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Abstract. Let q P C, let

a “
ˆ

1 0
1 1

˙

, bq “

ˆ

1 q
0 1

˙

,

and let Gq ă SL2pCq be the group generated by a and bq. In this paper, we study
the problem of determining when the group Gq is not free for |q| ă 4 rational. We
give a robust computational criterion which allows us to prove that if q “ s{r for
|s| ď 27 then Gq is non-free, with the possible exception of s “ 24. In this latter
case, we prove that the set of denominators r P N for which G24{r is non-free has
natural density 1. For a general numerator s ą 27, we prove that the lower density
of denominators r P N for which Gs{r is non-free has a lower bound

1´
ˆ

1´
11
s

˙ 8
ź

n“1

ˆ

1´
4

s2n´1

˙

.

Finally, we show that for a fixed s, there are arbitrarily long sequences of con-
secutive denominators r such that Gs{r is non-free. The proofs of some of the
results are computer assisted, and Mathematica code has been provided together
with suitable documentation.

1. Introduction

For each q P C, let us write

a “
ˆ

1 0
1 1

˙

, bq “

ˆ

1 q
0 1

˙

,

and write Gq for the subgroup of SL2pCq generated by a and bq.
The group Gq is not infinite cyclic unless q “ 0. It is proved by Sanov [20] and

Brenner [5] that the group Gq is free for all q P Rzp´4, 4q; more strongly, the group
Gq is discrete and free for all q in the Riley slice of the complex plane [13].

In this paper, we study the following conjecture:

Main Conjecture. For each nonzero rational number q “ s{r in p´4, 4q, the group

Gq :“ xa, bqy ď SL2pCq

2010 Mathematics Subject Classification. Primary: 30F35, 30F40; Secondary: 20E05, 11J70.
Key words and phrases. Fuchsian groups, Kleinian groups.

1
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is not free.

Lyndon and Ullman asked this conjecture (as a question) in [17]. This problem
has a long history, and the reader is directed to [9] and to Section 1.2 below for the
state of the art prior to this writing.

Slightly different normalizations have also been considered in the literature. We
may define

Hq “

Bˆ

1 0
q 1

˙

,

ˆ

1 q
0 1

˙F

.

The corresponding question for Hq is attributed to Merzlyakov in the Kourovka
Notebook [12, Problem 15.83]. It is noted in [6] that Hq – Gq2 . In some other
papers such as [6, 9], the group G2q is considered.

Remark 1.1. Under the hypothesis that q is rational and belongs to p´4, 4q, the
group Gq is discrete only if |q| P t0, 1, 2, 3u; see [16].

1.1. Main results. As mentioned above, Gq is free whenever q P Rzp´4, 4q. It is
easy to see that Gq is free if q is transcendental. However, being algebraic is not
sufficient to guarantee non-freeness. As noted in [7], Galois conjugation yields an
isomorphism

G4´
?

2 – G4`
?

2,

the latter of which is indeed free by the result of Sanov and Brenner.

Definition 1.2. We will say q P C is a relation number if Gq is not a rank–two free
group.

A good summary of known results about rational relation numbers can be found
in Theorem 7.7 of [9]. Before stating the results of this paper, we introduce some
terminology. Let F “ xx, yy be a free group of rank two. A complex number q is
called an `–step relation number if there exists a nontrivial word of the form

w “ ym1 xm2 ¨ ¨ ¨ ym2k`1 P F

for some k P r0, `s and mi P Zzt0u such that wpa, bqq is a lower–triangular matrix
in SL2pCq.

It turns out then every relation number is an `–step relation number for some
` ě 0, and vice versa (Lemma 2.1). Actually, if q is an `–step relation number, then
there exists a word v “ vpx, yq P F of syllable length at most 8p` ` 1q such that
vpa, bqq “ 1; see Remark 2.2.

Let X Ď Z be a subset. The (right) upper density of X is given by

dpXq “ lim sup
N

X X r1,Ns
N

.
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The (right) lower density of X is similarly given by

dpXq “ lim inf
N

X X r1,Ns
N

.

If these limits coincide, they are called the (right) natural density of X. Note we
allow X to have negative integers.

Remark 1.3. One may also consider a symmetric (lower or upper) density, which
is a limit (superior or inferior) of pX X r´N,Nsq{p2N ` 1q. For the integer sets
concerned in this paper, all right densities will coincide with symmetric densities,
whence we will simply refer to upper and lower densities when no confusion can
arise. Note in particular that if s{r is an `–step relation number then so is s{p´rq.

Our main results are towards resolving the Main Conjecture. Precisely, we prove
the following:

Theorem 1.4. Let s be a positive integer.
(1) Suppose s ď 27 and s ‰ 24. Then for all but finitely many nonzero integers

r, the number s{r is a 2–step relation number. Moreover, for all nonzero
integer r satisfying s{r P p´4, 4q, the number s{r is a relation number.

(2) If s “ 24, then s{r is a 2–step relation number for all r in some natural
density–one subset of N.

By our previous discussion, the above theorem resolves the Main Conjecture for
all r if s P r1, 27szt24u, and for almost all r if s “ 24. It even asserts that for
a given s ď 27 and for almost all r P N, there exists a nontrivial word of syllable
length at most 24 in Gq that becomes trivial. We note that some parts of the proof are
computer assisted, and we have provided code and documentation in the appendices
below.

For a general s P N, we have the following result which finds a very large number
of relation numbers with a given numerator:

Theorem 1.5. Let s be an integer greater than 27. If we set

Ap2qs :“ tr P Zzt0u | s{r is a 2–step relation numberu,

then we have

d
´

Ap2qs

¯

ě 1´
ˆ

1´
11
s

˙ 8
ź

n“1

ˆ

1´
4

s2n´1

˙

.

It is natural to wonder if d
´

Ap2qs

¯

“ 1. Unfortunately, the sequence ts2n´1uiPN

grows much too quickly, and generally the infinite product in Theorem 1.5 will
converge to real number strictly less than 1 (see Section 6 below). Of course, the
choices of such a sequence can be modified, but it is not clear to the authors that the
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methods given here avail themselves to a suitable choice that witnesses d
´

Ap2qs

¯

“

1.

Question 1.6. For an integer s ą 27, is it true that d
´

Ap2qs

¯

“ 1?

We are able to prove one further result which strongly suggests that the answer
to Question 1.6 is yes, without quite establishing it definitively.

Theorem 1.7. (see Corollary 3.9) Let s, r,N P N. Then there exists an M “

Mps, r,Nq P N such that
s

r ` i` sM j
is a 2–step relation number for all integers 0 ď i ă N and j ‰ 0.

In particular, for a fixed s there are arbitrarily long sequences of consecutive
denominators which give rise to relation numbers of the form s{r. However, such
sequences may possibly be spaced very sparsely within N.

1.2. Notes and references. As noted above, the extent to which Sanov’s result
holds or fails for q P p´4, 4q has a long history. Some of the earliest examples
of non-integral rational relation numbers of q were found by Ree [18]. On the
other hand, many conditions for freeness of Gq were found by Chang–Jennings–
Ree [6]. Many more examples of relation numbers were found in [4, 10, 11, 17, 2].
Connections to diophantine problems, and especially solutions to Pell’s Equation,
were studied in [8, 22, 3]. Discreteness of Gq for a complex parameter q P C
has been extensively studied; see [1, 9] and the references therein. For related
discreteness questions in PSL2pRq, see [15], for instance.

A dynamical interpretation of relation numbers was suggested first by Tan–Tan [22],
and these ideas have been developed in [2, 19, 21].

One may compare the results of this paper to the results outlined in Theorem 7.7
of [9]. We are primarily concerned with groups of the form Gq for |q| ă 1 rational,
whereas the results there are given for groups of the form Hq where q may be non-
rational algebraic. One notes immediately from Theorem 1.4 that we have produced
many new examples of rational relation values of q, and in view of Theorems 1.5
and 1.7, many new infinite families of relation values which do not fall under the
purview of previously known results.

The freeness and non-freeness of the groups Gq has applications to group–based
cryptography and theoretical computer science. See for instance [7].

Finally, a remark about normalizations. We consider the groups tGquqPQ over
the groups tHquqPQ, in spite of the break in symmetry, because the groups tGquqPQ

encompass a larger class of subgroups of SL2pQq and hence give rise to an a priori
richer theory.
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1.3. General strategy and intuition. Our approach to Conjecture 1 is essentially
from first principles. If q is a parameter for which Gq is not free then very ele-
mentary manipulations show that q has to be a root of a polynomial with rational
coefficients. The degrees of these polynomials are related to the simplest nontriv-
ial words in the free group which witness the fact that Gq is not free, where here
complexity is measured in terms of the syllable length of words.

For high degree polynomials, criteria for defining natural families of relation
numbers are difficult to formulate in a way which is concise and amenable to study,
so that we restrict our attention to relatively simple polynomials. From there, we
consider the following question: what conditions on r P Z force s{r to be a relation
number for s P Z fixed?

The answers we propose have to do with the divisibility properties of r modulo
various multiples of s. This leads to many technical definitions (cf. s–good residue
classes in Definition 3.3 below), and the main technical tools (see Lemmata 3.2, 3.5.
and 3.6 below). These tools allow us to declare all sufficiently large elements of
certain residue classes modulo some multiple of s to be relation numbers.

So, to show that s{r is always a relation number for fixed s and r ą s{4, we
begin showing as many residue classes as possible modulo sm consist of relation
numbers, for some nonzero integer m. Then, take the remaining residue classes and
consider their residues modulo sm1 for some multiple m1 of m. Then, the technical
tools allow us to conclude that many of these residue classes modulo sm1 consist of
relation numbers. Through this recursive procedure, more and more values of r are
shown to give relation numbers, and the hope is that the procedure terminates after
finitely many steps.

For s ď 27 and s ‰ 24, we can indeed show that the procedure terminates
in finitely many steps, proving that all the relevant rational parameters with those
numerators are relation numbers. For s “ 24, we cannot show that the procedure
terminates, but we have enough control over the number of residue classes which
are eliminated at each stage to conclude that the set of denominators for which 24{r
is not a relation number has natural density zero. We generalize these ideas to give
lower bounds on the natural density of relation number denominators for arbitrary
numerators.

2. Notation and terminology

Recall we have separately defined a relation number and an `–step relation num-
ber in the introduction. The number q “ 0 is the unique 0–step relation number.
The following lemma (due to Lyndon and Ullman) describes the relationship be-
tween the Main Conjecture and `–step relation numbers.

Lemma 2.1 ([17]). A complex number q is a relation number if and only if it is an
`–step relation number for some ` ě 0.
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Proof. The forward direction is obvious from the fact that the identity matrix is
lower–triangular. For the converse, let w “ wpx, yq be as in Definition ??. Then the
matrix

wpa, bqq ¨ a ¨ wpa, bqq
´1

is lower triangular such that the diagonal entries are 1. It follows that the reduced
word rwxw´1, xs becomes the identity in SL2pCq after setting x “ a and y “ bq. �

Remark 2.2. The syllable length of a nontrivial element g P F is the smallest integer
` ě 0 such that

g “ w1 ¨ ¨ ¨w`

for some wi P xxy Y xyy. The above proof shows that if q is an `–step relation
number then there exists a nontrivial word vpx, yq “ rwxw´1, xs of syllable length
at most 8p` ` 1q such that vpa, bqq “ 1.

From Lemma 2.1, we see that the Main Conjecture has the following diophantine-
type formulation.

Conjecture 2.3. Every rational number in p´4, 4q is an `–step relation number for
some ` ě 0.

Let us describe a notation that will be used often throughout this paper. Let q P C,
and let m1,m2, . . . be a sequence of nonzero integers. We define complex vectors
v1, v2, . . . by setting v1 “ p1, 0q and

vi`1 “ p1, 0qbm1
q am2 ¨ ¨ ¨ pbq or aqmi .

Note that q is an `–step relation number if and only if one can find a sequence
tmiu Ď Zzt0u such that v2k`2 P Cˆ t0u for some k ď `.

As we are only interested in whether or not the second coordinate of vi becoming
zero, we may regard vi as a point in the projective space CP1. In particular, we will
identify px, yq and pnx, nyq for x, y P Z and n P Zzt0u. We will then use the notation

(˚) v1 :“ p1, 0q
m1
� v2

m2
Ñ v3

m3
� ¨ ¨ ¨

m2i
Ñ v2i`1 � ¨ ¨ ¨ .

The nonzero exponents m1,m2, . . . will often be suppressed as well.

Example 2.4. For q “ 1 or q “ 2, we have a sequence

p1, 0q� p1, 2q Ñ p´1, 2q� p´1, 0q “ p1, 0q.

For q “ 3, we see

p1, 0q
1
� p1, 3q ´1

Ñ p´2, 3q
1
� p´2,´3q ´1

Ñ p1,´3q
1
� p1, 0q.

It follows that all integers in the interval r´3, 3s are relation numbers.
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The Main Conjecture can be reformulated in terms of generalized continued frac-
tions. Suppose we have an orbit as above in (˚). Write Q “ 1{q and vi “ pxi, yiq.
Assuming xiyi ‰ 0, we define

qi :“ Qyi{xi “ yi{pqxiq.

Then we have that

qi`1 “

#

Qpyi ` qmixiq{xi “ mi ` qi if 2 ffl i,
Qyi{pxi ` miyiq “ Q{pmi ` Q{qiq if 2 � i.

On the other hand, it is obvious that q is a relation number if xiyi “ 0 for some i,
or if

pxi, yiq “ px j, y jq P CP1

for some i ă j. In summary, we have the following.

Proposition 2.5. Let Q P Czt0u. Then 1{Q is a relation number if and only if there
exists a finite sequence of non-zero integers

m1, . . . ,m`

such that the sequence

ak :“ mk `
Q

mk´1 `
Q

¨ ¨ ¨ `
Q

m2 `
Q
m1

either terminates with a` “ 0 for some ` ě 2, or satisfies a` “ a`1 for some
` ą `1 ě 2.

The Main Conjecture asserts that one has a sequence tmiu as above whenever Q
is a rational number satisfying |Q| ą 1{4.

3. Families of rational relation numbers

In this section, we develop a foundation for producing large collections of ratio-
nal relation numbers in the sequel.

Let us define

RQ :“ tq P Q | q is a relation numberu;

Rp`qQ :“ tq P Q | q is an `–step relation numberu;

Ap`qs :“ tr P Zzt0u | s{r is an `–step relation numberu.

We also let As :“
Ť

`ě0 Ap`qs . Throughout this section, we fix an integer s ą 1.
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3.1. On 1–step relation numbers.

Lemma 3.1. The following hold.

(1) For positive integers ` and n, if q P Rp`qQ , then ˘q{n P Rp`qQ .

(2) For all nonzero integers r, s, t, we have pr ` tq{prstq P Rp1qQ .
(3) For each n P Zzt0u, we have that

1{n, 2{n, 1´ 1{n P Rp1qQ .

Proof. Part (1) is immediate from bq “ pbq{nq
n. For part (2), we let q “ pr` tq{prstq

and compute

p1, 0q r // //
`

1, r`t
st

˘ ´s //
`

´ r
t ,

r`t
st

˘ t // //
`

´ r
t , 0

˘

.

Let us prove part (3). Combining Example 2.4 with part (1) we see that 1{n and
2{n are 1–step relation numbers. By substituting pr, s, tq “ pn, 1,´1q, we see from
part (2) that

1´ 1{n “ ´pr ` tq{prstq
is a 1–step relation number. �

3.2. On 2–step relation numbers. The notation x � y ˘ z means x is a divisor of
either y` z or y´ z. It will be convenient for us to use the notation

px1, x2, . . . , xk ; yq “
ď

1ďiďk

pxi ` yZq.

For instance, we have p5 ; 12q “ 5`12Z, and p˘5 ; 12q “ p5`12ZqYp´5`12Zq.
The following tool is crucial for this paper.

Lemma 3.2. Suppose there exist nonzero integers w,m, y such that

y � m, and w � smy˘ 1.

Then for all r P pw ; smqzt0,˘1,wu we have s{r P Rp2qQ .

In particular, it follows that s{r P p´4, 4q for such an r.

Proof of Lemma 3.2. We will assume that w � smy ´ 1, as the other case follows
similarly. For some u ‰ 0 we have

1 “ wu` smy.

Let us write r “ w` smt for some t ‰ 0, and put v :“ mpy´ utq. Then

1 “ pw` smtqu` smpy´ utq “ ru` sv.

Since |r| ą 1 and u ‰ 0, we see that v ‰ 0.
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After setting q :“ s{r, we have an orbit of xa, bqy as follows.

p1, 0q
ry // // p1, syq

´v{y
// pru, syq

´t // // pru, spy´ utqq

m // p1, spy´ utqq
´rpy´utq

// // p1, 0q.

From rvt ‰ 0, it follows that s{r P Rp2qs . �

Definition 3.3. Let s,w,m be nonzero integers such that s ą 1, and let

D :“ gcdpw, smq, d :“ gcdpw, sq.

We say the set
pw ; smq Ď Z

is an s–good residue class if there is an integer y satisfying the following two con-
ditions:

‚ yD � md;
‚ w � smy˘ D.

In this case, w is called a good representative of pw ; smq.

Example 3.4. (1) The residue class p0 ; sq “ ps ; sq is s–good. Indeed, if we set
w “ s and m “ y “ 1, then

w � sm´ gcdpw, smq “ 0.

Moreover, p0 ; snq “ np0 ; sq is also s–good for n ‰ 0.
(2) If w is a divisor of s ˘ 1, then pw ; sq is s–good. In particular, ˘p1 ; sq is

s–good.
(3) More generally, if w,m, y satisfy the hypothesis of Lemma 3.2, then pw ; smq

is s–good. In this case, we have that gcdpw, smq “ gcdpw, sq “ 1.
(4) Let s “ 25. If we set w “ 9 and m “ y “ 2, then we have

w “ 9 � 99 “ smy´ gcdpw, smq.

Hence, p9 ; 50q is 25–good.

Recall we have fixed s ą 1 in this section. We see that all but at most four
integers in an s–good residue class belong to Ap2qs , which generalizes Lemma 3.2.

Lemma 3.5. If pw ; smq is s–good with a good representative w, then we have that

pw ; smqzt0,w,˘ gcdpw, smqu Ď Ap2qs .
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Proof of Lemma 3.5. Let D and d be as in Definition 3.3. Set w1 “ w{D, s1 “ s{d
and m1 “ md{D. Suppose we have an integer t such that

r :“ w` smt R t0,w,˘Du.

Put r1 :“ r{D “ w1 ` s1m1t. By the s–good hypothesis, some y P Z satisfies

y � m1, and w1 � s1m1y˘ 1.

Moreover, r1 R t0,˘1,w1u. Lemma 3.2 implies that s1{r1 P Rp2qQ . It follows that

s
w` smt

“
s1

r1
¨

1
D{d

P Rp2qQ . �

Let us note one further consequence of Lemma 3.2

Lemma 3.6. Suppose nonzero integers w,m, y satisfy

y � m, and w � smy˘ gcdpw, sq.

Then we have that pw ; smq is s–good and that

pw ; smqzt0,w,˘ gcdpw, squ Ď Ap2qs .

Proof. As in Lemma 3.5, we let D “ gcdpw, smq and d “ gcdpw, sq. From D � w
and from the hypothesis, we have D � d. Indeed, we have

D � w � smy˘ d,

so that since D � sm, we have that d ” 0 pmod Dq. It follows that D “ d and that
pw ; smq is s–good. �

We note that zptxiu ; yq “
Ť

i xiz` yzZ. We also record the following.

Lemma 3.7. If C is an s–good residue class, then so is nC for all n P Zzt0u.

Proof. Let C “ pw ; smq with a good representative w. Then nC “ pnw ; snmq is
also s–good; this follows from gcdpnw, snmq “ |n| ¨ gcdpw, smq. �

Proposition 3.8. Suppose that for each n P Nwe can find a collection of f pnq–many
s–good residue classes whose union contains t1, 2, . . . , nu. Then we have that

d
´

Ap2qs

¯

ě 1´ 2 lim sup
n

f pnq{n.

Proof. By Lemma 3.5, all positive integers in each s–good residue class are in Ap2qs X

N, with at most two exceptions. Hence, we have that

#pAp2qs X r1, nsq{n ě pn´ 2 f pnqq{n. �

Theorem 1.7 is an immediate consequence of this corollary.
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Corollary 3.9. For each finite set Q Ď Z, there is a nonzero integer M such that

Q` sM pZzt0uq Ď Ap2qs .

Proof. For each w P Q, there exists some mw P Zzt0u such that

smw ” gcdpw, sq pmod wq.

By Lemma 3.6 we have that pw ; smwq is w–good and that

w` smw pZzt0uq Ď Ap2qs Y t0,˘ gcdpw, squ.

Note that for each w P Q we have

gcdpw, sq P td P Z | d divides su.

So, for M0 “ lcmtmw | w P Qu we see that

Q` sM0 pZzt0uq Ď
ď

tw` sM0 pZzt0uq | w P Qu

Ď Ap2qs Y t0u Y td P Z | d divides su.

By setting M to be a sufficiently large multiple of M0, we obtain the desired con-
clusion. �

Corollary 3.10. For an integer w in r´4, 4s Y t˘6u, the following hold.
(1) The residue class pw; sq is s–good.
(2) If an integer t satisfies s{pw` stq P p´4, 4q, then s{pw` stq P RQ.

Proof. (1) By Example 3.4, we may only look at the case that w ‰ 0. It suffices
to show that w divides s ˘ gcdpw, sq. We may assume w ffl s and w ffl s ˘ 1, for
otherwise the proof is trivial. Then it only remains to consider the case |w| ě 4.

If |w| “ 4, then our assumption implies that s ” 2 pmod 4q. Then we see that

s´ gcdpw, sq “ s´ 2 ” 0 pmod wq.

Suppose |w| “ 6. Our assumption implies that s ” ˘2 or s ” 3 modulo 6. Then
gcdpw, sq “ 2 or gcdpw, sq “ 3, and we obtain the desired conclusion.

(2) We may assume w ‰ 0. Then the above proof implies that w is a good
representative of pw ; sq. By Lemma 3.5, we have that either

s{pw` stq P Rp2qQ ,

or
w` st P tw,˘ gcdpw, squ Ď r´6, 6s.

It is a simple computational verification that for all nonzero integer u P r´6, 6s
and for all integer s P p´4|u|, 4|u|q the number s{u is a relation number; see Propo-
sition A.2 in Appendix A. This completes the proof that s{pw` stq P RQ. �
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Example 3.11. The above corollary implies that s{p4` stq is a 2–step relation num-
ber for all t P Z satisfying 4` st ‰ 0 and ´4 ă s{p4` stq ă 4.

The following extends Lemma 3.1 (3).

Corollary 3.12. For each nonzero integer n, we have the following:

3{n, 1´ 2{n, 1´ 3{n, 1´ 4{n, 1´ 6{n, 2´ 1{n P RQ Y Z.

Proof. Let n P Zzt0u be arbitrary. We may assume |n| ą 6, for otherwise the proof
is trivial from direct computations; see also Proposition A.2. Since 3 is a relation
number, so is 3{n.

In the case when |w| ď 4 or |w| “ 6, we see from Corollary 3.10 that 1´ w{n “
pn´ wq{pw` pn´ wqq is a relation number.

Let w “ 1´ n and s “ 2n´ 1. Since w � s´ 1, Lemma 3.2 implies that

2´ 1{n “ s{pw` sq P RQ. �

4. Fixed numerators

In this section, we establish the Main Conjecture for rational numbers with nu-
merators less than 28 and that are not 24.

Theorem 4.1. Let r, s be nonzero integers such that |s| ď 27 and |s| ‰ 24. If
q “ s{r P p´4, 4q, then q is a relation number.

We prove Theorem 4.1 for the rest of this section by establishing several claims.
We adopt the convention that variables are always integer–valued unless specified
otherwise.

Lemma 4.2. For each integer s P r1, 11s Y t14, 15u, we have that

tw P Z | gcdpw, sq “ 1u “
ď

tpw ; sq | w divides s˘ 1u.

Proof. If s “ 7 then we see that

tw P Z | gcdpw, 7q “ 1u “ p˘1,˘2,˘3 ; 7q “
ď

tpw ; sq | w divides 6u.

For another example, if s “ 11, then we have

p˘1,˘2,˘3,˘4,˘5 ; 11q “
ď

tpw ; 11q P Z | w divides 10 or 12u.

The other values of s can be treated similarly, so we omit the details. �

Lemma 4.3. Suppose an integer s satisfies 2 ď s ď 27 and s ‰ 24.
(1) Then there exists a finite collection of s–good residue classes

tpwi ; smiqu

whose union contains all integers that are relatively prime to s; moreover,
we can require that mi � 60.
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(2) In part (1), we can further require that
ď

i

twi,˘ gcdpwi, smiqu Ď As Y r´s{4, s{4s.

The requirement that mi � 60 in Part (1) of Lemma 4.3 serves to illustrate the
relatively short search that is required to find the desired s–good residue classes. In
order to establish that the set of integers that are relatively prime to s is contained
in some union of s–good residue classes, one may need to exhibit a large number of
s–good residue classes with moduli which are very big compared to s, and possibly
even unbounded. The lemma shows that for small values of s different from 24,
such large moduli are not required.

We note one consequence of Part (2). Suppose r is an integer relatively prime to
s. Then r belongs to pwi ; smiq for some i by Part (1). Lemma 3.5 implies that either
s{r is a 2–step relation number or

r P twi,˘ gcdpwi, smiqu.

In this latter case, as long as s{r avoids the obvious obstruction that |s{r| ě 4, we
will have that s{r is a relation number. This point will be crucial in the proof of
Theorem 4.1 given at the end of this section.

Sketch of the proof of Lemma 4.3. This lemma is a consequence of Proposition B.1
(1) in Appendix. For illustration, we will give more hands-on explanation here and
leave the computational details to Appendix.

Let us set

Xs :“ tr P Z | gcdpr, sq “ 1 and r ı w pmod sq for all divisor w of s˘ 1u .

For part (1), it suffices to find a finite collection of s–good residue classes whose
union contains Xs; for, once such a collection is found then we can additionally
include pw ; sq for all divisor w of s˘ 1. Here, we are using Lemma 3.6 in the case
m “ 1 and y “ 1. By Lemma 4.2, we may assume s ą 11 and s R t14, 15u.

In each case, we will find a list of pairs ppw ; smq, yq that satisfy the conditions of
Definition 3.3; we may say y is the “certificate” for the s–goodness of pw ; smq. We
only illustrate the proof for s “ 12 and s “ 21.

Case s “ 12: Note that Xs “ p˘5 ; 12q “ p˘5,˘7 ; 24q. Then the following is
the desired list of pairs ppw ; smq, yq:

pp˘5 ; 24q, 1q, pp˘7 ; 24q, 2q.

This notation is actually an abbreviation of the list

pp5 ; 24q, 1q, pp´5 ; 24q, 1q, pp7 ; 24q, 2q, pp´7 ; 24q, 2q.
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Case s “ 21: We have Xs “ p˘8 ; 21q. We compute as follows.

p˘8 ; 21q “ p˘8,˘29,˘13 ; 63q,

p˘29 ; 63q “ p˘29,˘34 ; 126q “ p˘29 ; 126q Y 2p˘17 ; 63q,

p˘13 ; 63q “ p˘13,˘50 ; 126q “ p˘13 ; 126q Y 2p˘25 ; 63q,

Xs “ p˘8 ; 63q Y p˘13,˘29 ; 126q Y 2p˘17,˘25 ; 63q

Ď p˘8 ; 63q Y p˘13,˘29 ; 126q Y 2p˘4 ; 21q

Since p˘4 ; 21q is s–good, so is 2p˘4 ; 21q; see Lemma 3.7. The following is the
desired list of pairs:

p2p˘4 ; sq, 1q, pp˘8 ; 3sq, 1q, pp˘13 ; 6sq, 3q, pp˘29 ; 6sq, 3q.

See Proposition B.1 for other cases of s and for more details.
For part (2), recall that an s–good residue class pw ; smq contains at most three

nonzero integers
w, gcdpw, smq, ´ gcdpw, smq

that are possibly not in Ap2qs . We collect such possible exceptions and individually
verify that each one belongs to As as long as |s{r| ă 4. This is also done in the
proof of Proposition B.1. �

Proof of Theorem 4.1. We may assume that s ą 0. We have noted after the proof
of Lemma 4.3 that if gcdpr, sq “ 1, then r P As.

Let us now assume d :“ gcdpr, sq ą 1. Put r1 “ r{d and

s1 “ s{d ď s{2 ď 27{2.

Since gcdpr1, s1q “ 1 and s1 ď 13, we see from the previous paragraph that s{r “
s1{r1 is a relation number. �

5. The case s “ 24

In this section, we will deduce Theorem 1.4 (2) by proving the following.

Theorem 5.1. Let s “ 24. Then there exists a sequence of pairs of integers

tpai, biquiě0

such that for each i ě 0 and for Mi “ 1680 ¨ 3i, every integer x satisfies at least one
of the following:

(A) We have px ; sMiq Ď p˘ai,˘bi ; sMiq;
(B) We have px ; smq is an s–good residue class for some m dividing Mi.
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Proof of Theorem 1.4 (2) from Theorem 5.1. Let s “ 24, and let i ě 0. Recall from
Lemma 3.5 that all but at most four integers in each s–good residue class belong to
Ap2qs . Hence, Theorem 5.1 implies that

d
´

ZzAp2qs

¯

ď d
´

p˘ai,˘bi ; sMiqzA
p2q
s

¯

ď dp˘ai,˘bi ; sMiq ď 4{psMiq.

By sending i Ñ 8, we see that ZzAp2qs has density zero. �

Remark 5.2. A crucial point for the proof of Theorem 1.4 (2) is the choice of
Mi “ 1680 ¨ 3i as given in Theorem 5.1. Through a long sequence of trials, errors,
and searches by brute force, the authors discovered that the number of non-s–good
residue classes modulo sm is constant for the choice s “ 24 and m “ Mi. More
precisely, the authors use Mathematica to enumerate the number of non-s–good
residue classes modulo st1t2 ¨ ¨ ¨ tk for various choices of k and ti P r2, 7s. Then it
was finally observed that the choices

pt1, t2, t3, . . .q “ p4, 3, 5, 7, 4, 3, 3, . . .q

eventually stabilizes the number of non-s–good residue classes. Hence, a suitable
modulus to consider is

4 ¨ 3 ¨ 5 ¨ 7 ¨ 4 ¨ 3 ¨ 3 ¨ ¨ ¨ “ 1680 ¨ 3i.

As we see below, the justification of this observation will require some arithmetic
analysis on the list of non-s–good residue classes for each modulus sMi.

In the remainder of this section, we prove Theorem 5.1. A key observation is that
the (possibly non-s–good) residue classes

p˘ai,˘bi ; sMiq

can be expressed by some period–eight sequence tziu.
To be more precise, let us define integer sequences tziu and tδiu determined by

the following conditions.
‚ z0 “ 1;
‚ zi ” δi pmod 3q and δi P t´1, 0, 1u for each i ě 0;
‚ zi`1 “ pzi ` 32δiq{3.

Lemma 5.3. For each i ě 0 and for each δ P t´1, 0, 1uztδiu, we have that

zi ` 32δ Ď p˘1,˘5 ; 12q.

Proof. By the nature of the given recursion, the sequences tziu and tδiu must be
periodic. So, one can verify the lemma by brute force. Actually, those sequences
have period eight; see Table 1. �



16 S. KIM AND T. KOBERDA

i δi zi, zi ` 32, zi ´ 32 zi ` 32δi i δi zi, zi ` 32, zi ´ 32 zi ` 32δi

0 1 1,33,-31 33 4 0 -15,17,-47 -15
1 -1 11,53,-21 -21 5 1 -5,27,-37 27
2 -1 -7,25,-39 -39 6 0 9,41,-23 9
3 -1 -13,19,-45 -45 7 0 3,35,-29 3

Table 1. Proof of Lemma 5.3

We can now define the desired sequences tai, biuiě0 as follows.

ai “ 1` 1260 ¨ 3izi,

bi “ 1` 1260 ¨ 3izi`5.

A major computational step of the proof is the following lemma.

Lemma 5.4. For each i ě 0, the following hold.
(1) ai`1 “ ai ` δisMi and bi`1 “ bi ` δi`5sMi

(2) If
δ P t´1, 0, 1uztδiu

then there exists a divisor m of Mi`1 such that

pai ` δsMi ; smq

is s–good.
(3) If

δ P t´1, 0, 1uztδi`5u

then there exists a divisor m of Mi`1 such that

pbi ` δsMi ; smq

is s–good.

Proof. (1) Note that

1260 “ 35 ¨ 36, 1680s “ 35 ¨ 36 ¨ 32.

We see from the definitions of tziu and tδiu preceding Lemma 5.3 that

ai ` δisMi ´ ai`1 “ 1260 ¨ 3izi ` 1680s ¨ 3iδi ´ 1260 ¨ 3i`1zi`1

“ 35 ¨ 36 ¨ 3i
pzi ` 32δi ´ 3zi`1q “ 0.

bi ` δi`5sMi ´ bi`1 “ 1260 ¨ 3izi`5 ` 1680s ¨ 3iδi`5 ´ 1260 ¨ 3i`1zi`6 “ 0.

(2) We saw in Lemma 5.3 that

zi ` 32δ “ 12p` c
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for some p P Z and c P t˘1,˘5u. Put m “ 18c ¨ 3i, so that m � Mi`1. Then

pai ` δsMi ´ 1` 2mq{psmq “ 3i
p1260zi ` 1680sδ` 36cq{p3i

¨ 36 ¨ 12cq

“ p35pzi ` 32δq ` cq{p12cq “ p35 ¨ p12p` cq ` cq{p12cq “ p35{cqp` 3 P Z.

So, we have that
ai ` δsMi ” 1´ 2m pmod smq.

Note that
1´ 2m � 4m2

´ 1 “ s ¨ m ¨ pm{6q ´ 1.
By setting y “ m{6 in Definition 3.3 (or, Example 3.4 (3)), we see that

pai ` δsMi ; smq “ p1´ 2m ; smq

is an s–good residue class.
(3) The proof is essentially the same, after replacing pai, δiq by pbi, δi`5q. �

Proof of Theorem 5.1. We use induction. The base case i “ 0 is a consequence of
Proposition B.1 in Appendix, where a computer–assisted proof is given. Namely,
we may set

a0 “ 1261, b0 “ ´6299.
Let us now assume the conclusion for some i ě 0. To obtain a contradiction, we

also assume that neither of the alternatives (A) or (B) holds for the index i and for
some fixed positive integer x.

In the case when
x R p˘ai,˘bi ; sMiq,

we see from the inductive hypothesis that px ; smq is s–good for some m � Mi. Since
Mi � Mi`1, the alternative (A) holds for the index i` 1, we are done with this case.

We will now consider the case that

x P p˘ai,˘bi ; sMiq.

Let us first suppose

x P pai ; sMiq “ pai ´ sMi, ai, ai ` sMi ; sMi`1q.

Then we have x P pai ` sδMi ; sMi`1q for some δ P t´1, 0, 1u. If δ “ δi, then
Lemma 5.4 implies that

x P pai ` δisMi ; sMi`1q “ pai`1 ; sMi`1q,

and that the alternative (A) for the index i ` 1 is satisfied. If δ ‰ δi, then the same
lemma implies that x satisfies the alternative (B) for the index i`1. This completes
the proof for the case x P pai ; sMiq.

By applying the same argument to the residue classes

´pai ; sMiq, pbi ; sMiq, ´pai ; sMiq
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we obtain the desired conclusion for i` 1. �

6. General density estimates

In this section we establish Theorem 1.5, which we do by an averaging argument.
The general strategy is as follows: suppose X Ď NˆN, with horizontal and vertical
sections Hi “ ty | py, iq P Xu and Vi “ tz | pi, zq P Xu respectively. One is inter-
ested in estimating the density in N of the horizontal sections Hi of X from below,
but these may be difficult to compute. However, one may have better methods for
computing the vertical sections Vi of X. So, one truncates Nˆ N to r1,Hs ˆ r1,Vs
for some suitably chosen large values of H and V , and one adds up the sizes of the
vertical sections Vi of X restricted to i “ r1,Hs. Dividing by V gives the average
size of a vertical section of X.

In more specific terms, we fix a numerator s and a large multiple sm of s, which
serves as the truncation V above. One then enumerates residue classes modulo sm
which are not contained in s–good residue classes (subject to some further con-
straints to make calculations more tractable), and the number ` of these serves as
the truncation H. The number–theoretic lemmata developed earlier allow us to then
estimate the density of non–relation numbers of the form s{r. We now make this
approach precise.

Fix s ě 28. In what follows, we recursively construct an increasing sequence
tmnuně0 such that the set

Bn :“ tpw ; smnq|pw ; smnq is not contained in an s–good residue classu

has a small density. Then, we apply Lemma 3.5 to see that

d
´

Ap2qs

¯

ě 1´ #Bn{psmnq.

We begin by setting m0 “ 1. By Corollary 3.10, we see that

pw ; sq R B0

for |w| ď 4 or |w| “ 6. In particular,

#B0{psm0q ď 1´ 11{s.

Suppose we have constructed mn P N. For brevity, let us write

m :“ mn, Bn “ tpw1 ; smq, . . . , pw` ; smqu, vi :“ gcdpwi, smq

for some ` ą 0. We may choose wi in the set p´sm{2, sm{2s such that

wi R t0,˘1,˘2,˘3,˘4,˘6u.

We define

Z :“ tpi, xq | i P r1, `s and x P r1, sms such that smx ” ˘vi pmod wiqu.
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Let Yi :“ Z X ptiu ˆ Zq. We begin by establishing the following.

Claim 1. The following hold.
(1) For each pi, xq P Z the residue class pwi ; smxq is s–good.
(2) If pi, xq and p j, xq are distinct elements of Z, then the residue classes pwi ; smxq

and pw j ; smxq are distinct as well.
(3) For each i P r1, `s, the cardinality of Yi is at least four.

Proof of Claim 1. (1) If pi, xq P Z, then gcdpwi, smxq “ vi. Applying Definition 3.3
after replacing m by mx, setting y “ 1, and writing D “ vi, we have wi � smx ˘ vi,
whence we may conclude that pwi ; smxq is s–good.

(2) This is becase wi ı w j pmod smq.
(3) Suppose first that wi ffl 2vi. Then the modular arithmetic equation

smx ” vi pmod wiq

has a unique solution modulo wi{vi. Similarly, smx ” ´vi has a unique solution as
well. Since vi ı ´vi pmod wiq, we have that

#Yi ě 2
Z

sm
|wi{vi|

^

ě 2
Z

sm
sm{2

^

“ 4.

If wi � 2vi, then wi{vi “ ˘2 or ˘1. So, we have

#Yi ě

Y sm
2

]

ě
28
2
ą 4. �

By applying Claim 1 and averaging x over r1, `s, we can find some X P r1, sms
such that the number of distinct s–good residue classes in the set

tpwi ; smXquiPr1,`s

is at least
#Z{sm ě

ÿ

i

#Yi{sm ě 4`{sm.

To make the recursion deterministic, we pick the smallest such X.
We now define xn :“ X and mn`1 “ mnxn. The set Bn`1 is contained in the set

tpwi ` smk ; smXq | i P r1, `s and k P r0, Xqu.

In the set above, at least 4`{sm residue classes are s–good. It follows that

#Bn`1

smn`1
ď

1
smX

ˆ

`X ´
4`
sm

˙

“
#Bn

smn

ˆ

1´
4

smn`1

˙

Summing up, we have that

d̄
´

ZzAp2qs

¯

ď lim inf
nÑ8

#Bn

smn
ď

ˆ

1´
11
s

˙ 8
ź

n“1

ˆ

1´
4

smn

˙

.
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From the inequality xn´1 ď smn´1, we have that

mn “ smn´1xn´1 ď s2m2
n´1 ď ¨ ¨ ¨ ď s2`4`¨¨¨`2n

m2n

0 “ s2n´2.

Hence, the theorem follows. �
As remarked in the introduction, Theorem 1.5 does not quite show that Ap2qs has

natural density 1, but the infinite product does give a significant improvement to the
density estimate. As a particular example, we consider the case s “ 28. We have
that

ˆ

1´
11
28

˙

“
17
28
« 0.6071428571.

The infinite product converges very quickly, and multiplying it out up to n “ 4
yields
ˆ

1´
11
28

˙ˆ

1´
4

28

˙ˆ

1´
4

283

˙ˆ

1´
4

287

˙ˆ

1´
4

2815

˙

« 0.5203133366.

Similarly, for s “ 29 we obtain the estimates 0.6206896552 and 0.5349895317,
respectively. For s “ 30, we obtain the estimates 0.6333333333 and 0.5488075719,
respectively.

Appendix A. Certifying s{r is a relation number

In this appendix, we give a detailed description of the algorithms used in the pa-
per. The Mathematica code implementing such algorithms, as well as the relevant
outputs of those code, are available for download as an ancillary file (relnum-v2.pdf)
with the arXiv version of this paper [14] and also on the authors’ respective web-
sites.

Conceptually, for each orbit point pxi, yiq Algorithm 1 determines the next orbit
point pxi`1, yi`1q, so that either |xi`1| or |yi`1| is minimized (depending on the parity
of i) over all possible choices. This algorithm is inspired by [17, 22].

To be more precise, let x, y P Zzt0u. Setting t “ x ´ ytx{yu, we define a shifted
remainder of x by y as

SRpx, yq :“

$

’

&

’

%

t, if t “ x` y,
t, if t ‰ x and |t| ď |y|{2,
t ´ y, otherwise

Note that
|SRpx, yq| “ mint|x` yk| : k ‰ 0u.

We also let

signpxq :“

#

1, if x ě 0,
´1, otherwise.
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The function RelNumps, r,Mq given in Algorithm 1 can determine (when it suc-
ceeds) that a given number s{r is a relation number under M iterations. This algo-
rithm begins with the moves

p1, 0q “ pr, 0q
1
� pr, sq Ñ pSRpr, sq, sq “ prSRpr, sq, rsq

´1
� prSRpr, sq, spr ´ SRpr, sqq “: px0, sy0q.

Using the variables d “ gcdpx2, y1q and σ “ signpx2q, we then define

pxi, syiq Ñ pSRpxi, syiq, syiq “ px1, syiq “ prx1, rsyiq� prx1, s ¨ SRpryi, x1qq

“ px2, sy1q “ px2σ{d, sy1σ{dq “ pxi`1, yi`1q.

The function RelNumps, r,Mq returns True if the orbits tpxi, yiqu becomes pe-
riodic (up to changing the sign of yi), or if xiyipxi ´ 1q “ 0 for some i ď M. In
this case, we see that s{r is a relation number; see Proposition 2.5. Otherwise, the
algorithm returns False, and is inconclusive.

Algorithm 1 Certifying q “ s{r P RQ by shifted remainders

1: function RelNum(s, r,M)
2: if |s{r| ě 4 or gcdps, rq ‰ 1 or r P Z then
3: Print(“known cases”) and return Null
4: i Ð 0, x0 Ð r, y0 Ð pr ´ SRpr, sqq{s, flag Ð False
5: if y0 “ 0 then flagÐ True
6: while i ă M and flag“False do
7: x Ð xi and y Ð yi

8: x1 Ð SRpx, syq
9: y1 Ð SRpry, x1q and x2 Ð rx1

10: d Ð gcdpx2, y1q and σ “ signpx2q
11: if d‰ 0 then
12: x Ð x2σ{d and y Ð y1σ{d
13: else
14: x Ð x2σ and y Ð y1σ
15: if xypx´ 1q “ 0 or px, yq “ px j,˘y jq for D j ă i then
16: flagÐTrue
17: i Ð i` 1
18: xi Ð x and yi Ð y
19: return flag
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Let us now consider a (typically slower) variation of Algorithm 1. Again, for a
given pxi, yiq this algorithm tries to find a sequence

pxi, yiq� pxi`1, yi`1q Ñ pxi`2, yi`2q

so that |xi`2| is minimized among possible choices.
To be precise, for nonzero integers a, b, c satisfying a, c ą 0 and a ffl b, we write

pu, vq “ Min3pa, b, cq,

where u and v are nonzero integers minimizing the value

|pau` bqv` c|.

We consider an arbitrary choice if such a pair pu, vq is not unique. Then Algorithm 2
attempts to find an orbit coming from the moves

px, syq “ prx, rsyq� prx, spry` uxqq Ñ prx` spry` uxqv, spry` uxqq “ px1, sy1q,

while minimizing the value of |x1| “ |psx ¨ u` sryq ¨ v` rx| in each step by setting

pu, vq “ Min3psx, sry, rxq.

So, RelNumMinps, r,Mq functions exactly as RelNumps, r,Mq, except that it uses
Algorithm 2.

The following conjecture would imply the Main Conjecture.

Conjecture A.1. For all s, r P N satisfying s{r ă 4, there exists M ą 0 such that
RelNumps, r,Mq “ True or RelNumMinps, r,Mq “ True.

Using these algorithms, we prove the following.

Proposition A.2. Let s and r be positive integers such that s{r ă 4.
(1) If r ď 8, then s{r is a relation number.
(2) If s ď 30 and s{r ě 1{10, then s{r is a relation number.

Proof. By induction, it suffices to consider the case when gcdps, rq “ 1.
For part (1), we use the Mathematica to compute the value RelNumps, r, 5000q

for each 2 ď r ď 8 and 2 ď s ď 4r ´ 1. The result shows that all rational numbers
s{r in this range are relation numbers, and that this can be verified under 5000
iterations with Algorithm 1. We also remark that

35{9, 39{10

are inconclusive under 5000 iterations.
For part (2), we again apply the function RelNumps, r, 5000q for each 2 ď s ď 30

and 2 ď r ď 10s. The output says that all rational numbers s{r in this range are
relation numbers possibly except for

28{17, 29{17.
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Algorithm 2 Certifying q “ s{r P RQ by minimizing coordinates

1: function RelNumMin(s, r,M)
2: if |s{r| ě 4 or gcdps, rq ‰ 1 or r P Z then
3: Print(“known cases”) and return Null
4: i Ð 0, x Ð SRpr, sq, y Ð pr ´ SRpr, sqq{s, flag Ð False
5: if y0 “ 0 then flagÐ True
6: x0 Ð signpxqx and y0 Ð signpxqy
7: while i ă M and flag“False do
8: x Ð xi and y Ð yi

9: pu, vq Ð Min3psx, sry, rxq
10: x1 Ð rx` spry` uxqv and y1 Ð ry` ux
11: d Ð gcdpx1, y1q and σ “ signpx1q
12: if d‰ 0 then
13: x Ð x1σ{d and y Ð y1σ{d
14: else
15: x Ð x1σ and y Ð y1σ
16: if xypx´ 1q “ 0 or px, yq “ px j,˘y jq for D j ă i then
17: flagÐTrue
18: i Ð i` 1
19: xi Ð x and yi Ð y
20: return flag

For the above two rational numbers, we then apply Algorithm 2. The output
of the second algorithm then tells us that these two numbers are indeed relation
numbers. For instance, when s{r “ 29{17 this second algorithm finds a sequence

p17, 29q “ p´17,´29q Ñ p12,´29q “ p12 ¨ 17,´29 ¨ 17q

� p12 ¨ 17, 29p´17` 12 ¨ 2qq “ p204, 203q Ñ p1, 203q.

So, we are done. �

Appendix B. Certifying Z is a finite union of s–good residue classes

Proposition B.1. Let s be a positive integer in r2, 27s.
(1) If s ‰ 24, then there exists a finite collection of s–good residue classes

tpwi ; smiqu1ďiďk

whose union is Z, such that

(**)
ď

1ďiďk

twi,˘ gcdpwi, smiqu Ď As Y r´s{4, s{4s.
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Moreover, we can require that mi � 60.
(2) If s “ 24, then every integer x satisfies at least one of the following.

(A) we have that px ; 1680sq Ď p˘1261,˘6299 ; 1680sq;
(B) we have that px ; smq is an s–good residue class for some m dividing

1680.

Proof. (1) By induction, it suffices to find a finite collection Fs “ tpwi ; smiqui of
s–good residue classes containing

Ys “ tx P N | gcdpx, sq “ 1u

such that (**) holds.
If s ď 11, then we simply choose the collection

Fs “ tpx ; sq | gcdpx, sq “ 1 and 1 ď x ă su.

From Lemma 4.2, each residue class in the above collection is s–good. Moreover,
whenever 1 ď x ă s we have that x P As by Proposition A.2. This completes the
proof for s ď 11.

Let s ě 12. Let us list a specific sequence t12, t13, . . . as follows.

t12 “ 2, 2, 2, 2, 2, 3, 6, 2, 4, 6, 12, 12, 1680, 6, 60, t27 “ 60.

In particular, t24 “ 1680; see Remark 5.2 regarding the choice of t24.
Except for the case s “ 24, this sequence ttsu is found by brute force in the range

ts P r2, 60s until the set Z is completely covered by s–good residue classes. More
precisely, the number ts satisfies the following claim.

Claim 1. Let s P r12, 27s and s ‰ 24. Then for each w P r1, stsq satisfying
gcdpw, sq “ 1, there exist integers w1,m, y such that the following hold:

(i) y � m and m � ts;
(ii) w1 ” ˘w pmod smq;

(iii) smy ” ˘ gcdpw1, smq pmod w1q;
(iv) w1, gcdpw1, smq P As Y r´s{4, s{4s.

The claim again can be proved by a brute force search, as illustrated in the an-
cillary file. This search is successful in the finite range |w1| ď |w| and y � m and
m � ts.

Once the claim is proved, note that Parts (i) through (iii), along with Lemma 3.5,
imply each element r in the residue class pw ; stsq belongs to Ap2qs with possible
exceptions of

r P t0,w1,˘ gcdpw1, smqu.

In these exceptional cases, Parts (iv) implies that r P As unless |s{r| ą 4. In
particular, Part (1) is proved.
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For Part (2), we again run the same algorithm for s “ 24 as in Part (1). We then
observe that Parts (i) through (iv) of the above claim holds as long as

w R t1261, 6299, 34021, 39059u.

This implies Part (2). �
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25 (1993), no. 6, 527–532. MR1245077

[4] J. L. Brenner, R. A. MacLeod, and D. D. Olesky, Non-free groups generated by two 2 ˆ 2
matrices, Canad. J. Math. 27 (1975), 237–245. MR0372042
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