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Abstract. We prove that Anosov representations from a closed surface group to
SL(3, R) are uniquely determined by their boundary maps S1

→ Flag(RP 2) if and only
if they do not factor over a completely reducible representation SL(2, R) → SL(3, R).

On the other hand, there are families of completely reducible representations which
can not be distinguished neither by their boundary maps nor by the topological con-
jugacy class of the action on their domain of discontinuity.

We also prove that the quotient of the space of Anosov representations by the
action of the mapping class group has at least g + 2 components where g is the genus
of the surface.

1. Introduction

Let Σg be an oriented, closed surface of genus g ≥ 2. Then its fundamental group is
presented as

π1Σg =

〈
a1, b1, . . . , ag, bg

∣∣∣∣∣

g∏

i=1

[ai, bi] = 1

〉

Here [a, b] denotes the commutator of a and b. Given a Lie group G, the representation
variety Hom(π1Σg, G) has a natural topology as a subset of G2g. When G = SL(3, R),
Hitchin ([7]) proved that the representation variety Hom(π1Σg, SL(3, R)) has three con-
nected components, two of which correspond to topologically trivial representations with
vanishing Stiefel-Whitney classes.

One of these two components is the so-called Hitchin component whose elements, the
Hitchin representations, can be characterised by various equivalent properties. They
are hyperconvex representations in the sense of [9] and correspond to convex projective
structures on Σg by [3]. In particular they have Hölder-embedded circles Λ in the flag
variety Flag(RP 2) as limit curves. They are also characterized as representations with
positive X-coordinates in the sense of [5]. This implies that all γ ∈ π1Σg are mapped to
matrices with three distinct, positive real eigenvalues.

One important theme is that Hitchin representations are determined by and can be
studied via their boundary map ξ : S1

∞ → Flag(RP 2). In particular, the parametrisation
of Hitchin representations by Bonahon-Dreyer ([2]) uses Fock-Goncharov’s X-coordinates
which are determined by the boundary map alone.

We are interested in the other component of representations with trivial Stiefel-Whitney
class. This component contains the trivial representation and also all representations aris-
ing from the composition of the (lift of the) monodromy of a hyperbolic structure

π1Σg → SL(2, R)
1
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with the natural reducible representation by block matrices

SL(2, R) → SL(3, R).

The latter examples and its deformations have been studied by Barbot [1], who proved
that for so-called radial deformations, i.e., deformations arising by multiplication with


eu(γ) 0 0

0 e−2u(γ) 0

0 0 eu(γ)


 for some homomorphism u : π1Σg → R, one always has the

same boundary map ξ : ∂∞π1(Σg) → Flag(RP 2), thus the same limit curve Λ0 and a
domain of discontinuity in the flag variety with quotient a 2-fold covering space of the
unit tangent bundle T 1Σg.

In [1] Barbot asked whether the space of non-hyperconvex (i.e., non-Hitchin) repre-
sentations is connected. Regarding this question, Thierry Barbot and Jaejeong Lee, in
Daejeon 2014, observed that there are at least 22g +1 connected components in the space
of Anosov representations from a genus g surface group to SL(3, R), which gives a coun-
terexample to the question. The reason behind is that eigenvalues, varying continuously,
cannot change signs.

The mapping class group acts naturally on the space of Anosov representations A and
for the action on components we have the following result.

Proposition 1.1. There are at least g+2 orbits for the action of the mapping class group
MCG(Σg) on π0A.

The disconnectedness of non-Hitchin Anosov representations is due to completely re-
ducible Anosov representations coming in tuples of 22g representations which all have to
be in distinct components of A. These 22g Anosov representations all share the same
boundary map ξ : S1 → Flag(RP 2). In particular they can not be distinguished in terms
of invariants defined via boundary maps and in fact their Fock-Goncharov invariants are
not well-defined.1 Moreover we see in Section 3.2 that these representations can not be
distinguished by the topological actions on their domains of discontinuity.

We show however in Section 5 that this is an exceptional behaviour, i.e., that these
examples (and their radial deformations as considered by Barbot) are the only Anosov
representations which are not determined by their boundary maps.

Theorem 1.2. If ρ1, ρ2 : π1Σg → SL(3, R) are Anosov representations with the same
boundary map ξ : ∂∞π1(Σg) → Flag(RP 2), then both factor over some completely re-
ducible representation SL(2, R) → SL(3, R) and ρ2 is obtained from ρ1 by left multiplica-
tion with some conjugate of




λ(γ) 0 0
0 1

λ(γ)2 0

0 0 λ(γ)




for some homomorphism λ : π1Σg → R \ {0}.

This was known from [5, Theorem 6.1] for positive representations, where it is just
a consequence of the facts that a positive triple of flags determines a projective basis

1So this is different from the case of representations to PSL(2, R), where it is a consequence of Gold-
man’s theorem that Anosov representations are uniquely determined by their boundary maps.
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and that an element in SL(3, R) is determined by its action on a projective basis. This
argument also works for generic (not necessarily positive) representations and therefore
the content of our proof is to analyze the situation in the non-generic case, when the
boundary map is sending all triangles of an ideal triangulation to non-generic triples of
flags which do not determine a projective basis.

In [5, Definition 1.9], Fock and Goncharov defined a universal higher Teichmüller space
which in the case of G = PGL(3, R) consists of all positive maps ξ : QP 1 → Flag(RP 2)
modulo the action of PGL(3, R), and they showed that a subset of it parametrises
the Hitchin component. Our result shows that one can still parametrise the not com-
pletely reducible Anosov representations by a subset of the (not necessarily positive)
maps ξ : QP 1 → Flag(RP 2) modulo the action of PGL(3, R)
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conference ”Geometry of groups and spaces” 2014 in Daejeon.

The first author gratefully acknowledges the partial support of Basic Science Research
Program through the National Research Foundation of Korea funded by the Ministry of
Education, Science and Technology (NRF-2015R1D1A1A09058742).

2. Recollections

Throughout the paper Σg will be the closed, orientable surface of genus g ≥ 2. We will
freely use the identifications

H1(Σg; Z/2Z) ∼= Hom(π1Σg, Z/2Z) ∼= Hom(H1(Σg; Z), Z/2Z) ∼= (Z/2Z)2g.

We will always denote G = PGL(3, R) = SL(3, R) and B ⊂ G will be the subgroup of
upper triangular matrices.

2.1. Anosov representations.

2.1.1. Definitions. Recall that a flag in RP 2 is a pair

([v] , [f ]) ∈ P (R3) × P (R3∗)

with f(v) = 0. Denote by

X := Flag(RP 2)

the flag variety of RP 2 and by

Y := Frame(RP 2)

the frame variety, that is, the space of noncollinear triples of points in RP 2.
There is a well-known open embedding ι : Y → X × X sending ([u] , [v] , [w]) to

(([u] , [(uv)∗]), ([w] , [(wv)∗]),

see [1, Section 2.3]. The image of this embedding is an open set and in particular TyY
is naturally identified with Tι(y)(X × X) for each y ∈ Y . The two direct summands of

T (X × X) = TX ⊕ TX are denoted by E+ and E−.
Two flags ([v1] , [f1]) and ([v2] , [f2]) are called transverse if f2(v1) 6= 0 and f1(v2) 6= 0.
Anosov representations were originally considered by Labourie in [9], the notion of P -

Anosov representations for general parabolic subgroups P ⊂ G was defined by Guichard-
Wienhard in [6]. In this paper we will only consider the case that P = B is the group
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of upper triangular matrices and henceforth abbreviate “B-Anosov representation” by
“Anosov representation”. Before giving a definition of Anosov representation, a closed
surface Σg is assumed to be a hyperbolic surface.

Definition 2.1. A representation ρ : π1Σg → SL(3, R) is an Anosov representation if
there exist continuous, ρ-equivariant maps

ξ± : ∂∞H2 → Flag(RP 2)

such that

(i) ξ+(η) and ξ−(η) are transverse for each η ∈ ∂∞H2, so ξ+ and ξ− combine to a
map

σ̃ : T 1H2 → Frame(RP 2).

(ii) The lifted geodesic flow on σ̃∗E+ resp. σ̃∗E− is dilating resp. contracting.

In our case we can assume that ξ− = ∂∞s ◦ ξ+, with ∂∞s induced by the antidiagonal
matrix s ∈ SL(3, R) permuting the basis vectors e1 and e3. Thus we will talk about “the”
boundary map ξ := ξ+, see [6, Section 4.5].

2.1.2. Space of Anosov representations. Let us denote

A ⊂ Hom(π1Σg, SL(3, R))

the set of Anosov representations. By [9, Proposition 2.1] it is an open subset of the rep-
resentation variety. The work of Labourie shows that A contains the Hitchin component
and the work of Barbot exhibits Anosov representations in the other component of the
topologically trivial representations. By [1, Corollary 6.6] only those two components can
contain Anosov representations. Our aim is to distinguish components of A inside the non-
hyperconvex component of topologically trivial representations in Hom(π1Σg, SL(3, R)).

Representations in this component have been studied in [1]. One of the results was
that in all cases Flag(RP 2) decomposes into the limit curve Λ = ξ(∂∞H2), a domain
of discontinuity Ω homeomorphic to a solid torus, and two invariant Möbius bands with
complicated dynamics. Moreover, the quotient of Ω by the ρ(π1(Σg))-action is a circle
bundle over Σg.

In [1, Section 8], Barbot asked the following questions for non-hyperconvex Anosov
representations ρ : π1Σg → SL(3, R), noting that a positive answer to Question 2 would
imply a positive answer to Question 1 (cf. [6, Theorem 9.12]).

Question 1: Is the circle bundle ρ(Γ)\Ω homeomorphic to the double covering of the
unit tangent bundle of Σg?

Question 2: Is the space of non-hyperconvex Anosov representations connected?

As mentioned before, due to the observation of T. Barbot and J. Lee (see Section 4.1),
it turns out that the answer for Question 2 is no. On the other had, Question 1 might
still have a positive answer in view of the result of Section 3.2 below.
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3. Completely reducible representations

In this section we consider the completely reducible representations ρφ which yield 22g

different components of non-hyperconvex Anosov representations. The remainder of the
section will not play a rôle for this paper, though it might be of independent interest: we
show that the 22g-tuples of completely reducible representations with the same boundary
map can also not be distinguished by the action on their domain of discontinuity, and we
show that they are singular points of the character variety.

3.1. Construction of a (Z/2Z)2g-action. Assume a fixed representation

ρ0 : π1Σg → SL(2, R) → SL(3, R),

where we will as in [1] think of SL(2, R) embedded in SL(3, R) compatible with the
embedding (x, y) → (x, 0, y) of R2 in R3. Let us denote

J13 =




−1 0 0
0 1 0
0 0 −1


 .

For each homomorphism

φ : π1Σg → Z/2Z = {0, 1}

we can consider the representation ρφ : π1Σg → SL(3, R) defined by

ρφ(γ) = ρ0(γ)J
φ(γ)
13

for all γ ∈ π1Σg. This representation is well-defined because J13 commutes with all ρ0(γ)
and hence the relation

∏g

i=1 [ρ0(ai), ρ0(bi)] = 1 for the standard generators a1, b1, . . . , ag, bg

of π1Σg implies
∏g

i=1 [ρφ(ai), ρφ(bi)] = 1.
Observe that even though the images in SL(2, R) project to the same representations

in PSL(2, R), this is not the case for the images in SL(3, R) in view of the equality
SL(3, R) = PGL(3, R).

3.2. Domains of discontinuity. It is easy to check that all the ρφ are Anosov repre-
sentations with the same boundary map as ρ0, namely the embedding RP 1 → Flag(RP 2)
which is induced by the embedding RP 1 → RP 2 given by [x : y] → [x : 0 : y]. Let L
be the image of the latter curve in RP 2, and L∗ = {[f ] : f(e2) = 0}, the image of the
boundary map is L × L∗ and one of the three components of its complement is

Ω = {([v] , [f ]) : v 6∈ L and f 6∈ L∗} ⊂ Flag(RP 2),

which can be interpreted as the projective tangent bundle of the disk RP 2 \ L, and is
thus equivariantly homeomorphic to SL(2, R). The action of ρφ(π1Σg) on Ω is properly
discontinuous as a special case of [1, Theorem 5.1]. We will argue that the actions of
ρφ(π1Σg) for different φ do all yield the same quotient manifold ρφ(π1Σg)\Ω.

The base space. A hyperbolic structure on Σg is given by its monodromy represen-
tation ρ : π1Σg → PSL(2, R). The quotient

ρ(π1Σg)\PSL(2, R)

is the unit tangent bundle T 1Σg. Because this is a circle bundle we have an exact sequence

0 → Z → π1(T
1Σg) → π1Σg → 1.
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By Culler’s theorem ρ can be lifted to a representation ρ0 : π1Σg → SL(2, R). We assume
such a lift to be fixed.

The covering spaces. Since the Euler class of T 1Σg is even, the spectral sequence
for the homology with Z/2Z-coefficients degenerates at the E2-term (in fact the only
potentially nontrivial d2-differential is multiplication by the Euler class) and thus we
have

H1(π1(T
1Σg); Z/2Z) ≃ H1(Z; Z/2Z) ⊕ H1(π1Σg; Z/2Z).

As any homomorphism from π1(TΣg) to Z/2Z has to factor through the abelianization
H1(T

1Σg), this implies

Hom(π1(T
1Σg), Z/2Z) ≃ H1(Z; Z/2Z) ⊕ H1(π1Σg; Z/2Z) ≃ (Z/2Z)2g+1

In particular, for each homomorphism φ : π1Σg → Z/2Z we have a uniquely defined
homomorphism

Φ: π1(T
1Σg) → Z/2Z = {0, 1}

which sends the generator of H1(S
1; Z/2Z) to the nontrivial element 1 ∈ Z/2Z and agrees

with φ on H1(Σg; Z/2Z).
Inspection shows that

ρφ(π1Σg)\SL(2, R)

is the 2-fold covering space of ρ(π1Σg)\PSL(2, R) which corresponds to the homomor-
phism Φ: π1(T

1Σg) → Z/2Z.

Euler class. Circle bundles over Σg are classified by their Euler class

e ∈ H2(π1Σg; Z) ∼= Z.

It is well-known that T 1Σg is a circle bundle of Euler class 2 − 2g. Our quotients

ρφ(π1Σg)\Ω ∼= ρφ(π1Σg)\SL(2, R)

are fibre-wise double covers of T 1Σg and therefore are circle bundles of Euler class 1− g.
So they are all isomorphic as circle bundles and in particular their total spaces are all
homeomorphic to each other.

The homeomorphisms lift to equivariant homeomorphisms of the domains of discon-
tinuity. So we see that the actions of the different ρφ(π1Σg) on Ω are all topologically
conjugate to each other.

3.3. Deformations. Although this will not be used in the remainder of the paper, we
consider it worthwhile mentioning that the completely reducible representations are sin-
gular points of the character variety. Namely, it is well-known that the character va-
riety Hom(π1Σg, SL(3, R))//SL(3, R) has dimension 16g − 16 and we will show that at
completely reducible representations the dimension of the Zariski tangent space will be
16g − 14.

We use that the dimension of the Zariski tangent space at semisimple representations
is H1(Γ, Ad ◦ ρ), see [10]. To compute the latter we decompose the Lie algebra SL(3, R)
as

SL(3, R) = SL(2, R) ⊕ R2 ⊕ R2 ⊕ R,

where one R2-summand is spanned by the elementary matrices e12, e23, the other R2-
summand is spanned by e21, e32 and the R-summand is spanned by the diagonal matrix
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diag(−1, 2,−1). The summands of this decomposition are orthogonal with respect to the
Killing form and are preserved under the adjoint action Ad. We note that the action of
Ad on the R-summand is trivial. An explicit computation shows that the action of Ad
on the R2-summands comes from the standard linear action ρst of SL(2, R) on R2. In
particular, the group cohomology decomposes as a direct sum

H1(π1Σg, Ad ◦ ι ◦ ρ0)

= H1(π1Σg, Ad ◦ ρ0) ⊕ H1(π1Σg, R) ⊕ H1(π1Σg, ρst ◦ ρ0) ⊕ H1(π1Σg, ρst ◦ ρ0)

= Tρ0
T (Σg) ⊕ R2g ⊕ H1(π1Σg, ρst ◦ ρ0) ⊕ H1(π1Σg, ρst ◦ ρ0),

where T (Σg) means Teichmüller space and we use that π1Σg acts trivially on R.
The Teichmüller space of Σg has dimension 6g − 6 and H1(Σg, R) has dimension 2g.

A variant of the Hopf trace formula argument shows

dim H0(π1Σg, R
2) − dim H1(π1Σg, R

2) + dim H2(π1Σg, R
2)

= χ(π1Σg)dim(R2) = 4 − 4g.

The action of the cocompact lattice π1Σg ⊂ SL(2, R) on R2 has no nonzero fixed vector,
hence H0(π1Σg, R

2) = (R2)π1Σg = 0 and by Poincaré duality H2(π1Σg, R
2) = 0, thus

dim H1(π1Σg, R
2) = 4g − 4.

Altogether
dim H1(π1Σg, Ad ◦ ι ◦ ρ0) = 16g − 14.

4. Disconnectedness: counting components modulo the mapping class

group action

4.1. Disconnectedness. Barbot and Lee observed that there are at least 22g components
in the space of non-hyperconvex Anosov representations. Their proof proceeds by showing
that given a completely irreducible representation ρ0 as in Section 3.1 all ρφ with φ ∈
H1(Σg; Z/2Z) belong to distinct path components of A. For reader’s convenience, we
here sketch their proof.

The basic reason is that by [9, Proposition 3.2] Anosovness of ρ implies that for all
γ ∈ π1Σg the matrix

ρφ(γ) ∈ SL(3, R)

has three distinct real eigenvalues.
So, decomposing the set of 3 × 3-matrices with real eigenvalues into the two sets

A0 = {A ∈ SL(3, R) : A has 3 positive eigenvalues} ,

A1 = {A ∈ SL(3, R) : A has 1 positive and 2 negative eigenvalues} ,

then each ρ(γ) belongs either to A0 or A1 and there is an assignment

F : A → Map({a1, b1, . . . , ag, bg} , Z/2Z) ≃ (Z/2Z)2g

by assigning for each Anosov representation ρ ∈ A, each k ∈ {0, 1} and each of the
standard generators a1, b1, . . . , ag, bg of π1Σg

F (ρ)(γ) = k ⇐⇒ ρ(γ) ∈ Ak.

(It seems unlikely that F (ρ) is a homomorphism for arbitrary ρ ∈ A, although this is true
for the representations ρφ from Section 3.1.)
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F is surjective because each φ ∈ Map({a1, b1, . . . , ag, bg} , Z/2Z) is realised by the
representation ρφ from Section 3.1. On the other hand, F is constant on components of
A because for a continuous path ρt of representations to SL(3, R), the value of ρt(γ) for
some fixed γ ∈ π1Σg can not switch from A0 to A1 while t is changing continuously. This
proves that A has at least 22g components besides the Hitchin component.

4.2. Action of the mapping class group. The mapping class group MCG(Σg) (i.e., the
group of diffeomorphisms modulo isotopy) of Σg acts canonically on Hom(π1Σg, SL(3, R)).
It obviously maps Anosov representations to Anosov representations, so we can consider
the quotient MCG(Σg)\A and we are going to show that MCG(Σg)\A has at least g + 2
connected components. This subsection is devoted to the proof of the following proposi-
tion.

Proposition 4.1. There are at least g+2 orbits for the action of the mapping class group
MCG(Σg) on π0A.

As in Section 3.1 we fix a representation ρ0 : π1Σg → SL(2, R) ⊂ SL(3, R) and will
consider the finite subset A0 ⊂ A which consists of the representations ρφ for the 22g

different choices of φ ∈ Hom(π1Σg, Z/2Z). We want to show that the elements of A0

belong to g + 1 different orbits of the maping class group. This implies the claim of
Proposition 4.1 because the argument in Section 4.1 shows that all elements of A0 belong
to pairwise distinct components of A (and of course the Hitchin component is preserved
by the maping class group).

First we note that the action of the mapping class group on A0 and on Hom(π1Σg, Z/2Z)
are compatible. Indeed, for f ∈ MCG(Σg) and ρ = ρφ ∈ A0 with φ ∈ Hom(π1Σg, Z/2Z)
and for F ∈ Hom(π1Σg, Z/2Z) we have for any γ ∈ π1Σg

F (f∗ρ)(γ) = F (ρ)(f∗γ)

because F (f∗ρ)(γ) = 0 is equivalent to (f∗ρ)(γ) having three positive eigenvalues, which
is of course equivalent to ρ(f∗γ) having three positive eigenvalues, hence to F (ρ)(f∗γ) = 0.

So the orbits of the mapping class group on A0 are mapped to its orbits on

Hom(π1Σg, Z/2Z) = H1(Σg, Z/2Z).

As noted in Section 4.1 every φ ∈ Hom(π1Σg, Z/2Z) is realised by the representation
ρφ ∈ A0 and thus Proposition 4.1 is a consequence of the following lemma.

Lemma 4.2. There are g + 1 orbits for the action of MCG(Σg) on Hom(π1Σg, Z/2Z).

Proof: It is well-known (and easy to prove) that the intersection form modulo 2

i : H1(Σg, Z/2Z) × H1(Σg, Z/2Z) → Z/2Z

defines a symplectic form on the Z/2Z-vector space H1(Σg, Z/2Z) and that the action of
the mapping class group preserves this symplectic form.

For each
φ ∈ Hom(π1Σg, Z/2Z) = Hom(H1(Σg, Z/2Z), Z/2Z)

we let dφ be the dimension of the maximal symplectic subspace on which φ is constant 0.
This number is invariant under the action of the mapping class group, thus

dφ1
6= dφ2

implies that φ1 and φ2 are not in the same MCG(Σg)-orbit.
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The number dφ can take integer even values in

{0, 2, 4, . . . , 2g} .

We claim that each of these g + 1 values can indeed be realised for some φ. An explicit
realisation for a given d is for example given as follows. Let

a1, b1, . . . , ag, bg

be the standard basis of H1(Σg, Z/2Z) with respect to which the intersection form is given
by the standard symplectic form

i(ak, bl) = δkl, i(ak, al) = i(bk, bl) = 0

for k, l = 1, . . . , g. Then, for a given d ∈ {0, 2, 4, . . . , 2g}, the homomorphism

φd(a1) = φd(b1) = . . . = φ(ad) = φ(bd) = 0,

φd(ad+1) = φd(bd+1) = . . . = φd(ag) = φd(bg) = 1

obviously realises dφ = d.
This part of Lemma 4.2 actually suffices to prove Proposition 4.1 but for completeness

we still show that there are exactly g + 1 orbits for the action of the mapping class group
on Hom(π1Σg, Z/2Z) (and thus that our completely reducible examples yield exactly
g+1 distinct components of MCG(Σg)\A). For this we have to show that any φ ∈
Hom(π1Σg, Z/2Z) is in the MCG(Σg)-orbit of φdφ

, where dφ is the dimension of the
maximal symplectic subspace on which φ is constant 0 and φdφ

is defined as in the
previous paragraph.

By its definition, the symplectic structure i is standard, i.e. decomposes into the
2-dimensional subspaces generated by ak, bk for k = 1, . . . , g. If

φ 6= φdφ
,

then there is some set of 2-dimensional subspaces on which φ does not agree with φd but
is not constant 0. Say these subspaces are generated by

ak1
, bk1

, . . . , akl
, bkl

.

One can find some mapping class which sends ak1
to a1, bk1

to b1, ..., akl
to al, bkl

to
bl, so we can w.l.o.g. assume k1 = 1, . . . , kl = l. (The existence of such a mapping class
follows either from the Dehn-Nielsen Theorem [11], which says that any automorphism
of a surface group is induced by some mapping class, or in this special case also from an
explicit construction.)

For each k ∈ {1, . . . , l} we can apply a Dehn twist to map the restriction of φ to the
restriction of φdφ

. In formula: assume w.l.o.g.

φ(ak) = 0, φ(bk) = 1.

The Dehn twist Dk := Dbk
at bk sends ak to ak + bk and bk to bk. Thus

φ(Dbk
(ak)) = φ(Dbk

(bk)) = 1,

which means
φ(Dbk

(.)) = φdφ
(.)

on the subspace generated by ak, bk. Composition of the Dehn twists D1, . . . , Dl then
yields the wanted result:

φ(Dl . . .D1(h)) = φdφ
(h)
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for all h ∈ H1(Σg, Z/2Z).

Remark: The same argument can be used to show that the lift of the Teichmüller space
to Hom(π1Σg, SL(3, R)) falls into g + 1 components modulo the action of the mapping
class groups.

5. Boundary maps determine Anosov representations - almost always

In Section 3 we have seen distinct Anosov representations with the same boundary
map. In this section we will see that these examples are essentially the only ones for
which the boundary map does not determine the Anosov representation.

Theorem 5.1. Let

ρ1, ρ2 : π1Σg → SL(3, R)

be Anosov representations such that there exists a map

ξ : ∂∞H2 → Flag(RP 2)

satisfying the conditions of (the remark after) Definition 2.1 and equivariant for both,
ρ1 and ρ2. Then either ρ1 = ρ2 or there exists a representation r : π1Σg → SL(2, R), a
homomorphism λ : π1Σg → R \ {0} and some A ∈ PGL(3, R) such that

Aρ1A
−1 = ι ◦ r

Aρ2A
−1 =




λ 0 0
0 1

λ2 0
0 0 λ


 ◦ ι ◦ r,

where ι : SL(2, R) → SL(3, R) = PGL(3, R) is the completely reducible representation from
Section 3.

Proof: Consider an ideal triangulation Υ of Σg, let Υ̃ be the lifted ideal triangulation of

H2 and (after identifying Σ̃g to H2 via some hyperbolic metric) Υ̃0 ⊂ ∂∞H2 its 0-skeleton.
Assume ρ1 6= ρ2, so there is some γ0 ∈ π1Σg with ρ1(γ0) 6= ρ2(γ0). For every vertex

v ∈ Υ̃0 we have ρ1(γ0)ξ(v) = ξ(γ0v) = ρ2(γ0)ξ(v) and thus

ρ−1
1 (γ0)ρ2(γ0) ∈ Stab(ξ(v)).

In particular, for every ideal triangle T = (v0, v1, v2) ∈ Υ̃, ρ−1
1 (γ0)ρ2(γ0) stabilizes the

associated triple of flags (ξ(v0), ξ(v1), ξ(v2)).
By part i) of Definition 2.1 we have that ξ(v) and ξ(w) are transverse for all v, w ∈

Υ̃0. An elementary argument, given in [8, Section 2] shows that every triple of pairwise
transverse flags in RP 2 is in the PGL(3, R)-orbit of one of the following triples:

{(
(e1, e

⊥

3 ), (e3, e
⊥

1 ), (e1 − e2 + e3, (e1 + (1 + X)e2 + Xe3)
⊥

)
, X ∈ R \ {0,−1}

}

((e1, e
⊥

3 ), (e3, e
⊥

1 ), (e1 + e3, (e1 + e2 − e3)
⊥))

((e1, e
⊥

3 ), (e3, e
⊥

1 ), (e1 + e2 + e3, (e1 − e3)
⊥))

(e1, e
⊥

3 ), (e3, e
⊥

1 ), (e1 + e3, (e1 − e3)
⊥)
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One easily checks that the last triple is the only one of these possibilities which has a
nontrivial stabilizer in PGL(3, R). In fact, the stabilizer of a triple in the PGL(3, R)-orbit
of (e1, e

⊥
3 ), (e3, e

⊥
1 ), (e1 + e3, e

⊥
1 − e⊥3 )) is conjugate to








λ 0 0
0 1

λ2 0
0 0 λ


 : λ ∈ R \ {0}



 .

So ρ−1
1 (γ0)ρ2(γ0) ∈ Stab(ξ(v)) \ {id} for every v ∈ Υ̃0 implies that for every ideal

triangle T = (v0, v1, v2) ∈ Υ̃ the associated triple of flags

(ξ(v0), ξ(v1), ξ(v2))

must be in the PGL(3, R)-orbit of

((e1, e
⊥

3 ), (e3, e
⊥

1 ), (e1 + e3, (e1 − e3)
⊥).

In other words, if we denote ξ(vi) = (pi, li) for i = 0, 1, 2, then p2 must be on the line
through p0 and p1 and l2 goes through the intersection point of l0 and l1.

We claim that this implies that all ξ(v), v ∈ Υ̃0 are of the form ξ(v) = (pv, lv) with all
pv lying on the same line l, and all lv intersecting in the same point p. To see this. let

λclosed ⊂ Σg be the union of closed leaves of Υ, let λ̃closed ⊂ H2 its lift to Σ̃g ≃ H2 and

let Ũ be the component of H2 \ λ̃closed containing T . Looking at the dual tree of the ideal

triangulation Υ̃ |eU
we can enumerate its triangles such that each Tk is adjacent to exactly

one triangle Tj with j < k, see the proof of [2, Lemma 21]. Using this enumeration we

see by induction that the claim is true for all vertices of triangles in Ũ . Further this also

applies to the leaves of λ̃closed adjacent to Ũ , because one of their ideal vertices is actually

a vertex of Υ̃ |eU
, while the other ideal vertex is an accumulation point of vertices and so

the claim holds by continuity of ξ. Next we can extend this argument to the components

of H2 \ λ̃closed adjacent to Ũ . Namely, the same argument shows the claim (with a priori
possibly different (p, l)) for all triangles in an adjacent component. But since the (p, l)

agree on both ideal vertices of the leaf in λ̃closed along which they are adjacent, the (p, l)
must actually be the same for both adjacent components, just because there is a unique
line through two points and a unique point common to two lines. Finally we use the dual
tree to the decomposition into components of H2 \ λ̃closed to enumerate these components
such that each Uk is adjacent to exactly one component Uj with j < k, as in the proof of
[2, Lemma 24], so that we can induct on the components and finally get the claim for all
triangles in all components.

Now fix an ideal triangle T = (v0, v1, v2) ∈ Υ̃ and a projective map A ∈ PGL(3, R)
that sends

(ξ(v0), ξ(v1), ξ(v2)) = ((p0, l0), (p1, l1), (p2, l2))

to
((e1, e

⊥

3 ), (e3, e
⊥

1 ), (e1 + e3, e
⊥

1 − e⊥3 )).

The map
Aξ : ∂∞H2 → Flag(RP 2)

is equivariant for Aρ1A
−1 and Aρ2A

−1, and still satisfies the conditions from Definition 2.1.
We note that

Ap = Al0 ∩ Al1 ∩ Al2 = e⊥3 ∩ e⊥1 ∩ (e1 − e3)
⊥ = e2
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and that Al is the line containing Ap0 = e1, Ap1 = e3 and Ap2 = e1 − e3 and thus

Al = e⊥2 .

For each γ ∈ π1Σg, we have (because Υ̃ is defined by lifting Υ) that γT = (γv0, γv1, γv2)

is one of the ideal triangles of Υ̃. Then Aρ1(γ)A−1e1 is the point component of

Aρ1(γ)A−1(Aξ(v0)) = Aξ(γv0)

and thus belongs to e⊥2 . In the same way, Aρ1(γ)A−1e3 is the point component of

Aρ1(γ)A−1(Aξ(v1)) = Aξ(γv1)

and thus belongs to e⊥2 . This shows that Aρ1(γ)A−1 sends e⊥2 to itself. Similarly, consid-
ering the line components, we can show that Aρ1(γ)A−1 sends e2 to itself. Since this is
true for any γ ∈ π1Σg we have that the image of Aρ1A

−1 is in the image of the completely
reducible representation

ι : SL(2, R) → SL(3, R) = PGL(3, R).

The same argument applies to Aρ2A
−1.

Let

r : π1Σg → SL(2, R)

be the representation over which Aρ1A
−1 factors. Then, for each γ ∈ π1Σg, both

Aρ1(γ)A−1 and Aρ2(γ)A−1 send Aξ(T ) to Aξ(γT ) and thus Aρ−1
1 (γ)ρ2(γ)A−1 is in the

stabilizer of

Aξ(T ) = ((e1, e
⊥

3 ), (e3, e
⊥

1 ), (e1 + e3, (e1 − e3)
⊥)).

So there is a unique λ(γ) ∈ R \ {0} with

Aρ−1
1 (γ)ρ2(γ)A−1 =




λ(γ) 0 0
0 1

λ(γ)2 0

0 0 λ(γ)


 ,

from which the claimed formula for Aρ2(γ)A−1 follows.
From the fact that the diagonal matrices of the form Diag(λ, 1

λ2 , λ) commute with
the image of the completely reducible representation ι, one easily concludes that λ is a
homomorphism. Indeed, this follows from the computation




λ(γ1γ2) 0 0
0 1

λ(γ1γ2)2
0

0 0 λ(γ1γ2)


 (ι ◦ r(γ1γ2))

= Aρ2(γ1γ2)A
−1

= Aρ2(γ1)A
−1Aρ2(γ2)A

−1

=




λ(γ1) 0 0
0 1

λ(γ1)2
0

0 0 λ(γ1)


 (ι ◦ r(γ1))




λ(γ2) 0 0
0 1

λ(γ2)2
0

0 0 λ(γ2)


 (ι ◦ r(γ2))

=




λ(γ1) 0 0
0 1

λ(γ1)2
0

0 0 λ(γ1)







λ(γ2) 0 0
0 1

λ(γ2)2 0

0 0 λ(γ2)


 (ι ◦ r(γ1γ2)),
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where the last equality uses the fact that Diag(λ(γ2),
1

λ(γ2)2
, λ(γ2)) commutes with ι◦r(γ1)

and that ι ◦ r is a homomorphism.

It is perhaps worth mentioning that, given a completely reducible Anosov represen-
tation ρ1, not every homomorphism λ will yield an Anosov representation ρ2 as in
Theorem 5.1. Actually, [1, Theorem 4.2] gives a precise condition for the stable norm
of log(λ) to guarantuee that ρ2 also is Anosov.

Let us finally mention that the assumption of Theorem 5.1 can not be weakened to
consider only the boundary map with image in RP 2 or its dual, rather than in Flag(RP 2).
Barbot constructs in [1, Lemma 4.5] a family of (reducible, but not completely reducible)
representations which all have the same boundary map to the dual space of RP 2, however
their boundary maps to RP 2 do not agree. Similarly, one can construct a family of
representations with the same boundary map to RP 2, but their boundary maps to the
dual space and hence to Flag(RP 2) will not agree.

These examples are not Zariski-dense and so they show that the class of representa-
tions determined by their boundary map is strictly larger than the set of Zariski-dense
representations.
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