Aufgabe 1

a) Weil X offen in X ist, ist $X \subset X^o$. Für jede offene Menge U in X gilt $U \subset X$, deshalb ist $X^o \subset X$.

b)

$$Z^o = \bigcup \{U \subset Z : U \text{ offen }\} = \bigcup \{U \subset Z : X - U \text{ abgeschlossen }\} = \\ \bigcup \{X - (X - U) \subset Z : X - U \text{ abgeschlossen }\} = \bigcup \{X - A \subset Z : A \text{ abgeschlossen }\} = \\ \bigcup \{X - A : A \subset X - Z \text{ abgeschlossen in } Z\} = \\ X - \bigcap \{A \subset Z : A \subset X - Z \text{ abgeschlossen in } Z\} = X - \overline{X - Z}.$$

c) Für offene Mengen $U \subset X$ gilt nach Definition von Z^o :

$$U \subset Z \iff U \subset Z^o$$
.

Weil Z^o die Vereinigung aller offenen Teilmengen von Z ist, folgt $(Z^o)^o = Z^o$.

- d) Sei $x \in (Z_1 \cap Z_2)^o$. Dann gibt es eine offene Menge $U \subset Z_1 \cap Z_2$ mit $x \in U$. Aus $Z_1 \cap Z_2 \subset Z_1$ bzw. $Z_1 \cap Z_2 \subset Z_2$ folgt dann auch $U \subset Z_1$ bzw. $U \subset Z_2$, also $x \in Z_1^o$ und $x \in Z_2^o$, also $x \in Z_1^o \cap Z_2^o$. Umgekehrt, sei $x \in Z_1^o \cap Z_2^o$, dann gibt es eine offene Menge $U_1 \subset Z_1$ mit $x \in U_1$ und eine offene Menge $U_2 \subset Z_2$ mit $x \in U_2$. Dann ist $U_1 \cap U_2 \subset Z_1 \cap Z_2$ eine offene Menge mit $x \in U_1 \cap U_2$, also $x \in (Z_1 \cap Z_2)^o$.
- e) Z^o ist Vereinigung von Teilmengen von Z, also $Z^o \subset Z$. Wenn Z offen ist, dann ist $Z \subset Z^o$, also $Z = Z^o$. Umgekehrt, sei $Z = Z^o$. Dann gilt für jeden Punkt $z \in Z$ auch $z \in Z^o$, es gibt also eine offene Menge $U \subset Z$ mit $x \in U$. Also ist Z offen.
- f) $\mathbf{R} = \mathbf{R}^0$ nach a). $\mathbf{Z}^o = \emptyset$ und $\mathbf{Q}^o = \emptyset$, weil \emptyset die einzige offene Teilmenge von \mathbf{Q} ist. $[0,1]^o = (0,1)$, weil (0,1) offen ist und weil eine offene Menge, die 0 oder 1 enthält, keine Teilmenge von [0,1] sein kann.

Aufgabe 2

- a) Richtig. Sei X kompakt, $A \subset X$ abgeschlossen. Sei (x_n) eine Folge in A. Weil X kompakt ist, gibt es eine konvergente Teilfolge x_{n_k} . Sei $x = \lim_{k \to \infty} x_{n_k}$. Weil A abgeschlossen ist, ist $x \in A$. Also konvergiert die Teilfolge auch in A.
- b) Richtig. Sei X endlich. Sei (x_n) eine Folge in X. Weil X endlich ist, muss es nach dem Schubfachprinzip (mindestens) ein $x \in X$ geben, so dass $x_n = x$ für unendlich viele $n \in \mathbb{N}$ gilt. Die Teilfolge derjenigen x_n mit $x_n = x$ ist dann eine konstante (also konvergente) Teilfolge.
- c) Richtig: die kompakte Menge B ist abgeschlossen, f ist stetig, also ist $f^{-1}\left(B\right)$ abgeschlossen.
- d) Falsch. Zum Beispiel: $X=Y=\mathbf{R}, f(x)\equiv 0, B=\{0\}$: $f^{-1}(B)=\mathbf{R}$ ist nicht kompakt.

Aufgabe 3

 M_0 hat keine der Eigenschaften, M_1 ist abgeschlossen und vollständig, M_2 ist offen, M_3 ist abgeschlossen, vollständig und kompakt, M_4 ist abgeschlossen und vollständig, M_5 ist offen, M_6 ist abgeschlossen, vollständig und kompakt, M_7 ist abgeschlossen und vollständig.