃ ⊂ X̃ such that the restriction of p to that neighbor-
hood is injective. (Namely one can take a neighborhood Vx ⊂ X satis-

fying im(π1(Vx, x) → π1(X,x)) = 0 and a connected component Ũx̃ of its
preimage p−1(Vx). Note that this does not necessarily surject onto Vx. The

intersection of Ũx̃ with any Γ-orbit has at most one element.)

For x ∈ X choose some x̃ ∈ p−1(x) and let Ux = p(Ũx̃) ⊂ X be the image

of Ũx̃. Second-countable spaces have the Lindelöf property and hence there
is a countable family of Ux that covers X.

With these preparations we define a measurable fundamental domain as
follows. Let {U1, U2, U3, . . .} be an enumeration of the countable family of

Ux’s and
{
Ũ1, Ũ2, Ũ3, . . .

}
the corresponding subsets of X̃ . Then

W1 = Ũ1

W2 = Ũ2 ∩ (X̃ \ ΓŨ1)

W3 = Ũ3 ∩ (X̃ \ (ΓŨ1 ∪ ΓŨ2))

. . .

are all Borel-measurable. (One should pay attention that we are using the

possibly uncountable unions ΓŨi, however these are unions of open sets and
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so no problem arises.) So ⋃

n∈N

Wn

is a measurable set, and one easily checks that it contains exactly one point
from each Γ-orbit not meeting p−1(N). Adding one point of each of the
countably many Γ-orbits in p−1(N) we obtain a fundamental domain.

We claim that the T1-property for X implies the T1-property for X̃.
Namely, as pointed out in [5, Lemma 2.10, Lemma 2.11] a space possess-
ing a generalized universal covering space must be homotopically Hausdorff
and then two points lying on the same fibre of p can be even separated
in the T2-sense. For two points not lying on the same fibre of p, the ana-
logue of the arguments contained in these lemmas for the T2-case (taking
complete preimages of neighbourhoods with corresponding separation prop-
erties), gives for our assumption that the points can be at least separated

in the T1-sense, giving the claim. Finally, the T1-property for X̃ implies
that points are closed and their countable union is a Borel set, so that the
constructed fundamental domain is Borel-measurable.

Remark. A more explicit construction of the fundamental domain may ex-
ist for spaces that satisfy a condition of negative curvature, that for the
generalized universal covering space amounts to a global CAT(0)-condition.
For such spaces we may hope that we can connect each point via the short-
est geodesic to a base point, making a choice if there should be different
geodesics of the same length. Then the domain covered by the lift of at
least one of the chosen geodesics starting at one lift of the base point will
form a fundamental domain. In a purely topological context, path sys-
tems that satisfy similar properties as CAT(0)-geodesics and could be used
for analogous constructions, have been axiomatically described and intro-
duced in [7],[8] under the name “arc-smooth systems”. Actually, in our
context, when adapting these conditions (that can only be satisfied for a
kind of covering space) to the base space, we would be happy with a bit
less. Instead of having one uniquely defined path between any two points,
it would suffice to have for each point one uniquely defined path connecting
to some base point, usually continuously depending on the other endpoint,
but for a non-contractible base space there must be border-zones where this
continuity-condition cannot be satisfied; such path-systems are sometimes
called a “combing”. In our case we would need a combing that is prefix-
closed, i.e. each path starting on the trace of another combing path c or
crossing the trace of another combing path c would have to follow the same
trace as the path c to the base point. With one combing path starting in
each point of the space, then the set covered by the lift of at least one of the
combing paths, starting at one lift of the base-point, will form a fundamen-
tal domain, and for a sensible choice of the border-zones there is a chance
that the result will be a measurable set.

2.4. Measurable coning construction. The following construction will

later be applied to the (generalized) universal covering X̃ of a topological
space X.
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Definition 2.4. Let (X̃, x0) be a pointed topological space. It is said to have
a measurable (resp. continuous) coning construction if there is a sequence
of Borel-measurable (resp. continuous) maps

Li : map(∆i, X̃) → map(∆i+1, X̃)

such that for each σ ∈ map(∆i, X̃) the 0-th vertex of Li(σ) is x0 and

∂0Li(σ) = σ

∂kLi(σ) = Li−1(∂k−1σ) for k = 1, . . . , i+ 1,

where by ∂k : map(∆i+1,X) → map(∆i,X) for k = 0, . . . , i+1 we mean the
face map omitting the k-th vertex.

Lemma 2.5. A topological space X̃ has a continuous coning construction
if it is contractible.

Proof: Assume X̃ is contractible. Then there is an x0 ∈ X̃ and a continuous
map H : X̃ × [0, 1] → X̃ with H(x, 0) = x,H(x, 1) = x0 for all x ∈ X̃ . For
a singular i-simplex

σ : ∆i → X̃

the map

h : ∆i × [0, 1] → X̃

(x, t) → H(σ(x), t)

factors over the canonical projection

∆i × [0, 1] → ∆i+1,

which collapses ∆i × {1} to the 0-th vertex of ∆i+1. So the map h defines
a singular (i+ 1)-simplex

Li(σ) : ∆i+1 → X

and it is easy to check that this assignment has the desired properties.

2.5. Resolution by measurable bounded cochains. The following Lemma 2.6
will be a main ingredient in the proof of Theorem 0.1. Its proof is essen-
tially copied from [14, Theorem 2.4], which proves the analogous result for
(non-measurable) bounded cohomology.

Lemma 2.6. Let X̃ → X be a generalized universal covering space and G

its group of deck transformations. Assume that X̃ is contractible. Then

0 → R → C0
b (X̃) → C1

b (X̃) → C2
b (X̃) → . . .

is a strong resolution by G-modules, where the maps in the resolution are

δ−1 : R → C0
b (X̃) sending real numbers to constant functions, and for i ≥ 0

the coboundary operator δi : C
i
b(X̃) → Ci+1

b (X̃) from Definition 1.4.

Proof:

By Lemma 2.5 we have a measurable (even continuous) coning construc-

tion for a fixed base point x0 ∈ X̃. Dualizing Definition 2.4 via

(κi(f))(σ) := f(Li−1(σ))

for i ≥ 1 yields homomorphisms

κi : Ci
b(X̃) → Ci−1

b (X̃)
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for i ≥ 1 such that
δi−1κ

i + κi+1δi = id

for all i ≥ 0, where for i = 0 we define κ0 : C0
b (X̃) → R by sending f to f(x0)

for the chosen base point x0.
Because Li sends each simplex to another simplex, we clearly have ‖κi‖ ≤

1 for all i.

2.6. ι∗ is an isomorphism.

Proposition 2.7. Under the assumptions of Lemma 2.6, if one has a mea-
surable fundamental domain for the action of G, and if moreover G is count-
able, then

ι∗ : H∗
b(X) → H∗

b (X)

is an isometric isomorphism.

Proof: We know that G-modules of the form B(G,V ) (for a Banach space
V ) are relatively injective, see Lemma 1.7i). Measurability of the fundamen-
tal domain F and countability of G imply that we have an isomorphism

Ck
b (X̃) = B(G,Bk(X̃, F ))

for

Bk(X̃, F ) =
{
f : map((∆k, v0), (X̃, F )) → R | f is Borel measurable and bounded

}

and thus relative injectivity of Ck
b (X̃). So

0 → R → C0
b (X̃) → C1

b (X̃) → C2
b (X̃) → . . .

is a strong resolution by relatively injective modules and the claim follows
in view of Lemma 1.7.

Remark. IfG is not countable, then Ck
b (X̃) is a proper subset of B(G,Bk(X̃, F ))

and we do not know whether it is relatively injective.

2.7. Proof of Theorem 0.1. The proof of Theorem 0.1 now follows from
Lemma 2.2, Lemma 2.3 and Proposition 2.7.

2.8. Example.

Definition 2.8. Let Y be a metric space. We call a metric space X a
convergent Y -space if it is a union

X =
⋃

n∈N

Yn ∪ Y∞

with Y∞ = Y and for each n ∈ N there is a homeomorphism

fn : Y∞ → Yn

such that there are finitely many points y ∈ Y such that

fn(y) = y ∀ n ∈ N

and for all other points y one has fn(y) 6= y and fn(y) 6= fm(y) for all n,m,
but

lim
n→∞

d(fn(y), y) = 0.



12 THILO KUESSNER, JANUSZ PRZEWOCKI, AND ANDREAS ZASTROW

Lemma 2.9. If Y has the homotopy type of a countable CW-complex, then
the homotopy groups of a convergent Y -space are countable.

Proof:

We use the well-known fact that the homotopy groups of a countable CW-
complex are countable, see [20, Theorem IV.6.1]. Although the convergent
Y -spaceX is not locally path-connected, hence not a a CW-complex, one can
find a locally path-connected space X lpc with the same homotopy groups,
as indicated in [16, Section 2.1]. Let O = {V ⊂ X open} be the topology of
X. For an open set V ∈ O and x ∈ V let U(V, x) be the path component
of V containing x. The sets U(V, x) for varying x and V form the basis of a
topology Olpc on the set X. We denote the so-defined topological space by
X lpc. The identity map

id : X lpc → X

is continuous but in general not open. According to [16, Corollary 2.5] it
induces isomorphisms

πk(X
lpc) ∼= πk(X)

for all k. Under the assumptions of Lemma 2.9, X lpc is a countable CW-
complex, thus its homotopy groups are countable, and so are those of X.

Lemma 2.10. If Y is aspherical and has the homotopy type of a countable
CW-complex, then a convergent Y -space is aspherical.

Proof: By the proof of Lemma 2.9 we know that πk(X
lpc) ∼= πk(X).

Thus it suffices to prove asphericity for CW-complexes that are obtained
by identifying finite subsets of countably many aspherical CW-complexes.
Since the image of a sphere can only intersect finitely many cells of X lpc it
actually suffices to prove this for a union of finitely many aspherical CW-
complexes along finite subsets.

First consider the one-point union Y1 ∨ Y2 of two path-connected, as-
pherical CW-complexes. There is a well-known construction (see [12, Prop.
4.64]), which to every map f : A→ B associates a fibration p : Ef → B and
a homotopy equivalence A→ Ef . Namely,

Ef =
{

(a, γ) ∈ A×B[0,1] : γ(0) = f(a)
}

and p(a, γ) = γ(1). The fiber of p is called the homotopy fiber of f . In our
setting, we see that the homotopy fiber of the inclusion

Y1 ∨ Y2 → Y1 × Y2

is the union of PY1×ΩY2 and ΩY1×PY2 along their intersection ΩY1×ΩY2.
(Here PY means the path space and ΩY the loop space.) For CW-complexes
Y1, Y2 it is known that there is a weak homotopy equivalence w from the
join ΩY1 ∗ ΩY2 to the homotopy fiber of the inclusion

Y1 ∨ Y2 → Y1 × Y2,

cf. the final paragraph of the proof of [9, Theorem 2.2]. If Y1, Y2 are aspher-
ical, i.e., πk(Y1) = πk(Y2) = 0 for k ≥ 2, then

πk(ΩY1) = πk+1(Y1) = 0 and πk(ΩY2) = πk+1(Y2) = 0 for k ≥ 1,
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i.e., ΩY1 and ΩY2 are weakly homotopy equivalent to discrete spaces. The
loop space of a countable CW-complex has the homotopy type of a CW-
complex by a theorem of Milnor, see [6, Corollary 5.3.7]. Thus a weak
homotopy equivalence is actually a homotopy equivalence by Whitehead’s
theorem. So ΩY1 and ΩY2 have the homotopy type of discrete spaces, hence
the join ΩY1∗ΩY2 has the homotopy type of a wedge of circles. In particular,
ΩY1 ∗ ΩY2 is aspherical and the weak homotopy equivalence w yields that
also the homotopy fiber of

Y1 ∨ Y2 → Y1 × Y2

is aspherical. Moreover, asphericity of Y1 and Y2 implies that Y1 × Y2 is
aspherical. This implies by the long exact sequence of homotopy groups

. . . → πk(homotopy fiber) → πk(Y1 ∨ Y2) → πk(Y1 × Y2) → . . .

that also Y1 ∨ Y2 is aspherical.
Next, if we identify two vertices in the same path component of a CW-

complex Y , then the resulting CW-complex is homotopy-equivalent to the
one-point union Y ∨S1. Since S1 is aspherical, we obtain asphericity of Y ∨S1

from asphericity of Y . Finally, by induction we can extend asphericity to
the CW-complex obtained by identifying finite subsets.

Lemma 2.11. If Y is semi-locally simply connected and first-countable,
then any convergent Y -space has a generalized universal covering.

Proof: The convergent Y -space X is semi-locally simpy connected, but not
locally path-connected. X lpc is semi-locally simply connected and locally

path-connected, thus it has a (classical) universal covering X̃ lpc. We claim

that X̃ lpc is a generalized universal covering of X.
According to [5, Proposition 5.1] (and the characterization of generalized

universal coverings from [5, Section 1]) for a first-countable space it suffices

to check the path lifting property for X̃ lpc → X. But any path in X lifts to
a unique path in X lpc (see [16, Corollary 2.5]), and thus (for a given lift of

the initial point) to a unique path in X̃ lpc.

Let us show how Theorem 0.1 can be applied at least to a special class of
convergent Y -spaces.

Corollary 2.12. If Y is a compact Riemannian manifold of negative sec-
tional curvature, and X is a convergent Y -space with d(fn(y), y) > 0 for all
but one y ∈ Y , then

ιk : Hk(X; R) → Hk(X)

is injective in degrees k ≥ 2.

Proof: The assumptions of Theorem 0.1 are satisfied, so it suffices to prove
nontriviality of the Gromov norm in degrees k ≥ 2.

By a well-known argument from [10, Section 1.1], nontriviality of the
Gromov norm is implied if we have surjectivity of Hk

b (X) → Hk(X; R) in
degrees k ≥ 2. Namely, for a homology class α let β be a cohomology class
with 〈β, α〉 = 1. Then surjectivity of Hk

b (X) → Hk(X; R) implies ‖β‖ <∞,
and from 1 ≤ ‖β‖‖α‖ we obtain ‖α‖ > 0.
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So we have to prove surjectivity of Hk
b (X) → Hk(X; R) in degrees k ≥ 2.

Let x0 ∈ X be the (by assumption) only one point along which the Yn

got identified with Y∞. We call a 1-simplex in X straight if its intersections
with x0 decompose it into 1-simplices that are straight in one of the Yn. It is
well-known that 1-simplices in nonpositively curved manifolds are homotopic
(rel. vertices) to a unique straight 1-simplex. This implies that 1-simplices
in X are homotopic (rel. vertices and intersections with the xi) to a unique
straight 1-simplex in X.

Higher-dimensional straight simplices are then defined by succesively tak-
ing straight cones over straight subsimplices as in [10, Section 1.2]. Every
simplex in Yn is homotopic rel. vertices to a unique straight simplex. This
implies that every simplex σ in X is homotopic rel. (vertices and intersec-
tions with the x0) to a unique straight simplex str(σ) in X. In particular
we can straighten any cycle c recursively by straightening its k-skeleton for
k = 1, . . . , dim(c). Dually this yields that any cocycle c is cohomologous to
the ”straightened” cocycle c ◦ str.

The volume of straight simplices (of dimension ≥ 2) in negatively curved
n-manifolds is uniformly bounded (see [10, Section 1.2] or [13, Proposition
1]) by a constant V (n,K) depending on the negative upper curvature bound
K (which exists because the manifold is compact). From the proof of [17,
Lemma 5] we know that for every simplex in X its straightening has at most
one ”central simplex” (in the terminology of [17]) and that all other parts of
the straightened simplex are degenerate. In particular, the volume of str(σ)
equals the volume of the ”central simplex”, which lies in one of the Yn and
therefore satisfies the above upper bound on the volume.

This implies by [10, Section 1.2, Theorem (C)] that

‖c‖∞ ≤ V (n,K)comass(ω)

for a differential form ω representing c. Thus c◦str is a bounded cocycle for
any cocycle c in degree ≥ 2. In particular, Hk

b (X) → Hk(X; R) is surjective
in degrees k ≥ 2.

In Section 4.4 we will use Theorem 0.2 to obtain a more general result.

3. Reduction to simplices with all vertices in the basepoint

3.1. Eilenberg’s argument. For a topological space X with basepoint x0

we denote by C∗(X) the complex of singular simplices, i.e., the chain com-
plex whose k-th group is the free abelian group generated by Sk(X) =
map(∆k,X) with the usual boundary operator and by Cx0

∗ (X) ⊂ C∗(X)
the subcomplex generated by

Sx0

k (X) =
{
σ : ∆k → X | σ(v0) = σ(v1) = . . . = σ(vk) = x0

}
,

where v0, v1, . . . , vk denote the vertices of the standard simplex ∆k.
It is a classical result of Eilenberg (Corollary 31.2 in [3]) that for path-

connected X the inclusion

ι : Cx0

∗ (X) → C∗(X)

is a chain homotopy equivalence. It is well-known that this dualizes to give
chain homotopy equivalences also in cohomology and bounded cohomology.
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In this section we are going to show that (under a suitable assumption) the
argument also yields chain homotopy equivalences for measure homology
and measurable bounded cohomology.

Let us start with recalling Eilenberg’s argument (which in [3] is given in
a more general setting).

Lemma 3.1. For each path-connected space, there is a chain map η∗ : C∗(X) →
Cx0

∗ (X) such that ηι = id and a chain homotopy s∗ : C∗(X) → C∗+1(X) such
that

∂s + s∂ = ιη − id.

Proof: For x ∈ S0(X) we have to define η0(x) = x0.
Because X is path-connected we have a 1-simplex s0(x) : ∆1 → X with

∂0s0(x) = x0, ∂1s0(x) = x

for each x ∈ X. Let us fix a choice of s0(x) for each x.
Now we define η∗ and s∗ by induction on the dimension of simplices. Sup-

pose they are already defined for all simplices in Sk−1(X) and let σ ∈ Sk(X).
By induction hypothesis we have ηk−1(∂σ) ∈ Cx0

k−1(X) and sk−1(∂σ) ∈
Ck(X) such that

ηk−1(∂σ) − ∂σ = ∂sk−1(∂σ) + sk−2∂(∂σ) = ∂sk−1(∂σ).

We will inductively prove the slightly stronger statement that sk is of the
form sk = s0k + . . .+ sk

k and that the maps s0k, . . . , s
k
k can be defined through

some map F : ∆k × [0, 1] → X via the canonical subdivision

∆k × [0, 1] = ∆0 ∪ . . . ∪ ∆k

as the restrictions of F to ∆0, . . . ,∆k.
So consider ∆k × [0, 1]. We can use σ to define a continuous map ∆k ×

{0} → X and by the above inductive hypothesis we have

sk−1(∂σ) = (s0k−1 + . . .+ sk−1
k−1)(∂σ)

defined through a continuous map ∂∆k × [0, 1] → X. These two maps agree
on ∂∆k × {0}, so they define a continuous map

Q : ∆k × {0} ∪ ∂∆k × [0, 1] → X.

It is easy to construct a continuous map

P : ∆k × [0, 1] → ∆k × {0} ∪ ∂∆k × [0, 1]

which is the identity map on ∆k × {0} ∪ ∂∆k × [0, 1]. We can compose P
with the before-defined map Q to obtain a continuous map

F : ∆k × [0, 1] → X

that on ∆k × {0} ∪ ∂∆k × [0, 1] agrees with Q. We use the canonical trian-
gulation of ∆k × [0, 1] into k + 1 simplices to consider F as a formal sum
of k + 1 simplices, which we denote by s0k(σ), . . . , sk

k(σ). We obtain thus an
element

sk(σ) := s0k(σ) + . . . + sk
k(σ) ∈ Ck+1(X).

In particular F |∆k×{1} defines ηk(σ) ∈ Ck(X) which actually belongs to

Cx0

k (X) because all vertices are in x0. It is then clear by construction that
the equality ∂sk(σ) + sk−1(∂σ) = ηk(σ) − σ holds.
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∆1 × {1}

∆1 × {0}

∂1∆
1 × [0, 1] ∂0∆

1 × [0, 1]

∆1 × [0, 1] = ∆0 ∪ ∆1

F

σ

η1(σ)

x0

s0(∂1σ) s0(∂0σ)

s1(σ) = s01(σ) + s11(σ)

The figure visualizes the construction of the map F in case of k = 1. It in
particular shows that the two vertices (endpoints of the simplex ∆1 × {1})
are taken under F to the same point x0 ∈ X.

3.2. Pointed measure homology. We now want to argue that an analo-
gous result as in Lemma 3.1 holds for measure homology, i.e., that (under
suitable assumptions) the inclusion

ι : Cx0

∗ (X) → C∗(X)

is a chain homotopy equivalence. Here Cx0

∗ (X) ⊂ C∗(X) means the subcom-
plex consisiting of those signed measures (of quasicompact determination
set and bounded variation) which vanish on each measurable subset of the
complement of Sx0

∗ (X).

Lemma 3.2. If X is a path-connected space that has a finite covering

X =

n⋃

i=1

Ui

such that
- U1, . . . , Un are Borel-measurable sets
- the closures U1, . . . , Un are contractible in X and compact,

then for any x0 ∈ X there is a chain map η∗ : C∗(X) → Cx0

∗ (X) such that
ηι = id, and a chain homotopy s∗ : C∗(X) → C∗+1(X) such that

ds + sd = ιη − id.

Proof: The natural approach to proving this statement would be to define
η and s as in the proof of Lemma 3.1. One would have to check then
that signed measures of compact determination set and bounded variation
are mapped to signed measures of compact determination set and bounded
variation.

It is clear that a so-constructed ηk does not increase the variation and
that sk multiplies the variation by at most k+1, so the second condition on
boundedness of the variation will be satisfied.

To satisfy the first condition on compactness of the determination set
it would be sufficient that ηk and the maps s0k, . . . , s

k
k from the proof of

Lemma 3.1 could be defined via some continuous maps on map(∆k,X),
because then compact determination sets of simplices would be mapped to
compact sets. In general it will not be possible to define such a continuous
map. It would be possible if X were contractible. It is still possible on
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subsets that are contractible in X and our argument will make use of this
fact.

Let U ⊂ X be contractible in X. Then there is some continuous map
H : U × [0, 1] → X with H(x, 0) = x and H(x, 1) = x0 for all x ∈ U . Define

s0 : map(∆0, U ) → map(∆1,X)

by

s0(x)(t) = H(x, t)

upon identification ∆1 = [0, 1]. Continuity of H and compactness of [0, 1]
imply that s0 is continuous.

Now consider the by assumption existing covering X = ∪i∈IUi by finitely
many Borel sets whose closures are compact and contractible in X. (I is a
finite index set.) W.l.o.g. we can assume that the Ui are disjoint. Indeed,
if they were not, we could replace Ui by Vi = Ui \ ∪i−1

j=1Uj for i ≥ 2. The

closures V i are subsets of U i and hence again compact and contractible in
X (although not necessarily in U i), and of course the Vi are again Borel
sets.

For each ordered (k + 1)-tuple (i0, . . . , ik) of (not necessarily distinct)
elements of the index set I we let Si0,...,ik be the set of singular simplices
with 0-th vertex in Ui0 , 1-st vertex in Ui1 , ..., k-th vertex in Uik and we

consider its closure Si0,...,ik which is contained in the set of singular simplices

with 0-th vertex in U i0 , 1-st vertex in U i1, ..., k-th vertex in U ik .
By the above we have defined η0 and s0 on S0 = U0, . . . , Sk = Uk (i.e.,

on all of X), such that the restriction to each Si extends continuously to Si.
Now we assume by induction that for all k-tuples (i0, . . . , ik−1) we already
have maps

ηk−1 : Si0,...,ik−1
→ map(∆k−1,X)

and

s0k−1, . . . , s
k−1
k−1 : Si0,...,ik−1

→ map(∆k,X)

with the desired properties and which all extend continuously to Si0,...,ik−1
.

We claim that ηk and s0k, . . . , s
k
k (defined as in the proof of Lemma 3.1) are

again continuous maps on Si0,...,ik for each (k + 1)-tuple (i0, . . . , ik).

This is seen as follows. Continuity of s0k−1, . . . , s
k−1
k−1 implies that the map

Si0,...,ik−1
→ map(∆k × {0} ∪ ∂∆k × [0, 1] ,X)

which sends σ : ∆k → X to the ”union” of σ×{0} and s0k−1(∂jσ), . . . , sk−1
k−1(∂jσ), j =

0, . . . , k, is continuous. Moreover, precomposition with the uniformly con-
tinuous map P : ∆k × [0, 1] → ∆k × {0}

⋃
∂∆k × [0, 1] from the proof of

Lemma 3.1 defines a continuous map

map(∆k × {0}
⋃
∂∆k × [0, 1] ,X) → map(∆k × [0, 1] ,X),

so we obtain a continuous map

Φ: Si0,...,ik−1
→ map(∆k × [0, 1] ,X).

Since ηk(σ) and s0k(σ), . . . , sk
k(σ) are all defined by restricting Φ(σ) to subsets

of ∆k × [0, 1], they also depend continuously on σ.
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So we have proved that ηk and s0k, . . . , s
k
k (defined on Si0,...,ik) can be

extended continuously to Si0,...,ik (although this extension on Si0,...,ik\Si0,...,ik

of course does not have to agree with the actual definition of ηk and s0k, . . . , s
k
k

coming from some other Sj0,...,jk
). Since all the Si0,...,ik are pairwise disjoint,

this allows a (not continuous but measurable) definition of ηk and s0k, . . . , s
k
k

on
map(∆k,X) =

⋃

(i0,...,ik)

Si0,...,ik .

For any compact subset K ⊂ map(∆k,X) we obtain that the image of
K ∩ Si0,...,ik under η or s0, . . . , sk is contained in the image of K ∩ Si0,...,ik

under some continuous extension of ηk or s0k, . . . , s
k
k and thus is contained

in a compact set. Hence the image of K ∩ Si0,...,ik has compact closure. So
the image of K under any of η and s0, . . . , sk is a finite union of (subsets of)
compact sets, hence has compact closure.

In particular, because the image of a determination set under any map is a
determination set for the push-forward measure, ηk and s0k, . . . , s

k
k map mea-

sures of compact determination set to measures of compact determination
set.

Corollary 3.3. Under the assumptions of Lemma 3.2 every measure cycle is
homologous to a measure cycle with determination set contained in Sx0

∗ (X).

Recall that we have defined bounded cohomology in Definition 1.4 and
measurable bounded cohomology in Definition 2.1. Similarly one defines
measurable cohomology. Let us denote by H∗

b,x0
(X),H∗

x0
(X) and H∗

b,x0
(X)

the cohomology groups of the complexes of bounded, measurable resp. bounded
measurable functions from Cx0

∗ (X) to R. Using [19, Section 3.4] there is a
well-defined pairing between H∗

b,x0
(X) and Hx0

∗ (X).

Corollary 3.4. Under the assumptions of Lemma 3.2, the canonical re-
striction induces isomorphisms

H∗
b (X) → H∗

b,x0
(X)

H∗
b(X) → H∗

b,x0
(X)

H∗(X) → H∗
x0

(X)

Proof: The above constructed maps η and s are bounded in the sense that
ηk sends a simplex to a simplex and sk sends a k-dimensional simplex to a
formal sum of (at most) k+1 (k+1)-dimensional simplices. This implies that
η∗ and s∗ send bounded cochains to bounded cochains. Moreover ηk and sk

are continuous on each of the finitely many disjoint Borel sets Si0...ik , so they
are Borel-measurable on map(∆k,X) and hence η∗ and s∗ send measurable
cochains to measurable cochains.

3.3. Examples. Let us conclude with some examples fulfilling or not ful-
filling the assumptions of Lemma 3.2:

Example. CW-complexes
Any compact manifold or finite CW-complex can be covered by finitely

many measurable sets with contractible, compact closures. Thus the as-
sumptions of Lemma 3.2 are satisfied.
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Example. Hawaiian earring
The Hawaiian earring is the shrinking wedge of circles pictured in the

introduction, that is, it can be written in the form

HE =

∞⋃

n=1

Cn ⊂ R
2,

where Cn ⊂ R
2 is the circle with center (0, 1

n
) and radius 1

n
. Let A±

n be the
intersection of Cn with the closure of the upper resp. lower half-plane, and
let A± =

⋃∞
n=1A

∞
n . Then

HE = A+ ∪A−

is a covering by two measurable sets with contractible, compact closures.
Thus the assumptions of Lemma 3.2 are satisfied for the Hawaiian earring.

Example. Warsaw circle
The Warsaw circle is a closed subset W ⊂ R

2, which is the union of the
graph of the function

y = sin(
1

x
)

for 0 < x ≤ 1, the segment

Y = {(x, y) : x = 0,−1 ≤ y ≤ 1} ,

and a curve connecting these two parts to get a path-connected space.
This space can be covered by finitely many contractible, measurable, rel-

atively compact sets. The easiest way to do this is to use the decomposition

W = Y ∪ Y c

into Y and its complement. However the closure of Y c is all of W , which is
known to be not contractible.

On the other hand, W can be covered by countably many contractible,
compact sets. For this one has to decompose the graph of y = sin( 1

x
) into

its segments for 1
n+1 ≤ x ≤ 1

n
with n running through all natural numbers,

and then add Y and the connecting curve as two more contractible, compact
sets to the decomposition.

These two decompositions show that in Lemma 3.2 the assumption on
having contractible closures and the assumption on finiteness of the covering
can not be relaxed by just assuming contractibility of the relatively compact
sets themselves or by countability of the covering, respectively. Indeed for
the Warsaw circle W , the second author proved in [23, Theorem 4] that
H0(W) is uncountable-dimensional, while of course Hx0

0 (W) ≃ R.
The Warsaw circle does however not provide a counterexample to the

conclusion of Theorem 0.2 in view of H0(W ; R) = R and Hn(W ; R) = 0 for
all n > 0.

Example. A space with non-injective canonical homomorphism
The following space can be covered by two contractible sets, but they are

not Borel-measurable.
Let Z be the space constructed in [25, Section 5]. There are two points

z0, z1 ∈ Z such that

[z1] − [z0] ∈ ker(H0(Z; R) → H0(Z)),
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see [25, Theorem 5.7].
To get examples in any degree n, let F be a closed, orientable manifold

of dimension n ≥ 1 and consider F × Z with the ”boundary” manifolds
F0 = F × {z0} and F1 = F × {z1}. Then

[F1] − [F0] ∈ ker(Hn(F × Z; R) → Hn(F × Z)).

To get a path-connected example, let X be the space obtained by gluing
one arc with the end points to the two different path components of F ×Z.
This does not change the homology in degrees ≥ 2 and thus one has for
n ≥ 2:

[F1] − [F0] ∈ ker(Hn(X; R) → Hn(X)).

This space satisfies the other assumptions from Lemma 3.2, but there is
no finite covering by contractible, measurable sets, though a covering by two
contractible, non-measurable sets exists.

4. Proof of Theorem 2

4.1. A simplicial construction: straightening. Recall that for a topo-
logical space X and a point x0 ∈ X we denote

Sx0

k (X) =
{
σ : ∆k → X | σ(v0) = σ(v1) = . . . = σ(vk) = x0

}
,

where v0, v1, . . . , vk denote the vertices of the standard simplex ∆k. Two
simplices σ0, σ1 ∈ Sx0

k (X) are said to be homotopic rel. boundary if there

exists a continuous map F : ∆k× [0, 1] with F (x, 0) = σ0(x), F (x, 1) = σ1(x)
for all x ∈ ∆k and F (x, t) = x0 for all x ∈ ∂∆k, t ∈ [0, 1].

Let us denote by Cx0

∗ (X) ⊂ C∗(X) for some fixed x0 ∈ X the subcom-
plex generated by Sx0

∗ (X). In the following lemma we define a topological
analogue of the well-known geometric straightening which we used in the
proof of Corollary 2.12. The construction replaces geodesics and straight
simplices by a somewhat arbitrary selection of simplices. (Similar construc-
tions in somewhat different settings can be found in [21, Theorem 9.5] and
[2, Proposition 3.1].)

Lemma 4.1. Let X be a topological space and x0 ∈ X.
i) There is a subset Sstr

∗ (X) ⊂ Sx0

∗ (X) such that Sstr
k (X) contains one k-

simplex in each homotopy class rel. boundary of simplices with all boundary
faces in Sstr

k−1(X).
ii) There is a chain map

str : Cx0

∗ (X) → Cx0

∗ (X)

which is chain homotopic to the identity and whose image lies in the chain
complex Cstr

∗ (X) ⊂ Cx0

∗ (X) spanned by the simplices in Sstr
∗ (X). If Y is a

subspace of X with x0 ∈ Y such that πk(Y, x0) → πk(X,x0) is injective for
all k ≥ 0, then str can be chosen to map Cx0

∗ (Y ) to Cstr
∗ (Y ).

iii) If X is aspherical, then str is constant on homotopy classes rel. ver-
tices.

iv) If X is locally contractible, then str extends to a chain map

str : Cx0

∗ (X) → Cstr
∗ (X).
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Proof: We recursively construct a subcomplex Cstr
∗ (X) ⊂ Cx0

∗ (X), whose
simplices we call the ”straight simplices”, and a map str : Cx0

∗ (X) → Cstr
∗ (X),

which we call the straightening map. This is similar to well-known construc-
tions, which in slightly different settings can be found in [21, Theorem 9.5]
and [2, Proposition 3.1]. We recall the construction for convenience of the
reader and for later reference.

The 0-skeleton of Cstr
∗ (X) consists of the one vertex x0. For the 1-skeleton

of Cstr
∗ (X) we choose one 1-simplex in each homotopy class (rel. vertices)

of 1-simplices in Cx0

∗ (X), and we define str on 1-simplices by sending each
of them to the unique straight simplices in its homotopy class. For each
1-simplex σ we fix a homotopy (rel. vertices) between σ and str(σ).

Assume now that for some k > 1 we have already defined Sstr
∗≤k−1(X) and

str : Cx0

∗≤k−1(X) → Cstr
∗≤k−1(X). For Sstr

k (X) we choose one k-simplex with

all boundary faces in Sstr
k−1(X) inside each homotopy class (rel. boundary)

of k-simplices in Sx0

k (X) with all boundary faces in Sstr
k−1(X).

For a simplex σ ∈ Cx0

k (X) we can assume by induction that we have de-
fined str(∂σ) and that we have a homotopy between ∂σ and str(∂σ). By the
cofibration property of the inclusion ∂∆k → ∆k this homotopy extends to a
homotopy of σ keeping vertices fixed. Let σ′ be the result of this homotopy.
Among simplices with boundary str(∂σ) we have in the homotopy class (rel.
boundary) of σ′ exactly one simplex in Sstr

k (X). Define this simplex to be
str(σ). By construction we have a homotopy from σ to str(σ) whose re-
striction to ∂σ is a reparametrisation of the homotopy from ∂σ to str(∂σ),
which was given by the inductive hypothesis. This family of compatible
homotopies yields the wanted chain homotopy between id and str.

For a pair (X,Y ) one chooses straight simplices to be in Y whenever
this is possible. The assumption on injectivity of πk(Y, x0) → πk(X,x0)
implies that homotopies between simplices in Y can be chosen to remain
in Y . Inductively, for a simplex σ in Y this applies (in the above recur-
sive construction) to the homotopy between str(∂σ) and ∂σ, and then the
extending homotopy yields a simplex in Y .

For (iii), if σ and σ′ are homotopic rel. vertices, then the 1-skeleta of
str(σ) and str(σ′) agree. Assuming inductively that for some k ≥ 2 the
(k−1)-skeleta of str(σ) and str(σ′) agree, we get from asphericity of X that
the k-skeleta of both simplices are homotopic rel. boundary, and thus these
k-skeleta must be equal by property (i). Proof by induction on k yields that
str(σ) = str(σ′).

For iv), given µ ∈ Cx0

∗ (X), we note that for a Borel set A ⊂ map(∆k,X),
its preimage str−1(A) is a countable union of homotopy classes, which are
Borel sets by assumption. Thus we can define str(µ) by

str(µ)(A) = µ(str−1(A)).

Its variation is bounded because

‖str(µ)‖ = maxAµ(str−1(A)) −minBµ(str−1(B)) ≤ ‖µ‖ <∞.

Local contractibility of X implies by[28] that map(∆k,X) is locally path-
connected. In fact, [28] has a more precise result about subsets ofmap(∆k,X)
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mapping subpolyhedra to given closed subspaces, from which we can in par-
ticular infer that the subset of map(∆k,X), consisting of simplices mapping
all vertices to x0, is locally path-connected. By a theorem of Fox, path com-
ponents correspond to homotopy classes. This means that every compact
set K ⊂ map(∆k,X) meets only finitely many homotopy classes. So, if µ
has compact determination set K ⊂ map(∆k,X), then str(K) is a finite set
by (iii). Since str(µ) is determined on this finite set, it is a finite sum, i.e.,
an element of Cstr

∗ (X). Hence the image of str does indeed belong to the
subspace Cstr

∗ (X) consisting of singular (rather than measure) chains.

Of course str need in general not be continuous or measurable.

4.2. CW-neighborhoods. We recall some well-known facts about CW-
complexes from [12, Appendix A]. Let X be a CW-complex with k-skeleta
Xk, and A ⊂ X a sub-CW-complex.

An open neighborhood of A is defined with the help of a function ǫ that
assigns a positive number ǫα < 1 to each cell enα of X. The construction is
inductive with N0

ǫ (A) = A ∩ X0. If a neighborhood Nn
ǫ (A) of A ∩ Xn in

Xn is defined, then Nn+1
ǫ (A) is defined such that it contains all (n + 1)-

cells of A and such that for each (n + 1)-cell en+1
α in X \ A its preimage

under the the characteristic map Φα : Dn+1 → X consists of a product
(1 − ǫα, 1] × Φ−1

α (Nn
ǫ (A)) with respect to spherical coordinates in Dn+1.

Finally Nǫ(A) = ∪nN
n
ǫ (A).

We are now considering the situation that X is a countable union of
CW-complexes Yn such that all intersections

YI :=
⋂

i∈I

Yi, I ⊂ N

are sub-CW-complexes. We remark that CW-complexes are finite-dimensional
and that proper intersections of CW-complexes have smaller dimensions
than the intersecting complexes, thus there can be no infinite chains of
intersections and every intersection contains a maximal (or in terms of com-
plexes minimal) intersection. Hence, for an assignment ǫ as above we can
construct U := Nǫ(

⋃
I⊂N,|I|≥2 YI) ⊂ X. We assume that no subsequence of

the ǫα converges to 0. For I ⊂ N with |I| ≥ 2 we will denote UI ⊂ U the
neighborhood of ∩i∈IYi in ∪i∈IYi and call this the CW-neighborhood. We
remark that this set is not necessarily open in X, a typical example where
this would not be the case is the Hawaiian earring. So we need to impose
condition ii) in Theorem 0.2 as an additional assumption.

For CW-complexes, it is proved in [12, Proposition A.5.] that there is a
deformation retraction UI → YI : during the time interval

[
1
2n ,

1
2n−1

]
retract

the n-cells of UI \ YI to the (n− 1)-cells by sliding outward radial segments
in the cells. For some slightly larger ǫ′ > ǫ the map can continuously be
extended to the ǫ′-neighborhood while being the identity at the boundary of
the ǫ′-neighborhood. Thus the deformation retractions UI → YI extends to
a continuous map r : X → X homotopic to the identity. r is clearly proper.

If each Yn, but not necessarily their union X is a CW-complex, then the
collection of ǫα-neighborhoods need not be an open set and r need not be
continuous. Therefore in the statement of Theorem 0.1 we have added that
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there exist such CW-neighborhoods, which are open sets, such that r is
continuous.

Lemma 4.2. Let X =
⋃

n∈N
be a countable union of CW-complexes Yn such

that all intersections
YI :=

⋂

i∈I

Yi, I ⊂ N

are sub-CW-complexes. Let UI be the above-defined CW-neighborhoods for
|I| ≥ 2. Then there is a continuous, proper map r : X → X, homotopic to
the identity, that maps UI to YI for each I ⊂ N with |I| ≥ 2.

In what follows we will call the above-constructed UI the CW-neighborhood
of YI . Under a further condition we can prove the following lemma.

The reason why one needs condition i) should be apparent from the fol-
lowing example. Assume that the CW-complexes Yn are connected and that
for each n ≥ 2 the intersection Yn∩Yn+1 contains a path [xn, yn+1] such that
the sequence (yn) converges to some y ∈ Y1. (It is easy to construct such an
example.) Inside Yn we can connect yn to xn by a path. We can then define
a continuous path that on shorter and shorter intervals approaching 0 agrees
with the above paths and in 0 takes y. For this 1-simplex, the conclusion of
Lemma 4.3 fails.

Lemma 4.3. Let the assumptions of Lemma 4.2 be satisfied and assume in
addition that no x ∈ X is a limit of a sequence xν ∈ YIν

for pairwise distinct
Iν ⊂ N. Then any (continuous) singular simplex σ : ∆k → X satisfies the
following condition:

for each p ∈ ∆k, if we denote I(p) ⊂ N the maximal index set with
σ(p) ∈ YI(p), then there is an open neighborhood U(p) ⊂ ∆k, such that
restriction of σ gives a well-defined and continuous map U(p) → UI(p).

Proof: It suffices to check this for k = 1 because a counterexample with
k > 1 would contain embedded 1-simplices contradicting the claim for k = 1.

We have a countable, closed covering U1 =
{
σ−1(Yi)

}
. The sets in this

covering may be disconnected, so let us look at their path components.
Define an equivalence relation on [0, 1] by declaring P ∼ Q if and only if
there exists a sequence P = p0, p1, . . . , pn = Q such that pi and pi+1 belong
to the same path components of a set Ai ∈ U1, for i = 0, . . . , n − 1. Let U2

be the covering by equivalence classes of ∼. This is a disjoint covering by
path-connected subsets of [0, 1], which must be either points, closed, open
or half-open intervals. However, the assumption of Lemma 4.3 rules out the
possibility that any U ∈ U2 can be an open or half-open interval. So we
have a covering by disjoint points and closed intervals.

Consider the quotient space [0, 1] / ∼ with the countable covering by the
disjoint sets σ−1(Yi)/ ∼. Since equivalence classes of ∼ are points or closed
intervals, the quotient space [0, 1] / ∼ is again homeomorphic to [0, 1]. On
the other hand, the sets σ−1(Yi)/ ∼ are totally disconnected and thus have
empty interior. So we obtain a covering of [0, 1] by countably many sets of
empty interior. But this contradicts Baire’s category theorem.

4.3. Proof of injectivity. In this section we prove Theorem 0.2. That
is, we assume that X can be covered by countably many finite, aspherical
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CW-complexes Yn, n ∈ N such that x0 ∈ Yn for all n and such that all
intersections YI := ∩i∈IYi, I ⊂ N are sub-CW-complexes with open CW-
neighborhoods are open, further that the assumption of Lemma 4.3 holds,
and that inclusions induce an isomorphism

⊕
n∈N

Hk(Yn) = Hk(X),
and we want to prove that ι∗ : Hk(X; R) → Hk(X) is injective.

Proof: Assume that ι∗ is not injective, which means that there is some
α ∈ Hk(X,R), represented by a cocycle z ∈ Ck(X,R) such that z = dµ for
some measure chain µ ∈ Ck+1(X).

Since all intersections YI :=
⋂

i∈I Yi with |I| ≥ 2 are sub-CW-complexes
of each Yi, i ∈ I, they have open neighborhoods YI ⊂ UI ⊂ X as discussed
in Section 4.2, which deformation retract on YI . Moreover, for |I| = 1, that
is I = {i}, we define UI = Yi. We obtain a covering of X by the sets UI .

Some of these sets (those with |I| = 1) are not open in X. However,
Lemma 4.3 that for a singular simplex in X for every point in its image
there exists some open neighborhood contained in some UI . In particular
after sufficiently fine subdivision any subsimplex will be contained in some
UI .

Since µ is compactly determined, there exists an m ∈ N such that the
m-th barycentric subdivision sdmµ is determined on simplices with image
contained in one of the UI . The classical construction of a chain homotopy
between sdm and the identity (on singular chains) implies that ∂sdmµ =
sdmz is a cycle in the homology class α.

By Lemma 4.2 there is a continuous, proper map r : X → X homotopic
to the identity, which sends each UI to YI . Thus r∗(sd

mµ) is a measure
chain, whose boundary ∂r∗(sd

mµ) = r∗(sd
mz) is a cycle in the homology

class α.
Since sdmµ is determined on simplices with image in some UI , it fol-

lows that r∗(sd
mµ) is determined on simplices with image in some YI , in

particular in some Yi. So we can decompose it as a sum

r∗(sd
mµ) =

∑

i∈N

µi,

where each µi is a measure chain on Yi (it is compactly determined on Yi

because Yi is closed in X), and ∂µi = zi with the possibly infinite sum∑
i∈N

zi yielding (possibly after cancelation of infinitely many summands) a
finite sum of singular chains representing the homology class α.

Because Yi (other thanX) satisfies the assumptions of Lemma 3.2 we have
that each µi is chain homotopic to some measure chain µi ∈ Cx0

∗ (Yi). Its
boundary is again a singular cycle chain homotopic to zi. Application of the
straightening procedure from Lemma 4.1 yields a measure chain str(µi) ∈
Cstr
∗ (Yi).
But CW-complexes are locally contractible (see [12, Proposition A.4])

and by part iv) of Lemma 4.1 it follows that str(µi) is a singular chain. Its
boundary is a singular chain str(zi) homologous to zi.

A priori,
∑∞

i=1 str(µi) is a countable sum of singular chains, thus not
necessarily a singular chain. However we know, by assumption, that the
homology is a direct sum Hk(X) =

⊕
Hk(Yi). Therefore there is a finite set

F ⊂ N such that
∑

i∈F zi is homologous to z. Because of
∑

i∈F ∂str(µi) =
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∑
i∈F zi we obtain a (finite) singular chain

∑
i∈F str(µi) with

∂(
∑

i∈F

str(µi)) ∼ z.

In particular α = [z] = 0 ∈ H∗(X; R), which proves injectivity of ι∗.

We remark that the proof in particular applies to CW-complexes and
then gives a simpler proof than the one given in [19]. The point of the
simplification is that using the results from Section 3 we could reduce the
problem to the simpler situation of simplices having all their vertices in the
basepoint.

In fact, in the above setting we can also prove the existence of a mea-
surable section, which was the main technical lemma in [19]. Namely, let
G ≃ π1(X,x0) be the (by assumption countable) deck transformation group

of the generalized universal covering p : X̃ → X. The lift of x0 to X̃ is a
G-orbit Gx̃0 for some x̃0, see Section 1.2. The lift of a homotopy class (rel.

x0) of n-simplices is a homotopy class inside Sγ0x̃0,...,γnx̃0

∗ (X̃), by which we
mean the set of simplices mapping their i-th vertex to γix̃0 for i = 0, . . . , n.
Clearly the projection

p : Sγ0x̃0,...,γnx̃0

∗ (X̃) → Sx0

∗ (X)

maps a homotopy class homeomorphically onto its image, which is also a
homotopy class. In particular, the restriction of p to any homotopy class
has a continuous right-inverse s defined on the image of that homotopy
class. Thus we get a right-inverse s defined on each of the homotopy classes
downstairs. Since the homotopy classes of simplices (rel. vertices) are Borel
sets by assumption, and there are only countably many homotopy classes,
the so-defined s yields a measurable map

s : Sx0

∗ (X) → SGx̃0

∗ (X̃)

right-inverse to p.
The following example shows that no such section can exist when the

fundamental group is uncountable, like for the Hawaiian Earrings.

Lemma 4.4. Let X be a complete, separable metric space admitting a gen-

eralized universal covering p : X̃ → X. Assume that X is semi-locally simply
connected at x0 and that the deck group G ≃ π1(X,x0) is uncountable. Then

p1 : SGx̃0

1 → Sx0

1 admits no Borel section.

Proof: X being semi-locally simply connected at x0 implies that Gx̃0 is

discrete in X̃. Then one can show that the sets Sg1x̃0,g2x̃0

1 are open and

closed, so that we have decomposed SGx̃0

1 into a disjoint union of open and
closed sets.
G is uncountable, hence the cardinality of its power set is bigger than

continuum. For a measurable section s and any subset Γ ⊂ G let UΓ be
the set of 1-simplices with the same endpoints as s(γg), where γg means the
loop representing g (and s(γg) may be discontinuous, but for UΓ we consider
only continuous maps).
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As a disjoint union of sets of the form Sg1x̃0,g2x̃0

1 , any UΓ must be open and
hence have Borel-measurable preimage under s. Thus the s−1(UΓ) are more
than continuum many distinct Borel-measurable subsets of map(∆1,X).

But the latter is a Polish space by [15, Theorem 4.19] and thus has only
continuum many Borel sets by [26, Theorem 3.3.18]. This is a contradiction.

4.4. Example: convergent Y-spaces. Recall from Section 2.8 the Definition 2.8
of convergent Y -spaces for a metric space Y .

For Y = [0, 1] with the exactly two points 0 and 1 along which the identifi-
cation is done, this yields the convergent arc space drawn in the introduction.

Such a convergent Y -space space will usually not be a CW-complex even
if Y is: although X inherits a cell decomposition from that of Y , the accu-
mulation property limn→∞ d(fn(y), y) = 0 implies that X does not have the
weak topology with respect to that cell decomposition.

The assumption on nonvanishing of the Gromov norm, that we required in
Theorem 0.1 is in general not satisfied for convergent Y -spaces. For example,
it does not hold for the convergent arc space, or when the Gromov norm on
Y is not an actual norm, e.g., when Y is simply connected.

We mention that for Y homeomorphic to a simplicial complex (e.g. a
smooth manifold, see [29]) and X a convergent Y -space, for all k, the homo-
topy classes (rel. vertices) of k-simplices with vertices in x0 are Borel sets in
map(∆k,X). Thus the assumptions of Lemma 3.2 are satisfied in this case.
We will not include the rather lengthy argument because it is not needed
for the proof of Corollary 4.5.

Corollary 4.5. If the aspherical metric space Y is homeomorphic to a finite
CW-complex and if X is a convergent Y -space, then

ι∗ : Hk(X; R) → Hk(X)

is injective.

Proof: For k ≥ 2 we have Hk(X) =
⊕

i∈N
Hk(Yi) and can therefore apply

Theorem 0.2. For k = 1 we have the same ad-hoc argument as for the
convergent arcs space in [24, Section 2.2].
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