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We consider groups defined by graphs. These include right-angled Artin groups,

right-angled Coxeter groups, and more generally, graph products of groups. We

define an operation on finite graphs, called co-contraction. By showing that co-

contraction of a graph induces an injective map between graph products of groups,

we exhibit a family of graphs, without any induced cycle of length at least 5, such

that the graph products of any non-trivial groups on those graphs contain hyperbolic

surface groups. By applying this to the special case of right-angled Artin groups, we

answer a question raised by Gordon, Long and Reid negatively.

We also give a family of right-angled Artin groups that do not contain hyperbolic

surface groups. Let A(Γ) denote the right-angled Artin group defined by a graph Γ.

Using transversality, any π1-injective map from a compact surface S to the standard

Eilenberg-MacLane space XΓ of A(Γ) can be realized as a cubical map for some

cubical structure on S. We examine the transversely oriented simple closed curves

and the properly embedded arcs dual to this cubical structure. As a result, we prove
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that A(Γ) does not contain a hyperbolic surface group for each Γ in an inductively

defined family F of graphs. F is shown to contain each chordal graph, as well as

each bipartite graph without any induced cycle of length at least 5.
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Chapter 1

Introduction

1.1 Background

By a graph we mean a finite graph without loops and without multi-edges.

A right-angled Artin group is a group defined by a presentation with a finite gener-

ating set, where the relators are certain commutators between the generators. If one

assumes that each generator is an involution as well, we obtain a presentation for a

right-angled Coxeter group. Such a presentation naturally determines the underlying

graph, where the vertices correspond to the generators and the edges to the pairs of

commuting generators. More generally, if a group G has a presentation such that the

generating set consists of non-trivial elements of groups indexed by the vertex set of

a given graph Γ, and the relators are the commutators of a pair of generators which

lie in two different groups indexed by an adjacent pair of vertices in Γ, as well as

the multiplication relators in each vertex group, then G is called the graph product

of groups over Γ.

6



CHAPTER 1. INTRODUCTION 7

In this thesis, we study the properties of graph products of groups. The definition

of graph products of groups is due to [Gre90], as well as the normal form theorem.

In [HW99], linearity and residually finiteness properties of certain graph products

are proved, using van Kampen diagrams as a geometric tool. Also, the uniqueness of

graph product presentation for a given group is known for several cases ( [Dro87b,

Gre90, Rad03]).

As a special case of graph products of groups, we will mainly focus on right-angled

Artin groups. It is known that the isomorphism type of a right-angled Artin group

uniquely determines the isomorphism type of the underlying graph [Dro87b, KMLNR80].

Also, right-angled Artin groups possess various group theoretic properties. To name a

few, right-angled Artin groups are linear [Hum94, HW99, DJ00], biorderable [DT92],

biautomatic [Wyk94] and moreover, admitting free and cocompact actions on finite-

dimensional CAT(0) cube complexes [CD95, MW95, NR98].

On the other hand, it is interesting to ask what we can say about the isomorphism

type of the underlying graph, if a right-angled Artin group satisfies a given group

theoretic property. Let Γ be a graph. We denote the vertex set and the edge set

of Γ by V (Γ) and E(Γ), respectively. The complement graph of Γ is the graph Γ

defined by V (Γ) = V (Γ) and E(Γ) = {{p, q} : p, q ∈ V (Γ) and {p, q} 6∈ E(Γ)}. For

a subset S of V (Γ) the induced subgraph on S, denoted by ΓS, is defined to be the

maximal subgraph of Γ with the vertex set S. This implies that V (ΓS) = S and

E(ΓS) = {{p, q} : p, q ∈ S and {p, q} ∈ E(Γ)}. If Λ is another graph, an induced Λ

in Γ means an induced subgraph isomorphic to Λ in Γ. Cn denotes the cycle of length

n. That is, V (Cn) is a set of n vertices, say {q1, q2, . . . , qn}, and E(Cn) consists of
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the edges {qi, qj} where |i − j| ≡ 1 (mod n). Let A(Γ) be the right-angled Artin

group with its underlying graph Γ. Then, the following are true.

• A(Γ) is coherent, if and only if Γ is chordal, i.e. Γ does not contain an in-

duced Cn for any n ≥ 4 [Dro87a]. This happens if and only if [A(Γ), A(Γ)] is

free [SDS89].

• A(Γ) is a virtually 3-manifold group, if and only if each connected component

of Γ is a tree or a triangle [Dro87a, Gor04]

• A(Γ) is subgroup separable, if and only if no induced subgraph of Γ is a square

or a path of length 3 [MR]. This happens if and only if every subgroup of A(Γ)

is also a right-angled Artin group [Dro87c].

In particular, we note

Theorem 1.1 ([SDS89]). A(Γ) contains a hyperbolic surface group, i.e. the funda-

mental group of a closed, hyperbolic surface, if there exists an induced Cn for some

n ≥ 5 in Γ.

The question of whether a given group contains a hyperbolic surface group turns out

to be important in several contexts. A famous question of this type is the surface

subgroup conjecture, which asks whether a closed hyperbolic 3-mainfold group always

contains a hyperbolic surface group. If a hyperbolic 3-manifold group is LERF in

the sense of [Sco78], then an affirmative to this conjecture would imply that such a

hyperbolic 3-manifold is virtually Haken.

Also, Gromov raised the question of whether any 1-ended word-hyperbolic linear
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group contains a hyperbolic surface group. In [GLR04], Gordon, Long and Reid

proved that a word-hyperbolic (not necessarily right-angled) Coxeter group either

is virtually-free or contains a hyperbolic surface group, settling the conjecture of

Gromov for the case of Coxeter groups. They also showed that certain (again, not

necessarily right-angled) Artin groups do not contain a hyperbolic surface group,

raising the following question.

Question 1.2. Does A(Γ) contain a hyperbolic surface group if and only if Γ contains

an induced Cn for some n ≥ 5?

An attempt to classify all the right-angled Artin groups that contain hyperbolic

surface groups will be the theme of this thesis. As a result, we answer Question 1.2

negatively.

1.2 Hyperbolic surface groups in graph products

of groups

Let Γ be a graph and B be a set of vertices of Γ such that ΓB is connected. The

contraction of Γ relative to B is the graph CO(Γ, B) obtained from Γ by collapsing

ΓB to a vertex, and deleting loops or multi-edges. We define the co-contraction

CO(Γ, B) of Γ relative to B by CO(Γ, B) = CO(Γ, B).

Suppose {Gq : q ∈ V (Γ)} is a collection of groups indexed by the vertex set of a

graph Γ. The graph product of {Gq : q ∈ V (Γ)} with the underlying graph Γ is the
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group defined by G = 〈S|R〉, where

S = ∪q (Gq \ {1})

R = {gh : g and h belong to Gq \ {1} for some q, and gh = 1}

∪ {ghk : g, h and k belong to Gq \ {1} for some q, and ghk = 1}

∪ {[g, h] : g ∈ Gp \ {1}, h ∈ Gq \ {1} for some {p, q} ∈ E(Γ)}

For a group G, let oG(g) denotes the order of g ∈ G. The following is the main

theorem of Chapter 4.

Theorem 1.3 (embedding induced by co-contraction). Let Γ be a graph and B be a

set of vertices in Γ, such that ΓB is connected. Write Γ̂ = CO(Γ, B), and let v̂ be the

vertex of Γ̂ corresponding to B. Let G be the graph product of groups {Gq : q ∈ V (Γ)}

with the underlying graph Γ. Choose any m ∈ {oG(g) : g ∈ (∪q∈BGq) \ {1}}. For

q ∈ V (Γ̂) = (V (Γ) \B) ∪ {v̂}, define

Ĝq =

{
Zm q = v̂
Gq otherwise

Let Ĝ be the graph product of {Ĝq : q ∈ V (Γ̂)} with the underlying graph Γ̂. Then G

contains a subgroup isomorphic to Ĝ.

Let C(Γ) denote the right-angled Coxeter group with the underlying graph Γ.

Corollary 1.4. Let Γ be a graph and Γ1 be a graph obtained from Γ by co-contraction.

Fix 0 < m ≤ ∞, and let G and G1 be the graph products of the cyclic groups of order

m with the underlying graphs Γ and Γ1, respectively. Then G1 embeds into G. In

particular, A(Γ1) and C(Γ1) embed into A(Γ) and C(Γ), respectively.
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From the above corollary, we see thatA(Cn) contains A(C5) = A(C5) (see Figure 4.1).

Note that A(C5) contains a hyperbolic surface group (Theorem 1.1).

Corollary 1.5. A(Cn) contains a hyperbolic surface group, for any n ≥ 5.

An easy combinatorial argument shows that Cn does not contain an induced cycle of

length at least 5, for n > 5 (Proposition 2.4), answering Question 1.2 negatively.

Theorem 1.3 is proved in the following steps.

In Chapter 2, we recall well-known results on graph products of groups and right-

angled Artin groups. We also describe a dual van Kampen diagram, which is essen-

tially the dual structure to a van Kampen diagram. We owe the notations to [CW04]

where a closely related concept, a dissection, was defined and used with great clar-

ity.

In Chapter 3, we prove an embedding result of hyperbolic surface groups into certain

graph products of groups, extending Theorem 1.1.

Theorem 1.6 (a graph product on a long cycle contains a hyperbolic surface group).

The graph product of any non-trivial groups on a cycle of length at least 5 contains

a hyperbolic surface group.

In Chapter 4, we define co-contraction of a graph, and show that co-contraction in-

duces an embedding between graph products of groups (Theorem 1.3). The main

tool used in this chapter is a dual of a van Kampen diagram. Also, we compute in-

tersections of certain subgroups of right-angled Artin groups. From this, we describe

some other choices of embeddings of hyperbolic surface groups into right-angled Artin

groups.
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1.3 A(Γ) without hyperbolic surface subgroups

Knowing that A(Cn) and A(Cn) contain hyperbolic surface groups for any n ≥ 5,

it is natural to ask about other sufficient or necessary conditions for a right-angled

Artin group to contain a hyperbolic surface group. We exhibit a set of conditions for

a graph Γ, such that each of the conditions would imply that A(Γ) does not contain

a hyperbolic surface group. Most of the conditions we describe will be recursive, in

the sense that they impose restrictions on strictly smaller induced subgraphs of Γ.

For this, we use a geometric technique of studying a given map from a hyperbolic

surface group into a right-angled Artin group [CW04].

For a graph Γ, let XΓ denote the standard Eilenberg-Maclane space of A(Γ). This

means thatXΓ is a combinatorial (cubed) complex defined inductively as follows.

(i) X
(0)
Γ is a single vertex.

(ii) For each complete subgraph of Γ with k-vertices, one attaches a k-cube to

X
(k−1)
Γ so that the image of the k-cube is a standard k-torus and the image of

the boundary of the k-cube is the k copies of the (k − 1)-tori in X
(k−1)
Γ .

We let Kn denote a complete graph on n vertices. K0 is defined to be the empty

set. For a graph Γ, let K(Γ) denote the set of the maximal complete subgraphs of

Γ.

We define the graph classes N and N∞, a “relative” version of N . A map f : X → Y

is π1-injective, if the induced map f∗ : π1(X)→ π1(Y ) is injective.

Definition 1.7 (N and N∞). Let Γ be a finite graph.
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(1) N denotes the class of graphs Γ such that there does not exist an embedding

of a hyperbolic surface group into A(Γ).

(2) N∞ is the class of the graphs Γ such that there does not exist a π1-injective

map f : S → XΓ from a compact hyperbolic surface S satisfying the following.

For each boundary component ∂0S of S, there exists K ∈ K(Γ), such

that f(∂0S) ⊆ XK .

An edge {a, b} of a graph is called bisimplicial, if any vertex adjacent to a is either

equal or adjacent to any vertex that is adjacent to b. Define F as the smallest family

of finite graphs satisfying the following conditions.

(i) K1 = • ∈ F .

(ii) If Γ1,Γ2 ∈ F and Γ1 ∩ Γ2 = Kn for some n ≥ 0, then Γ1 ∪ Γ2 ∈ F .

(iii) Γ1,Γ2 ∈ F , then Join(Γ1,Γ2) = Γ1 ⊔ Γ2 ∈ F .

(iv) Suppose e is a bisimplicial edge of a graph Γ. If Γ \ e̊ ∈ F , then Γ ∈ F .

(v) Γ ∈ F and B is an anticonnected subset of V (Γ), then CO(Γ, B) ∈ F .

Let W = {Γ : there does not exist an induced Cn or C̄n in Γ}. By Corollary 1.5,

N ⊆ W. Combined with this, the main result of Chapter 5 is summarized as the

following theorem.

Theorem 1.8 (bounds for N ). F ⊆ N∞ ⊆ N ⊆ W.

This yields a large class of graphs as a lower bound forN andN∞. A graph is chordal

bipartite, if it is bipartite without any induced cycle of length at least 5.
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Corollary 1.9 (chordal graphs and chordal bipartite graphs). If a graph Γ is chordal

or chordal bipartite, then A(Γ) does not contain a hyperbolic surface group.

Question 1.10. Is N∞ =W?

In [CW04], it was shown that any injective map φ from a hyperbolic surface group

π1(S) into A(Γ) gives rise to a cubical structure on S and a cubical map f : S → XΓ,

inducing φ. The dual to this cubical structure is a set H of transversely oriented

simple closed curves and properly embedded arcs, labeled by the vertices of Γ. This

set H, along with the transverse orientations and the labeling of the curves in H,

is called a label-reading pair. We examine label-reading pairs for the proof of Theo-

rem 1.8.

In Chapter 2, we survey the technique of studying any map from a hyperbolic surface

group into a right-angled Artin group using label-reading pairs.

In Chapter 3, we develop a method of simplifying (normalizing, Lemma 3.16 and 3.19)

label-reading pairs, without changing the kernel of the map it is associated with.

In Chapter 5, we prove the main theorem (Theorem 1.8), delaying the proof of

two crucial lemmas to the later part of the chapter. The first of those lemmas

is that N∞ is closed under complete graph amalgamations. This means that if

Γ = Γ1 ∪ Γ2 for some Γ1,Γ2 ∈ N∞ and Γ1 ∩ Γ2 is complete, then Γ is in N∞ also

(Lemma 5.9). A crucial step in the proof is use of a double D(S) of a bounded surface

S. Let q : D(S) → S denote the natural quotient map. We show that for a given

x ∈ π1(D(S)) if T : D(S)→ D(S) is a composition of the Dehn twists along each of

the boundary components for sufficiently many times, then q∗ ◦ T∗(x) is non-trivial
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(Lemma 5.25).

The second of the crucial lemmas state that if Γ is not in N∞ and has a bisimplicial

edge e, then the graph Γ′ obtained by removing the interior of e from Γ is not in N∞,

either. For the proof, we use label-reading pairs and their simplification schemes

(Lemma 3.16, 3.19).



Chapter 2

Preliminaries

2.1 Graphs

By a graph, we mean a finite 1-dimensional simplicial complex. In particular, we do

not allow loops or multi-edges. For two graphs Γ1 and Γ2, we write Γ1
∼= Γ2, if there

exists a combinatorial isomorphism between Γ1 and Γ2. For a graph Γ, let V (Γ) and

E(Γ) be the set of its vertices and edges, respectively. Each edge is represented by

a pair of vertices. A vertex p is adjacent to another vertex q if {p, q} ∈ E(Γ). The

complement graph of Γ is the graph Γ defined by the relations V (Γ) = V (Γ) and

E(Γ) = {{p, q} : p and q are non-adjacent vertices in Γ}.

For each vertex q of Γ, the link of q is defined by LinkΓ(q) = {p ∈ V (Γ)|{p, q} ∈

E(Γ)}. We simply write Link(q) = LinkΓ(q), if the meaning is clear from the context.

For an edge e, let e̊ denote the interior of e. The open star of q is the set ˚StarΓ(q) =

˚Star(q) = ∪{̊e : e is an edge of Γ containing q} ∪ {q}.

The degree of q in Γ, is defined by dΓ(q) = |LinkΓ(q)|. One simply writes d(q) instead

16
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of dΓ(q), when there is no danger of confusion. A vertex q of Γ is called a boundary

vertex, if d(q) = 1. Let ∂Γ denote the set of the boundary vertices of Γ. A vertex

which is not a boundary vertex is called an interior vertex of Γ. A boundary edge is

an edge containing a boundary vertex.

Let Γ1 and Γ2 be graphs. Then the disjoint union of Γ1 and Γ2 is denoted by Γ1⊔Γ2.

We define Join(Γ1,Γ2) to be the graph obtained by taking the disjoint union of Γ1

and Γ2 and adding the edges in the set {{q1, q2} : q1 ∈ V (Γ1), q2 ∈ V (Γ2)}. This

means that,

Join(Γ1,Γ2) = Γ1 ⊔ Γ2

A graph is discrete if there exists no edge. We let Dn be a discrete graph on n vertices.

A graph is complete if every pair of distinct vertices are adjacent. We let Kn be a

complete graph on n vertices. For convention, we letK0 be the empty set, also consid-

ered as a complete graph. A join of two discrete graphs is called a complete bipartite

graph. We let Km,n = Join(Dm, Dn). A path on n vertices, is the graph on n vertices,

say, q1, q2, . . . , qn such that the edge set consists of {q1, q2}, {q2, q3}, . . . , {qn−1, qn}.

Such a graph is also denoted by (q1, q2, . . . , qn). Pn denotes a path on n vertices.

A cycle of length n is a connected graph on n vertices such that each vertex has

degree 2. We let Cn denote a cycle of length n. This means that one can write

V (Cn) = {q1, q2, . . . , qn} so that E(Cn) = {{qi, qj} : i − j ≡ 1 (mod n)}. A tri-

angle is a graph isomorphic to C3, and a square is a graph isomorphic to C4. The

complement of a cycle of length n is is called an anti-cycle of length n.
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Notation 2.1. For a graph Γ, K(Γ) denotes the set of maximal complete subgraphs

of Γ.

Definition 2.2 (induced subgraph, [Gol04]). Let Γ be a graph.

(1) Let S ⊆ V (Γ). The induced subgraph of Γ on S, written as ΓS, is the subgraph

of Γ satisfying that V (ΓS) = S and E(ΓS) = {{p, q} : p, q ∈ S and {p, q} ∈

E(Γ)}. We also say that ΓS is the graph spanned by S.

(2) A subgraph Γ1 of Γ is called an induced subgraph, if Γ1 = ΓS for some S ⊆ V (Γ).

One writes Γ1 ≤ Γ, in this case.

If Γ1 ≤ Γ, and Λ ∼= Γ1, then we say that Γ1 is an induced Λ in Γ. If Γ does not

contain an induced Λ, then we say that Γ is Λ-free. In particular, a graph is triangle-

free, if it does not contain an induced C3. The following proposition is immediate

from the definition of induced subgraphs.

Proposition 2.3. (1) Let Γ be a graph. An induced subgraph on S ⊆ V (Γ) is the

largest subgraph of Γ, having the vertex set S.

(2) Γ1 ≤ Γ2 ≤ Γ3 implies Γ1 ≤ Γ3

(3) Γ1,Γ2 ≤ Γ3 implies Γ1 ∩ Γ2 ≤ Γ3

(4) Γ1 ≤ Γ2 if and only if Γ1 ≤ Γ2. �

The following properties of cycles and anti-cycles will be used later in Chapter 4.

Proposition 2.4 (no long cycle in Cn). Let n 6= 5. Then Cn does not contain an

induced Cm, for any m ≥ 5.

Proof) We have only to consider the case when n > 5 and 5 ≤ m ≤ n. Any connected
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subgraph of Cn is either Cn or Pk for some k. Note that Cn and Pk, when k ≥ 5,

are not cycles, since they have vertices of degree larger than 2. Hence Cn does not

contain an induced Cm. By Proposition 2.3 (4), Cn is Cm-free. �

2.2 Graph products of groups

A graph product of groups is first studied in [Gre90]. In [HW99], its fundamental

properties are proved using a van Kampen diagram. In this section, we survey some

of the basic facts on graph products of groups that will be used in this thesis. While

doing so, we define and apply a dual van Kampen diagram as the main tool.

We introduce general terms from group theory.

Definition 2.5 (word and letter). (1) Let G = 〈S|R〉 be a group presentation. A

word in G with respect to the given presentation is a sequence of elements in

S ∪S−1, and the length of the word is defined to be the length of the sequence.

For s1, s2, . . . , sm ∈ S ∪ S−1, we denote the word w = (s1, s2, s3, . . . , sm) also

by w = s1s2s3 · · · sm. Each term si is called a letter of w. A subword is a

subsequence consisting of consecutive terms. 1 denotes both the empty word

and the trivial element in G, depending on the context.

(2) Each word corresponds to an element in G naturally. For two words w and w′

on S, we write w = w′, if two words are identical (letter by letter). On the

other hand, we write w =G w
′, if w and w′ correspond to the same element in

G. If w =G w
′, we say that w and w′ are equivalent. We also write w =G g, if

the word w represents g ∈ G.
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A bigon is a disk such that the boundary is considered as a loop with two vertices.

Recall that a combinatorial 2-complex is a quotient space of a disjoint union of 0-, 1-

or 2-cells, which are vertices, edges, bigons or polygons, by identifying certain pairs

of their 0- or 1-dimensional faces [LS77, BH99]. An edge-path in a combinatorial

2-complex is a path, which can be decomposed as a sequence of edges. An edge-path

is closed, if it is a loop.

Let G = 〈S|R〉 be a presentation. Consider a combinatorial 2-complex, such that

each edge has a label in S, and an orientation. Let γ be an edge-path, that is,

γ = ep11 · e
p2
2 · · · e

pm
m written as a concatenation of oriented edges ei and pi = ±1. Let

ai be the label of ei. Then the word corresponding to γ is ap11 · a
p2
2 · · ·a

pm
m .

Now assume that each word in R has at least length 2, and w is a word representing

the trivial element in G. Recall that a van Kampen diagram for w is a connnected,

simply connected, planar combinatorial 2-complex ∆̃, such that the following condi-

tions are satisfied ([LS77, BH99]).

(i) Each edge is oriented and labeled by S.

(ii) The word corresponding to the boundary of each 2-cell, considered as a closed

edge-path with a suitable choice of the basepoint and the orientation, is in R.

(iii) The word corresponding to a boundary cycle of ∆̃, denoted by ∂∆̃, is w.

Proposition 2.6 ([vK33, LS77]). Given a presentation for a group G, a van Kampen

diagram exists for any word representing the trivial element in G.

A van Kampen diagram, embedded in S2, will define a 2-complex structure on S2.
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A dual to this structure often turns out to be useful.

Definition 2.7 (dual van Kampen diagram). Let G = 〈S|R〉 be a group presenta-

tion. Suppose w is a word representing the trivial element in G. Let ∆̃ be a van

Kampen diagram for w, embedded in S2. Let (∆̃)∗ denote the dual structure to ∆̃

on S2 (Figure 2.1 (b)). Fix the vertex ∞ in S2 \ ∆̃, and let ∆ = (∆̃)∗ \B(∞), where

B(∞) denotes a sufficiently small ball around ∞, not touching ∆̃. Then ∆ is called

a dual van Kampen diagram for w. The boundary of the remaining disk, written as

∂∆, is called the boundary of ∆.

V

V
V

V

VV

V
V

V













 







 V

V

V

V

a

a

aa
aa

a

a

aa
a

a

b

b

b

b

b

b

ww

∞

(a) ∆̃ (b) (∆̃)∗ (c) ∆ = (∆̃)∗ \B(∞)

B(∞)

Figure 2.1: Construction of a dual van Kampen diagram for w = abab−1a in the
group presented as 〈a, b : [a, b] = 1, a3 = 1〉.

Remark 2.8. (i) A dual van Kampen diagram can be considered as a graph em-

bedded in a disk D, such that each edge is transversely oriented, and labeled

by the generators.

(ii) From Proposition 2.6 and Definition 2.7, it is immediate to see that a dual van

Kampen diagram exists for any word w representing the trivial element in the

group.
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Definition 2.9 (label-reading). Let G be a group, X be a graph embedded in a

surface S, and λ be a map from E(X) to G. Suppose each edge of X is transversely

oriented. Let γ be a closed curve or an arc on S, which is trasversely intersecting

interiors of edges in E(X). Decompose γ = γ1 · γ2 · · · γm such that each γi intersects

with exactly one edge of X (we let m = 0 if γ is disjoint from X). Assume γi

intersects with an edge ei. If the orientation of γi coincides with the transverse

orientation of ei, then we let gi = λ(ei), and otherwise, gi = λ(ei)
−1. Then the word

wγ = g1g2 · · · gm

is called the label-reading of γ with respect to (X, λ). Here, wγ = 1 if γ is disjoint

from X.

Figure 2.2 shows an example of the label-reading of the curve ∂D with respect to a

graph X in a disk D.















V

g1

g2

g3

g4

g5

g6

g7

g8

D
X

w∂D = g1g2
−1g3g4

−1g5

Figure 2.2: Label-reading of ∂D with respect to a graph X. Also, the smaller circles
correspond to the words g1g7g6, g2

−1g3g7
−1, g6

−1g4
−1g8 and g5g8

−1.

Remark 2.10. Let G be a group given by a presentation. Suppose w is a word

representing the trivial element in G, and let ∆ be a dual van Kampen diagram.



CHAPTER 2. PRELIMINARIES 23

Then we always assume that ∂∆ is oriented, so that a label-reading of ∂∆ following

its orientation is w.

Remark 2.11. Let G = 〈S|R〉 be a group presentation, and w =G 1. A dual

van Kampen diagram ∆ for w, as defined in Definition 2.7, is actually a graph X

embedded in a disk D, satisfying the following.

(i) There exists no isolated vertex of X.

(ii) X ∩ ∂D = ∂X.

(iii) Each edge of X is transversely oriented and labeled by S. Moreover, the

label-reading of a circle around (and sufficiently near from) any interior vertex

represents the trivial element in G.

(iv) The label-reading of ∂D is w, with a suitable choice of the basepoint and the

orientation of ∂D.

A dual van Kampen is a particularly useful tool to study graph products of groups

defined as follows.

Definition 2.12 (graph product). Let Γ be a graph.

(1) Suppose G = {Gq : q ∈ V (Γ)} is a collection of groups indexed by V (Γ). The

graph product of G with the underlying graph Γ, written as GP(Γ,G), is defined

by GP(Γ,G) = ∗G/〈〈P 〉〉, where ∗G denotes the free product of the groups in

G, and 〈〈P 〉〉 denotes the normal closure of the set

P = {[g, h] : g ∈ Gp, h ∈ Gq for an edge {p, q} of Γ}

We call Γ as the underlying graph of G, and each element of G as a vertex group.
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(2) The right-angled Artin group on Γ, denoted by A(Γ), is the graph product of

infinite cyclic groups, with the underlying graph Γ.

(3) The right-angled Coxeter group on Γ, denoted by C(Γ), is the graph product

of cyclic groups of order 2, with the underlying graph Γ.

From this point on in this section, we let Γ be a graph, {Gq : q ∈ V (Γ)} be a collection

of groups indexed by V (Γ) and G = GP(Γ, {Gq}). The graph product presentation

for G will mean the presentation of G where the generating set is S = ⊔{Gq \ {1} :

q ∈ V (Γ)} and the relators are one of the following types.

(i) (length 2 relator) gh, where g, h ∈ Gq \ {1} for some q ∈ V (Γ), and gh = 1 in

Gq,

(ii) (multiplication table) ghk, where g, h, k ∈ Gq \ {1} for some q ∈ V (Γ), and

ghk = 1,

(iii) (commuting relator) [g, h] where g ∈ Gp \ {1}, h ∈ Gq \ {1} for some {p, q} ∈

E(Γ).

The terms words, letters, lengths of words, equivalent words and dual van Kam-

pen diagrams of G shall make sense with respect to this presentation of G. (Fig-

ure 2.3).

Definition 2.13 (normal form, [Gre90]). Let Γ be a graph, and G = GP(Γ, {Gq :

q ∈ V (Γ)}).

(1) Let w =
∏m

i=1 gi be a word in G, where each letter gi is in Gqi \ {1} for each

i. An elementary reduction of w is a transformation from w to another word
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d
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d d

∞

(a) ∆̃ (b) (∆̃)∗ (c) (∆̃)∗ \B(∞)
B(∞)

Figure 2.3: Construction of a dual van Kampen diagram for w = a·c2·ab·d·c−2·d·d·b−1

in G. Here, we let Γ be the path (p, q, r), Gp = 〈a, b|a2 = 1〉, Gq = 〈c| − 〉, Gr =
〈d|d3 = 1〉, and G = GP(Γ, {Gp, Gq, Gr}).

w′ =G w, where w′ is obtained from w by either

(i) (cancel) eliminating a subword of the form gi · gi−1,

(ii) (combine) combining gi · gi+1 = (gigi+1), when qi = qi+1 and gi+1 6= gi
−1,

or

(iii) (swap) changing gi · gi+1 to gi+1 · gi, when qi and qi+1 are adjacent

(2) A word w in G is in a normal form, if the length of w cannot be shortened by

applying a sequence of elementary reductions.

Lemma 2.14 (reduction). Let w =
∏m

i=1 gi be a word in G (m ≥ 1), where gi ∈

Gqi\{1} for each i. Then, w is in a normal form if and only if the following condition

hold:
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if i < j and qi = qj, then there exists i < k < j such that qk is not

adjacent to qi.

Proof)

(⇒) Obvious, for otherwise canceling or combining elementary reduction will occur,

after certain swaps.

(⇐) Let w′ be a shorter word for w, obtained by applying elemantary reductions

to w. One can find a sequence of the words w1 = w,w2, . . . , wk = w′ such that

wi is obtained from wi−1 by applying elementary reduction once. Now consider the

first elementary reduction that is not a swap. This means, find k0 such that for

i < k0, wi is obtained from wi−1 by applying the swap operation once, and wk0 is

obtained from wk0−1 by applying a canceling or a combining operation. One can

write wk0−1 = · · · g · g′ · · · where g and g′ belong to the same vertex group. By

considering the appearance of g and g′ in w = w1, one can can write w = v1gv2g
′v3

or w = v1g
′v2gv3, for some subwords v1, v2 and v3 of w, such that each letter of v2

commutes with g and g′. This violates the given condition. �

Theorem 2.15 (normal form theorem, [Gre90, HW99]). If w is in a normal form,

then w is not equivalent to any other word of a smaller length.

For the rest of this section, we use a dual van Kampen diagram to prove Theo-

rem 2.15. The idea of the proof will be revisited in Chapter 3 and 4.

Definition 2.16 (H-graph). Let H be any group andD be a disk in R2. AnH-graph

in D is a pair (Y, λ) satisfying the following.

(i) Y is a connected planar graph contained in D, with transversely oriented edges.
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(ii) λ, called a labeling of the edges, is a map from E(Y ) to H \ {1}.

(iii) For any q ∈ V (Y ), 0 < d(q) ≤ 3.

(iv) Y ∩ ∂D = ∂Y 6= ∅.

(v) For each vertex q that is not on the boundary, let Nq be a sufficiently small

disk containing q such that γ = ∂Nq only intersects with the edges that are

containing q. Then for any orientation and the choice of a basepoint of γ,

wγ = 1 in H .

Note that wγ denotes the label-reading of γ as in Definition 2.9. The following is

a crucial combinatorial lemma that is used in the proof of Theorem 2.15. One can

view this as an equivalent statement to a result in [HW99, Lemma 4.3], by taking a

dual.

Lemma 2.17 (label-reading of the boundary is trivilal). (1) Let Z be a disjoint

union of H-graphs in an oriented disk D ⊆ R2. Then the label-reading of

∂D with respect to Z is trivial in H.

(2) Any H-graph has at least two boundary edges.

Proof) (1) We use an induction on |E(Z)|. Choose a boundary edge e = {p, q} and

suppose d(p) = 1. If d(q) = 1, then cut D along e and apply the inductive hypothesis

to each of the pieces.

If d(q) = 2, then one can consider another disjoint unioin of H-graph Z ′, obtained by

combining two edges containing q into one edge, removing the vertex q (Figure 2.4

(a)). Now let d(q) = 3, and B(q) be a sufficiently small neighborhood of q in D. Cut
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D \ B(q) along e \ B(q), to get D′ (Figure 2.4 (b)). Then Z ′ = Z ∩ D′ is another

disjoint union of H-graphs. So the inductive hypothesis applies to Z ′. Note that the

label-reading of ∂D′ is equivalent in H to that of ∂D.

(2) Note that w∂D is the multiplication of the labels of the boundary edges or their

inverses in a certain order. So (2) follows from (1). �


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


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qq
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y

Figure 2.4: Reducing the number of edges for an H-graph. (a) “Smoothing out” a
vertex of degree 2. (b) “Splitting” a boundary edge. Note that g1 = g2g3 in H .

Remark 2.18. Now let G be a graph product of groups {Gq : q ∈ V (Γ)} with the

underlying graph Γ. Suppose w =G 1. Note that a dual van Kampen diagram ∆ for

w is a disk with an embedded graph X (Remark 2.8). For each q ∈ V (Γ), let Xq ⊆ X

be the subgraph consisting of the edges labeled by elements in Gq. Then, Xp and

Xq intersect only if p and q are adjacent in Γ. The intersection point will correspond

to a commuting relator. It is obvious that each connected component of Xq is a

Gq-graph (Definition 2.16). Moreover, by “smoothing out” vertices of degree 2 as

described in the proof of Lemma 2.17, we may consider X as a union of transversely

intersecting Gq-graphs for q ∈ V (Γ).
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So a dual van Kampen diagram determines a triple (H, λ, {µY }Y ∈H) where,

(i) H is a set of connected graphs in a disk D, λ : H → V (Γ) and µY : E(Y ) →

Gλ(Y ) for Y ∈ H.

(ii) for each Y ∈ H, (Y, µY ) is a Gλ(Y )-graph

(iii) Suppose Y and Y ′ ∈ H intersect and Y 6= Y ′. Then λ(Y ) and λ(Y ′) are

adjacent in Γ. Moreover, Y and Y ′ transversely intersect, at interior points of

the edges.

In this case, we write ∆ = (H, λ, µ). Conversely, suppose a triple ∆ = (H, λ, µ)

satisfies the above conditions (i),(ii) and (iii). Let w be a label-reading of ∂∆. Then,

by taking the dual, one obtains a van Kampen diagram for the word w. So one sees

that ∆ is a dual van Kampen diagram for w.

The boundary ∂∆ of a dual van Kampen diagram ∆ = (H, λ, µ) can be divided

into paths, called segments, so that each segment contains exactly one vertex of ∂Y

for some Y ∈ H. Such a segment has an orientation and a label, given by those of

the edges of Y . A connected, contractible union of segments is called an interval.

A g-segment (a g-interval, respectively) is a segment (an interval, respectively), the

label-reading along which gives g ∈ G. Also, for a vertex q, a Gq-segment will mean

a segment corresponding to an element in Gq. We will not hesitate to use these

geometric terms, segments and intervals, to mean the corresponding algebraic terms

also, namely letters and subwords.

A graph Y ∈ H is innermost, if all the segments of a certain component of ∂∆ \ Y
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intersect with distinct graphs in H. If Y is innermost, the two letters bounding such

a component is called an innermost pair (Figure 2.5).

>

>

u ∆

Yg1

g2

Z

Figure 2.5: g1 and g2 are innermost pair of segments. Note that any two segments
in u do not intersect with the same graph in H.

Lemma 2.19 (no pair in a normal form). Let w1 =G 1 and ∆ = (H, λ, µ) be a

dual van Kampen diagram for w1. Suppose w1 contains a subword w2 which is in

its normal form. Then for each graph Y in H, Y does not intersect two distinct

segments in w2.

Proof)

Suppose two segments g1 and g2 of w2 are intersecting with a graph Y ∈ H. Choose

a nearest pair of such segments in the sense that the interval u, which is between the

segments and is contained in w2, does not contain any pair of segments intersecting

with the same graph in H (Figure 2.5). Since Y is connected there exists a properly

embedded (simple) arc γ from g1 to g2 in Y . Then for any other graph Z intersecting

with a segment in u, Z ∩ γ 6= ∅. Hence λ(Z) is adjacent to λ(Y ) in Γ. This means

that the letters between g1 and g2 in w2 are commuting with both g1 and g2, which

is a contradiction by Lemma 2.14. �

Proof of Theorem 2.15
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We may assume the word is not empty. Let w′ =G w be a shorter word for w. Draw a

dual van Kampen diagram ∆ for ww′−1. First, I claim that there exist two segments

of w on ∂∆ that intersect with the same Y ∈ H. If not, each segment of w intersects

with different Y ∈ H. Since each Y has at least two boundary edges(Lemma 2.17),

this would imply that the number of segments on ∂∆ is at least twice of the length

of w, which is a contradiction to the assumption that w′ is shorter than w.

Now two segments of w should intersect with the same graph Y ∈ H. By Lemma 2.19,

w is not in its normal form.�

Corollary 2.20. Let Γ be a graph, and {Gq : q ∈ V (Γ)} be a collection of non-trivial

groups. Let G = GP(Γ, {Gq}).

(1) Suppose Hq ≤ Gq for each q ∈ V (Γ), and let let H = GP(Γ, {Hq}). Then

H ≤ G.

(2) If two normal forms g1g2 · · · gm and h1h2 · · ·hm′ are equivalent in G, then m =

m′ and {h1, h2, . . . , hm} is a permutation of {g1, g2, . . . , gm}.

Proof) (1) is immediate from Theorem 2.15, since a normal form in H is a normal

for in G.

(2) m = m′ by Theorem 2.15. g1g2 · · · gmhm−1hm−1
−1 · · ·h1

−1 =G 1. By Lemma 2.14,

there exists i, j such that the following hold.

(i) gi and hj belong to the same vertex group Gp.

(ii) For each k > i, gk ∈ Gq for some q ∈ Link(p).

(iii) For each k > j, hk ∈ Gq for some q ∈ Link(p).
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After changing the order of the letters if necessary, we may assume that i = j = m,

and both gm and hm belong to the same vertex group, say Gp. If gm = hm, the proof

is complete by an induction on m.

Suppose gm 6= hm. Note that

g1g2 · · · gm−1 =G h1h2 · · ·hm−1(hmgm
−1)

The word on the right hand side is not in a normal form, although h1h2 · · ·hm−1 is.

So there exists i0 < m such that hi0 belongs to Gp, and for i0 < j < m, hj belongs

to Gq for some q ∈ Link(p). Again, we may just assume that i0 = m− 1. Then we

have a contradiction, for hm−1 and hm cannot belong to the same vertex group Gp.

�

2.3 Right-angled Artin groups

In this section, we describe group theoretic properties specific to right-angled Artin

groups.

Let Γ be a graph. The right-angled Artin group on Γ has the group presentation

A(Γ) = 〈q ∈ V (Γ) | [a, b] = 1 if and only if {a, b} ∈ E(Γ)〉

and whenever we talk about words, letters, lengths of words, equivalent words and

dual van Kampen diagrams of A(Γ), we will refer to that presenation. Note that

the meanings of those terms when A(Γ) is considered as a graph product of infinite

cyclic groups, are slightly different. The key difference is, for a vertex a the word
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an has length n in a right-angled Artin group, while the length of an is 1 in a graph

product of infinite cyclic groups.

So, a word of length k in A(Γ) is an expression w =
∏k

i=1 c
ei

i , where ci ∈ V (Γ) and

ei = ±1. Each cei

i is a letter of the word w.

We say the word w is reduced, if the length is minimal among the words representing

the same element. Note that this is a weaker condition that w is in a normal form

considering A(Γ) as a graph product of infinite cyclic groups. For example, in the

right-angled Artin group on an edge with vertices a and b, the word aba and a2b are

both reduced as elements of the right-angled Artin group, but the former is not in

a normal form as an element of the graph product of two infinite cyclic groups 〈a〉

and 〈b〉.

For each i0 = 1, 2, . . . , k, the word w1 =
∏k

i=i0
cei

i ·
∏i0−1

i=1 cei

i is called a cyclic con-

jugation of w =
∏k

i=1 c
ei

i . We say that a word w is cyclically reduced, if its cyclic

conjugations are all reduced. By a subword of w, we mean a word w′ =
∏i1

i=i0
cei

i

for some 1 ≤ i0 < i1 ≤ k. A letter or a subword w′ of w is on the left of a letter or a

subword w′′ of w, if w′ =
∏i1

i=i0
cei

i and w′′ =
∏j1

i=j0
cei

i for some i1 < j0.

As in the previous section, The expression w1 = w2 means that w1 and w2 are equal

as words (letter by letter), while w1 =A(Γ) w2 means that the words w1 and w2

represent the same element in A(Γ).

Let ∆ be a dual van Kampen diagram for w in A(Γ) (Figure 2.6). Recall that ∆ is a

graph X embedded in a disk, with edges labeled by V (Γ) and transversely oriented

(Remark 2.8). As in Remark 2.18, choose the subgraphXa consisting of edges labeled
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by a ∈ V (Γ). Since each 2-cell in the van Kampen diagram is a square corresponding

to the commuting relator between two vertices, we see that each interior vertex of

Xa has degree 2, and so, Xa is a disjoint union of properly embedded arcs and simple

closed curves, after “smoothing out” degree 2 vertices (Remark 2.18). Let H denote

the collection of such curves, for all a ∈ V (Γ).

We always regard ∂∆ as divided into segments so that each segment intersects with

exactly one arc inH. We let the label and the orientation of each segment be induced

from those of the arc that intersects with the segment.

We call each arc in H labeled by q ∈ V (Γ) as a q-arc, and each segment in ∂∆

labeled by q as a q-segment. We will not hesitate to identify the letter q±1 of w with

the corresponding q-segment of ∂∆. A connected contractible union of segments on

∂∆ is called an interval. For convention, a subword w1 of w shall also denote the

corresponding interval (called w1-interval) on ∂∆.

Let ∆ be a dual van Kampen diagram for w in A(Γ). Similarly as in Remark 2.18

(see also Figure 2.6 (c) ), ∆ is determined by a pair (H, λ) where

(i) H is a set of transversely oriented simple closed curves and properly embedded

arcs in an oriented disk D ⊆ R2.

(ii) λ is a map from H to V (Γ) such that γ and γ′ in H are intersecting only if

λ(γ) and λ(γ′) are adjacent in Γ.

(iii) w is a label-reading of ∂∆.

As in Remark 2.8, we note that any pair ∆ = (H, λ) satisfying the above conditions
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(i), (ii), and (iii) is a dual van Kampen diagram for any label-reading of ∂∆.

Note that simple closed curves in a dual van Kampen diagram can always be assumed

to be removed. Also, we may assume that two curves in ∆ are minimally intersecting,

in the sense that there does not exist any bigon formed by arcs in H. See [CW04]

for more details.
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(a) ∆̃ (b) (∆̃)∗ (c) (∆̃)∗ \B(v∞)

v∞
B(v∞)

Figure 2.6: Constructing a dual van Kampen diagram from a van Kampen diagram
∆̃, for w = c−1aba−1b−1 in 〈a, b, c | [a, b] = 1〉.

Now let ∆ = (H, λ) be a dual van Kampen diagram on D ⊆ R2. Suppose γ is a

properly embedded arc in D, which is either an element in H or in general position

with H. Then one can cut ∆ along γ in the following sense. First, cut D along γ to

get two disks D′ and D′′. Consider the intersections of the disks with the curves in

H. Then, let those curves in D′ and D′′ inherit the transverse orientations and the

labelings from ∆ (Figure 2.7). We obtain two dual van Kampen diagrams, one for

each of D′ and D′′. An innermost q-arc γ of ∆ is a q-arc such that the interior of D′

or D′′ does not intersect any q-arc. Conversely, we can glue two dual van Kampen
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diagrams along identical words.

Definition 2.21 (canceling pair). Let Γ be a graph.

(1) Let w be a word representing the trivial element in A(Γ), and ∆ be a dual

van Kampen diagram for w. Two segments on the boundary of ∆ are called a

canceling q-pair if there exists a q-arc joining the segments.

(2) For any word w1, two letters of w1 are called a canceling q-pair if there exists

another word w′
1 =A(Γ) w1 and a dual van Kampen diagram ∆ for w1w

′−1
1 , such

that the two letters are a q-pair with respect to ∆.

(3) An innermost canceling q-pair is a canceling q-pair joined by an innnermost

q-arc.

We let canceling pair mean a canceling q-pair for some q ∈ V (Γ).

For a group G and its subset P , 〈P 〉 denotes the subgroup generated by P . For a

subgroup H of A(Γ), w ∈ H shall mean that w represents an element in H .

Lemma 2.22 (no pair if reduced). Let Γ be a graph and q be a vertex of Γ. If a

word w in A(Γ) has a canceling q-pair, then w = w1q
±1w2q

∓1w3 for some subwords

w1, w2 and w3 such that w2 represents an element in 〈Link(q)〉. In this case, w is

not reduced.

Proof)

There exists a word w′ =A(Γ) w and a dual van Kampen diagram ∆ for ww′−1, such

that a q-arc joins two segments of w.

Write w = w1q
±1w2q

∓1w3, where the letters q±1 and q∓1 (identified with the corre-
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sponding segments on ∂∆) are joined by a q-arc γ (Figure 2.7).

Cut ∆ along γ, to get a dual van Kampen diagram ∆0, which contains w2 on its

boundary. Give ∆0 the orientation that coincides with the orientation of ∆ on w2.

Let w̃2 be the word, read off by following γ in the orientation of ∆0. w̃2 ∈ 〈Link(q)〉,

for the arcs intersecting with γ are labeld by vertices in Link(q). Since ∆0 is a dual

van Kampen diagram for the word w2w̃2, we have w2 =A(Γ) w̃
−1
2 ∈ 〈Link(q)〉. �

>
>

>

>

>

w

w1

w2

w3

w′

w̃2

γ

∆0

∆

q

q

Figure 2.7: Cutting a dual van Kampen diagram ∆ along a curve γ.

For S ⊆ V (Γ), we let S−1 = {q−1 : q ∈ S} and S±1 = S ∪S−1. The following lemma

is standard, and we sketch the proof.

Lemma 2.23. Let Γ be a graph and S be a subset of V (Γ). Then the following are

true.

(1) 〈S〉 is isomorphic to A(ΓS).

(2) Each letter of any reduced word in 〈S〉 is in S±1.

Proof)

(1) The inclusion V (ΓS) ⊆ V (Γ) induces a map f : A(ΓS) → A(Γ). Let w be a
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word representing an element in ker f . Since w =A(Γ) 1, there exists a dual van

Kampen diagram ∆ for the word w in A(Γ). Remove simple closed curves labeled

by V (Γ) \ V (ΓS), if there is any. Since the boundary of ∆ is labeled by vertices in

V (S), ∆ can be considered as a dual van Kampen diagram for a word w in A(ΓS).

So we get w =A(ΓS) 1.

(2) w =A(Γ) w
′ for some word w′ such that the letters of w′ are in S. Let ∆ be a dual

van Kampen diagram for ww′−1. If w contains a q-segment for some q 6∈ S, then a

q-arc joins two segments in ∆, and these segments must be in w. This is impossible

by Lemma 2.22. �

From this point on, A(ΓS) is considered as a subgroup of A(Γ), whenever S ⊆

V (Γ).

A right-angled Artin group can also be considered as a repeated HNN-extension as

follows. Let H be a group and φ : C → D be an isomorphism between subgroups

of H . Then we define H∗φ = 〈H, t | t−1ct = φ(c), for c ∈ C〉, which is the HNN

extension of H with the amalgamating map φ and the stable letter t. Sometimes, we

explicitly state what the stable letter is. If C = D and φ is the identity map, then

we let H∗C = 〈H, t | t−1ct = t for c ∈ C〉.

Lemma 2.24. Let Γ be a graph. Suppose Γ′ is an induced subgraph of Γ such that

V (Γ′) = V (Γ) \ {q} for some q ∈ V (Γ). Let C be the subgroup of A(Γ′) generated

by linkΓ(q). Then the inclusion A(Γ′) →֒ A(Γ) extends to the isomorphism f :

A(Γ′)∗C → A(Γ) such that f(t) = q.

Proof) Immediate from the definition of right-angled Artin groups.�
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We note the following general lemma, for its use in Section 4.3.

Lemma 2.25. Let H be a group and φ : C → D be an isomorphism between sub-

groups C and D. Suppose K is a subgroup of H and J = 〈K, t〉 ≤ H∗φ. We let

ψ : J ∩ C → J ∩D be the restriction of φ. Then the inclusion J ∩H →֒ J extends

to the isomorphism f : (J ∩H)∗ψ → J such that f(t̂) = t, where t̂ and t denote the

stable letters of (J ∩H)∗ψ and H∗φ, respectively.

Proof) See Figure 2.8 for the inclusions between the given groups. G = H∗φ acts on

a tree T , with a vertex v0 and an edge e0 = {v0, t.v0} satisfying Stab(v0) = H and

Stab(e0) = C [Ser03]. Let T0 be the induced subgraph on {j.v0 : j ∈ J}. For each

vertex j.v0 of T0, write j = k1t
ǫ1k2t

ǫ2 · · · kmtǫm , where ki ∈ K and ǫi = ±1 for each i.

Then the following sequence in V (T0) gives rise to a path in T0 from v0 to j.v0.

v0 = k1.v0,

k1t
ǫ1.v0 = k1t

ǫ1k2.v0,

k1t
ǫ1k2t

ǫ2.v0 = k1t
ǫ1k2t

ǫ2k3.v0,

. . .

k1t
ǫ1k2t

ǫ2k3 · · · t
ǫm.v0 = j.v0

Hence T0 is connected. Note that ψ : J∩C = StabJ(e0)→ J∩D = StabJ(e0)
t. Since

J acts on a tree T0, we have an isomorphism J ∼= StabJ(v0)∗ψ = (J ∩H)∗ψ.�
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H∗φ = 〈H, t〉
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Figure 2.8: Lemma 2.25.

2.4 The space XΓ

For each right-angled Artin group A(Γ), there exists a “standard” K(A(Γ), 1)-space,

called XΓ. In this section, we define and describe this space XΓ.

An n-dimensional unit cube is the set In = [0, 1]n ⊆ Rn. A face of In is recursively

defined to be In itself, or a face of (n− 1)-dimensional cube in In obtained by fixing

one coordinate to be 0 or 1. A cubed complex X is a quotient space of a disjoint

union of unit cubes {Cα} such that the interior of a face of each cube Cα injects

into X and identifications occur only as isometry of faces of the unit cubes. A graph

can be obviously considered as a cubed complex, for instance. In [BH99], the term a

cubical complex is used to refer to a more restricted class, requiring that each closed

unit cube to inject. For example, the n-torus, considered as a quotient space of In

with each pair of opposite (n − 1) dimensional faces identified, is a cubed, but not
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cubical, complex. Any cubed complex can be considered as a cubical complex after

a suitable subdivision.

The k-skeleton of X is the image of the k-dimensional cubes. The image of a cube (a

face of a cube, respectively) in X is also called a cube (a face of a cube, respectively).

A vertex and an edge are a 0- and 1-dimensional faces, respectively. Note that each

edge has the length 1.

A map f : X → Y between cubed complexes is cubical, if the image of each face of

a cube in X is mapped onto the image of a face of a cube in Y by an isometry on

faces. An edge-path (of length k) of X is a cubical map from Pk+1 into X(1) for some

k. If the terminal point of an edge-path γ1 coincides with the initial point of another

edge-path γ2, we denote the concatenation of the paths by γ1 · γ2.

For a vertex v of a cubed complex X, the link of v is denoted by LinkX(v). LinkX(v)

can be considered as a simplicial complex [BH99]. Each cubical map f : X → Y

naturally induces a simplicial map fv : LinkX(v) → LinkY (f(v)). A subcomplex of

X is a union of faces in X. We say that Y ⊆ X is a 1-full subcomplex, and write

Y ≤ X, if Y is a maximal subcomplex of X with a fixed 1-skeleton.

Now let Y be a simplicial complex. LinkY (v) denotes the link of a vertex v in Y .

A subcomplex Z of Y is called a full subcomplex, and written as Z ≤ Y , if Z is the

maximal subcomplex with a fixed 0-skeleton. We say Y is a flag complex, or equiv-

alently determined by its 1-skeleton, if every complete subgraph in Y (1) is contained

in a simplex in Y . This condition is also called as no-∆ condition [Gro87].

Definition 2.26 (local isometry). Let f : X → Y be a cubical map between cubed
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complexes. If for each vertex v ∈ X(0), f induces an injective map fv : LinkX(v)→

LinkY (f(v)) such that the image of fv is a full subcomplex of LinkY (f(v)), then we

say that f is a local isometry.

Remark 2.27. A finite dimensional cubed complex has a complete geodesic length

metric by giving the Euclidean metric to the interior of each unit cube ([Gro87]).

If this metric on Y is non-positively curved ([BH99]), then a local isometry (in the

sense of Definition 2.26) f : X → Y between finite dimensional cubed complexes

with the length metric is indeed locally an isometric embedding ([Gro87, Cha00]).

The following is a widely known criteria for a cubical map to be π1-injective. For a

detailed proof, see [CW04].

Theorem 2.28 (local isometry is π1-injective, [Gro87, CW04]). Let X and Y be

finite dimensional cubed complexes, such that the link of each vertex in Y is a flag

complex. Then any local isometry f : X → Y is π1-injective.�

An oriented and labeled cubed complex is a cubed complex with extra data that are

an orientation of each edge and a map, called a labeling, from the set of the edges

into a given set.

Recall that K(Γ) denotes the set of the maximal complete subgraphs of a graph Γ.

Definition 2.29 (standard Eilenberg-Maclane space of A(Γ), [CD95]). Let Γ be a

graph. Then the standard Eilenberg-Maclane space of A(Γ) is the cubed complex XΓ

satisfying the following.

(i) The 0-skeleton of XΓ is a single vertex.
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(ii) For each vertex q of Γ, there exists a unique oriented circle Cq in X
(1)
Γ .

(iii) For each K in K(Γ), a |V (K)|-dimensional torus is glued along the oriented

circles {Cq : q ∈ V (K)}.

Then XΓ is an oriented and labeled cubed complex, since each circle Cq is oriented

and can be labeled by q.

Each vertex of V (Γ) corresponds to a circle in XΓ. For Γ′ ≤ Γ, XΓ′ denotes the 1-full

subcomplex of XΓ determined by the circles corresponding the vertices of Γ′. For

convention, we let X∅ be the set of the unique vertex of XΓ.

X(2) is the Caley complex for A(Γ) (see [LS77]), and so π1(XΓ) = π1(X
(2)
Γ ) = A(Γ).

Contractibility of the universal cover of XΓ comes from the fact that XΓ has a

nonpositively curved metric ([BH99]). Hence, XΓ is a K(A(Γ), 1)-space.

Example 2.30. (1) If Γ is discrete, then XΓ is a bouquet of circles. Note that

A(Γ) is free in this case.

(2) If Γ is complete, then XΓ is an n-torus. In this case, A(Γ) is free abelian.

(3) Γ is C5, then XΓ is a union of five 2-dimensional tori such that the longitude

of the (i − 1)-th torus is identified with the meridian of the i-th torus, for

i = 1, 2, . . . , 5 (mod n).

For a graph Γ, the double of Γ is the graphD(Γ) satisfying V (D(Γ)) = V (Γ)×{−1, 1}

and E(D(Γ)) = {{(q, ǫ), (q′, ǫ′)} : ǫ, ǫ′ ∈ {−1, 1} and {q, q′} ∈ E(Γ)}.

Let Γ be a graph and x0 be the unique vertex of XΓ. Let LΓ be the link of x0 in

XΓ. We can write V (LΓ) = V (Γ)×{−1, 1}, where (q, 1) corresponds to the outgoing
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direction of the circle Cq for each vertex q ∈ V (Γ), and (q,−1) to the incoming

direction (Figure 2.9). For q, q′ ∈ V (Γ) and e, e′ = ±1, (q, e) and (q′, e′) span an

edge if and only if Cq and Cq′ span a 2-torus, i.e. {q, q′} ∈ E(Γ). Hence, L
(1)
Γ is

the double of Γ. For each complete subgraph of L
(1)
Γ , there exists a corresponding

complete subgraph in Γ, and hence, a torus in XΓ. It follows that LΓ is a flag

complex.

Proposition 2.31 (link of XΓ). Let Γ be a graph, and v be the unique vertex of XΓ.

Then Link
(1)
XΓ

(v) = D(Γ). Moreover, LinkXΓ
(v) is a flag comlplex.
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Figure 2.9: The link of the vertex in XΓ, when Γ = C5.

2.5 Maps from a surface into XΓ

By a surface, we always mean a compact orientable surface unless specified other-

wise. For a non-closed surface S, we also assume that each boundary component

∂1S, ∂2S, . . . , ∂mS is oriented so that
∑

i[∂iS] = 0 in H1(S). We make a note of

the following well-known property of an orientable surface, which will be used in

Chapter 5.

Lemma 2.32 (not a proper power). (1) Let S be a surface, c ∈ π1(S) and r ∈ Z.
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Suppose x = cr ∈ π1(S) \ {1} is represented by a simple closed curve. Then

r = ±1.

(2) Let S be a hyperbolic surface. Suppose x, y are non-trivial elements of π1(S),

represented by simple closed curves. If [x, y] = 1, then x = y or x = y−1. In

particular, any two homotopy classes corresponding to two distinct boundary

components do not commute in π1(S).

Proof) (1) This is a standard result, from the orientability of S ([FHS82]).

(2) Since π1(S) is a one-relator group on at least 4 generators or a free group, 〈x, y〉

is a free group. Since [x, y] = 1, 〈x, y〉 is cyclic. Write x = cr and y = cs for some c.

By (1), |r|, |s| = 1, and we conclude that x = y±1. �

A curve on a surface means a simple closed curve or a properly embedded arc.

Notation 2.33 (geometric intersection number). Let S be a surface.

(1) Let α and β be curves on a surface S. Assume either

(i) α and β are closed, and freely homotopic to each other, or

(ii) α and β are arcs, and there exists a homotopy from α to β, so that during

the homotopy the endpoints of the arcs lie on ∂S.

Then we write α ∼ β.

(2) For two curves α, β, we let i(α, β) denote the geometric intersection number of
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α and β, that is,

i(α, β) = min
α′∼α
β′∼β

|α′ ∩ β ′|

(3) Let α be a curve, and A ⊆ S. We write α A, if α can be homotoped into A

(requiring that the endpoints to lie on ∂S during the homotopy, if α is an arc).

(4) Let A and B be subsurfaces of S. Then A ∼ B shall mean that there exists a

homotopy from A to B.

For an example, see Figure 2.10. We say that α and β are essentially intersecting if

i(α, β) 6= 0.

α β∂1S

∂2S

∂3S

i(α, β) = 0

Figure 2.10: The case when i(α, β) = 0.

A curve is boundary-parallel, if γ  ∂1S for some boundary component ∂1S of S.

A curve is essential, if it is neither null-homotopic nor boundary-parallel. A set of

essential curves are minimally intersecting, if the curves are transversely intersecting,

and there exists no bigon formed by the curves. A set of essential curves H fills the

surface, if they are minimally intersecting, and S \ (∪H) is a union of disks.

In Definition 2.9, we defined a label-reading of a curve with respect to a labeled

graph with transversely oriented edges on a surface. We extend this notion to study

maps from the fundamental groups of surfaces into right-angled Artin groups. This



CHAPTER 2. PRELIMINARIES 47

approach was taken in [CW04], to which we owe most of the definitions in this

section.

Definition 2.34 (label-reading pair). Let S be a surface, and Γ be a graph.

(1) Let H be a set of transversely oriented curves in general positions on S, and λ

be a map from H into V (Γ). Suppose for any α, β ∈ H, α and β intersect only

if λ(α) and λ(β) are equal or adjacent. Then (H, λ) is called a label-reading

pair on S with the underlying graph Γ, and λ is called a labeling. Also, for

a ∈ V (Γ), a curve in λ−1(a) is called an a-curve.

(2) A label-reading pair (H, λ) on S is cellular, if H fills the surface and any two

curves of the same label do not intersect.

(3) Let (H, λ : H → V (Γ)) be a cellular label-reading pair. H induces a CW-

complex structure on S as follows.

(i) 0-cells correspond to the intersection points of the curves in H or in ∂S.

(ii) 1-cells are the intervals on the curves in H or on ∂S, bounded by the

0-cells.

(iii) 2-cells are the disks on S bounded by 1-cells.

The dual to this CW-complex is a cubical complex, written as X(S,H). Each

edge of X(S,H) is assumed to have an orientation and a label, consistent

with the transverse orientation and the label of a curve in H. X(S,H), with

the orientations and the labels of its edges, is called the cubed structure on S

induced by (H, λ).



CHAPTER 2. PRELIMINARIES 48

Definition 2.35 (label-reading map). Let S be a surface and Γ be a graph.

(1) Fix a basepoint x0 on S. Suppose (H, λ) be a label-reading pair with the

underlying graph Γ. Then one can define an label-reading map φ : π1(S) →

A(Γ) associated with (H, λ) by φ[γ] = wγ, where γ is a closed curve based at x0,

transversely intersecting with the curves inH, and wγ denotes the label-reading

of γ with respect to (H, λ).

(2) Suppose (H, λ) is a cellular label-reading pair. The unique cubical map f :

X(S,H)→ XΓ respecting the orientation and the label of each edge, is called

the cubical map associated with (H, λ).

Remark 2.36. From the conditions of the label-reading pair, an associated label-

reading map φ : π1(S)→ A(Γ) is a group homomorphism, well-defined by the relation

φ[γ] = wγ ([CW04]). While an associated label-reading map is determined up to the

choice of the basepoint, the associated label-reading map is unique.

Definition 2.37 (equivalence of label-reading pairs). (1) Two group homomorphisms

φ1, φ2 : G→ H are equivalent, if there exists an inner automorphism α : H →

H such that φ1 = α ◦ φ2.

(2) Let Γ be a graph, and S be a surface. Two label-reading pairs (H, λ) and

(H′, λ′) are equivalent, if their associated label-reading maps are equivalent.

A change of the basepoint does not change the equivalence class of the associated

label-reading map. So, to verify whether two label-reading maps are equivalent, the

basepoints can be chosen arbitrarily.

If a label-reading pair (H′, λ′) is obtained from (H, λ) by removing non-essential
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curves, then the associated label-readings maps are equivalent ([CW04]). One can

also remove bigons formed by two curves in H, without changing the equivalence

class of the label-reading pair. See Lemma 2.38 for more precise description of

certain homotopies that do not change the equivalence class of the label-reading

pairs (Figure 2.11).
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Figure 2.11: Homotopies on a label-reading pair, that do not change the equivalence
class. (a) Removing a null-homotopic curves. (b), (c) Removing boundary-parallel
curves. (d) Removing intersections of curves of the same label. (e) Removing bigons.
Note that (e) is allowed only when a and b are equal or adjacent in Γ.
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Suppose Γ be a graph, S be a surface, and (H, λ) be a label-reading pair. Let S ′

be a subsurface of S such that ∂S ′ is in general position of the curves in H. Then

there exists an induced label-reading pair (H′, λ′) on S ′, where H′ is the set of the

components of (∪H)∩S ′, inheriting the transverse orientation and labeling (λ′) from

(H, λ).

Lemma 2.38 (disk swap). Let Γ be a graph and S be a surface. Let A be either

(i) a disk in the interior of S,

(ii) a disk bounded by a properly embedded arc and an interval in ∂S, or

(iii) the annulus bounded by a boundary-parallel simple closed curve and a boundary

component.

Consider two label-reading pairs (H1, λ1) and (H2, λ2), and their associated label-

reading maps φ1 and φ2, respectively. Suppose that for each i = 1, 2, the curves in

Hi are in general position with ∂A, and their induced label-reading pairs on S \ A

are equal. Then (H1, λ1) and (H2, λ2) are equivalent.

Proof) Up to equivalence, we may choose the basepoint outside A. Then for any

[α] ∈ π1(S), α can be homotoped into S \ A, so that φ1([α]) = φ2([α]).�

We note the following classical lemmas (See [SW79]).

Lemma 2.39. Let X be a 2-dimensional CW-complex, and Y be any space. Then

for any map φ : π1(X)→ π1(Y ), there exists a map f : X → Y such that f∗ = φ.�

Lemma 2.40 (transversality). Let X0, X1 and X2 be finite CW-complexes. Suppose

there exist π1-injective embeddings φ0 : X2 × {0} → X0 and φ1 : X2 × {1} → X1.
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Define X to be the graph of spaces, equal to the quotient space X0∪φ0 (X2×I)∪φ1X1,

where φ0 and φ1 are amalgamating maps. Orient the interval I = [0, 1]. Suppose

f : S → X is a map from a surface S. Then there exists a map g : S → X, homotopic

to f , such that g−1(X2 × {
1
2
}) is a set of disjoint, simple closed curves or properly

embedded arcs, which carry transverse orientations induced by the orientation of the

interval [0, 1]. Henceforth, there exists an open regular neighborhood N of g−1(X2 ×

{1
2
}), such that each component of S \N is mapped into either X0 or X1 via the map

g. The same conclusion holds, if we assume that X0 and X1 are identical. �

Now let S be a surface, Γ be a graph and φ : π1(S) → A(Γ) be any map. By

Lemma 2.39, there exists f : S → XΓ such that f∗ = φ. Choose a point pq for each

circle Cq corresponding to a vertex q ∈ V (Γ), such that pq 6∈ X
(0)
Γ . By transversality

(Lemma 2.40), we may assume that f−1(pq) is a collection of simple closed curves and

properly embedded arcs, labeled by q and transversely oriented by the orientation of

Cq. LetH = ∪q∈V (Γ)f
−1(q) and define λ : H → V (Γ) by λ(γ) = q if γ ∈ f−1(q). Then

φ is an associated label-reading map with respect to (H, λ) (Proposition 2.41).

This can be also seen as follows [CW04]. Let

π1(S) =< x1, x2, . . . , xg, y1, y2, . . . , yg, d1, d2, . . . , dm|

g∏

i=1

[xi, yi]
m∏

i=1

di >

Here d1, d2, . . . , dm correspond to the boundary components ∂1S, ∂2S, . . . , ∂mS of S.

Draw a dual van Kampen diagram ∆ for the following word.
g∏

i=1

[φ(xi), φ(yi)]

m∏

i=1

φ(di)

For each i, glue ∂∆ along the pairs of words {φ(xi), φ(xi)
−1} and also, {φ(yi), φ(yi)

−1}.

For each i, “push” the interval φ(di) into the interior of ∆ so that it becomes the
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boundary component ∂iS after gluing. Then one gets a set of transversely oriented

and labeled curves (H, λ) on S, such that φ is an associated label-reading map.

Moreover, if one has φ(di) = w′
i
−1wiw

′
i for some words wi, w

′
i, then (H, λ) can be

chosen so that any curve in H intersecting with the boundary component ∂iS is

labeled by a letter (or its inverse) of wi, by gluing the words w′
i and w′

i
−1 in our

construction.

If φ is injective, S \ H is a union of disks after removing non-essential intersections

and non-essential curves, and so, (H, λ) is cellular.

Proposition 2.41 (existence of a label-reading pair). Let S be a surface and Γ be

a graph. Let d1, d2, . . . , dm be the elements of π1(S) corresponding to the boundary

components ∂1S, ∂2S, . . . , ∂mS of S. Suppose φ : π1(S) → A(Γ) is a map, such that

for each i, φ(di) = w′
i
−1wiw

′
i, for some words wi, w

′
i.

(1) There exists a label-reading pair (H, λ) on S with the underlying graph Γ such

that φ is a label-reading map associated with (H, λ). Moreover, φ can be chosen

so that, for each i, any curve in H intersecting with the boundary component

∂iS is labeled by a letter (or its inverse) of wi.

(2) Suppose a label-reading map φ associated with (H, λ) is injective. Then there

exists a label-reading map φ′ associated with a cellular label-reading pair (H′, λ′)

such that φ and φ′ are equivalent.

By a hyperbolic surface group, we mean the fundamental group of a closed hyperbolic

surface. The following is a well-known result ([SDS89, CW04]).

Theorem 2.42 (A(Cn) contains a hyperbolic surface group, [SDS89]). For any n ≥
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5, A(Cn) contains a hyperbolic surface group.

Proof)

Let the vertices of Cn be cyclically labeled by q1, q2, . . . , qn, and put X = XCn
.

Consider the case when n is even. A closed surface of the genus n
2
− 1 contains a set

H of n transversely oriented non-separating curves γ1, γ2, . . . , γn such that

i(γi, γj) =

{
1, |i− j| = 1(mod n)
0, otherwise

as shown in Figure 2.12 (a). Let λ(γi) = qi. Let fn : X(S,H)→ XΓ be the associated

cubical map. Then X(S,H) has four vertices, and the link at each vertex will be an

n-cycle, which is mapped by fn onto an induced n-cycle in D(Cn). Hence fn is a local

isometry, and by Theorem 2.28, the label-reading map φn = (fn)∗ is injective.

For the case when n is odd, one has a similar construction with a closed surface of

genus n− 3 (Figure 2.12 (b)).�

   

      

  











(a) n = 8, g = 3 (b) n = 7, g = 4

q1q1q1

q2q2q2

q3q3q3

q4q4q4

q5q5

q6

q6
q7

q7
q8

Figure 2.12: Examples of the standard embedding of a hyperbolic surface group into
A(Cn). (a) n is even. (b) n is odd.

The map φn : π1(S)→ XCn
, used in the proof of Theorem 2.42 is called the standard

embedding of a hyperbolic surface group into A(Cn).
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Remark 2.43. We briefly summarize two other proofs of Theorem 2.42.

(1) In [SDS89], Theorem 2.42 was proved by considering the following commutative

diagram. Here, Γ = Cn.

p−1(X
(2)
Γ ) ∩ In

f
// p−1(X

(2)
Γ ) //

��

X̃
(2)
Kn

//

��

X̃Kn
≈ Rn

p

��

X
(2)
Γ

// X
(2)
Kn

// XKn
≈ (S1)n

where p : X̃Kn
→ XKn

is a universal covering map so that X̃Kn
is a cubical

structure on Rn. All the horizontal arrows denote embeddings and the vertical

arrows denote covering maps. f : p−1(X
(2)
Γ ) ∩ In → p−1(X

(2)
Γ ) can be shown to

be π1-injective by a combinatorial argument. Theorem 2.42 follows from the

observation that p−1(X
(2)
Γ ) ∩ In is a hyperbolic surface, for n ≥ 5.

(2) Let n ≥ 5 and P be the polygon on n vertices in the hyperbolic space such

that each edge is a geodesic segment and all the dihedral angles are π
2
. Then

C(Cn) is the reflection group with respect to P , which is discrete. So it has a

finite index torsion-free subgroup (Selberg’s lemma), which will be a hyperbolic

surface group. In [DJ00], it is shown that A(Γ) is commensurable with C(D(Γ))

for any Γ. Since C(Cn) embeds into C(D(Cn)), it also follows that A(Cn)

contains a hyperbolic surface group [GLR04].



Chapter 3

On Label-Reading Maps

We have seen that the right-angled Artin group on a cycle of length at least 5

contains a hyperbolic surface group. In Section 3.1, we extend this result to show

that any graph product of non-trivial groups on a cycle of length at least 5 contains

a hyperbolic surface group (Theorem 3.6). For this, we realize an embedding of a

hyperbolic surface group into a right-angled Artin group as a label-reading map, and

examine the properties of the label-reading pairs. Section 3.2 will contain a technique

of simplifying (normalizing) a given label-reading pair. This will play a crucial role

in Chapter 5.

3.1 Surface subgroups of graph products of groups

We first prove the homotopy lifting property of a local isometry between cubed

complexes. This is the key idea for the proof of the results in this section. For more

details on edge-homotopy in a cubed complex, see [BH99].

55
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Definition 3.1 (edge-homotopy). Let X be a cubed complex, and γ be an edge-path

in X.

(1) An elementary homotopy is a transformation sending γ to another edge-path

γ′ such that one of the following holds.

(i) γ′ is obtained by inserting or deleting a subpath of the form e · e−1 where

e is an oriented edge in γ.

(ii) One can write γ = abc and γ′ = ab′c for some subpaths a, b, c, b′ such that

b−1b′ is the boundary of a square.

An elementary homotopy is non-increasing, if the length of γ′ is equal or smaller

than that of γ (Figure 3.1).

(2) An edge-homotopy is a finite sequence of elementary homotopies. If each ele-

mentary homotopy is non-increasing, then we say that the edge-homotopy is

non-increasing.

In a cubed complex if two edge-paths are homotopic relative to their boundaries,

then there exists an edge-path homotopy from one to the other.

V

V

(a) (b) (c)

γ′γ′γ′ γγγ

e e−1
←→←→←→

Figure 3.1: Elementary homotopies in a cubical complex. For each of (a),(b) and
(c), the homotopy from the left to the right is non-increasing.



CHAPTER 3. ON LABEL-READING MAPS 57

Lemma 3.2 (homotopy lifting property). Let f : X → Y be a local isometry between

cubed complexes, and γ0 and γ1 be two edge-paths in Y . Assume that there exists

a non-increasing edge-homotopy from γ0 to γ1. Suppose there exists an edge-path

γ̃0 in X such that f(γ̃0) = γ0. Then there exists another edge-path γ̃1 in X and a

non-increasing edge-homotopy from γ̃0 to γ̃1.

Proof)

First, consider the case when γ1 is obtained by a non-increasing elementary homotopy

from γ0.

Suppose γ1 is obtained by deleting a subpath of the form ee−1 in γ0, and let ẽẽ′

be the lifting of that subpath in X. Let x̃ be the terminal point of ẽ. Since fx̃ :

LinkX(x̃) → LinkY (f(x̃)) is injective, and f(ẽ) = e = f(ẽ′)−1, we have ẽ′ = ẽ−1. So

γ̃0 has a subpath ẽẽ−1, and γ̃1 is obtained by deleting this subpath.

Suppose γ1 is obtained from γ0 by replacing a concatenation of edges a · b · c by an

edge d so that a · b · c · d−1 is a boundary of a square C in Y . Let ã · b̃ · c̃ be the lifting

of a · b · c contained in γ̃0. Since f is a local isometry and a and b belong to C, ã

and b̃ belong to a square C̃ ⊆ X. Since f(C̃) = C and f is injective on links, c̃ ⊆ C̃.

Now let d̃ be the edge of C̃ such that ã · b̃ · c̃ is homotopic to d̃. Then we obtain the

desired γ̃1 by replacing ã · b̃ · c̃ in γ̃0 by d̃.

The case when the elementary homotopy is replacing a subpath of length 2 in a

square by another subpath of length 2 in the same square is similar.

Now the general case follows by an induction on the length of the sequence of ele-
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mentary homotopies applied to γ0.�

Let G be a group, and g ∈ G. We let oG(g) (or, o(g) if the meaning is clear from

the context) denote the order of g. Zm denotes the finite cyclic group of order m.

Let Z∞ = Z, by convention. Recall that a word in a graph product of groups is in

a normal form if the word cannot be shortened by applying one of the elementary

reductions given in Definition 2.13.

Lemma 3.3. Let Γ be a graph. To each q ∈ V (Γ), we assign a (finite or infi-

nite) cyclic group, the generator of which is denoted by q̄. Let p : A(Γ) → G =

GP(Γ, {〈q̄〉}q∈V (Γ)) be the natural quotient map so that p(q) = q̄ for each q ∈ V (Γ).

If w ∈ ker p \ {1} is in a normal form, then w contains a subword of the form qk·o(q̄)

for some k 6= 0 and q ∈ V (Γ).

Proof) By Lemma 2.14, one can write w =
∏m

i=1 a
pi

i , such that

(i) for each i, ai ∈ V (Γ) and pi ∈ Z \ {0}

(ii) if i < j and ai = aj , then there exists i < k < j such that ak is not adjacent to

ai.

Since w ∈ ker p, p(w) =G

∏m
i=1 ai

pi =G 1. By Lemma 2.14 again,
∏m

i=1 ai
pi is in a

normal form unless ai
pi =G 1 for some i. This implies that o(ai) divides pi for some

i. �

Lemma 3.4. Suppose (H, λ) is a cellular label-reading pair on a surface S with the

underlying graph Γ such that the associated cubical map f : X(S,H) → XΓ is a

local isometry. Let γ be a closed curve transversely intersecting with H, and w be a

reduced word for a cyclic conjugation of wγ. Then there exists a closed curve γ̂ such
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that wγ̂ = w. If w =A(Γ) wγ, then the basepoint of γ̂ can be chosen to be same as γ.

Proof) Note that any cyclic conjugation of wγ is a label-reading of another curve

γ′ which is same as γ except for the basepoint. Now let w be a reduced word for

wγ′ . Then w and wγ′ correspond to edge-paths in XΓ, which are edge-homotopic

to each other. Since w can be obtained from wγ′ by elementary reductions (Theo-

rem 2.15), the edge-homotopy can be chosen to be non-increasing. By Lemma 3.2,

γ′ is homotopic to another curve γ̂ such that wγ̂ = w. �

Lemma 3.5. For any n ≥ 5, there exists an injective map φ from a hyperbolic

surface group into the right-angled Artin group on Cn such that any reduced word w

in the image of φ does not contain a subword in {q±2 : q ∈ V (Cn)}.

Proof) Let φ be the standard embedding of a hyperbolic surface group into A(Cn) as

in the proof of Theorem 2.42. Realize φ as a label-reading map as in Figure 2.12.

Suppose γ is any closed curve and w is a reduced word for wγ. By Lemma 3.4, there

exists another curve γ̂ with the same basepoint as γ, such that wγ̂ = w. On the other

hand, one can see that the label-reading of any closed curve on S cannot contain a

subword of the form q±2 for q ∈ V (Γ) from the construction (Figure 2.12). �

For a group homomorphism f , we let ker f and im f denote the kernel and the image

of f , respectively. The following is the main theorem of this section.

Theorem 3.6 (the graph product on a long cycle). The graph product of any non-

trivial groups on a cycle of length at least 5 contains a hyperbolic surface group.

Proof) Let G be the graph product of non-trivial groups on a cycle of length at least

5. Note that any non-trivial group contains a non-trivial cyclic subgroup. So by
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Corollary 2.20 (1), we may assume that each vertex group is cyclic with its generator

denoted by q̄, for each q ∈ V (Cn). Let p : A(Cn)→ G be the natural quotient map,

so that p(q) = q̄ for each q ∈ V (Cn). Let φn be the standard embedding of π1(S)

into A(Cn) for a closed hyperbolic surface S as in the proof of Lemma 3.5.

π1(S)

p◦φ
$$JJJJJJJJJJ

φ
// A(Cn)

p

��
G

Suppose w ∈ ker p \ {1} is in a normal form. Then w contains a subword q±2 for

some q ∈ V (Γ) (Lemma 3.3). Then by Lemma 3.4, w 6∈ im φ. So im φ∩ ker p = {1}

and p ◦ φ : π1(S)→ G is injective.�

3.2 Normalized label-reading pairs

Given a label-reading pair on a surface, we will consider a simplification (called,

normalization) of the pair, without changing the equivalence class of the associated

label-reading map. In Chapter 5, we will use this method to prove results on non-

embeddability of closed hyperbolic surface groups into certain right-angled Artin

groups.

Definition 3.7 (induced simple closed curve). Let S be a surface, and B0 be a set

of disjoint properly embedded arcs on S.

(1) A set of arc representatives is a maximal set B̄0 ⊆ B0 such that two distinct

arcs in B̄0 are not homotopic. For each α ∈ B0, the arc representative for α is

the unique ᾱ ∈ B̄0 such that α ∼ ᾱ.
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(2) For each arc ᾱ ∈ B̄0, we choose an embedding ηᾱ : I × [−1, 1] → S, which is

called a strip, such that the following conditions hold.

(i) ηᾱ(I × {0}) = ᾱ.

(ii) ηᾱ(I × {s}) is a properly embedded arc for each s ∈ [−1, 1].

(iii) Suppose α ∈ B0 is homotopic to ᾱ ∈ B̄0. Then α ⊆ ηᾱ(I × (−1, 1)).

(iv) For two distinct ᾱ, β̄ ∈ B̄0, im ηᾱ and im ηβ̄ are disjoint.

For any α ∈ B0, we let ηα = ηᾱ where ᾱ is the arc representative for α.

(3) A channel is a connected component of ∂S ∪ (∪β∈B0 im ηβ). For α ∈ B0, we

denote the channel containing α by chan(α). A closed regular neighborhood of

chan(α) is called a channel surface of α, and denoted by c̃han(α).

(4) Let Y be a channel. A component of the frontier of Y is called an induced

simple closed curve. (So, an induced simple closed curve is a component of

∂(S \ Y ) \ ∂S). If an induced simple closed curve α̂ intersects with the strip

containing α ∈ B0, then we say that α̂ is an induced simple closed curve of α,

and also, that α follows α̂.

(5) An arc α ∈ B0 is one-sided, if ηα(I × {−1}) and ηα(I × {1}) are contained in

the same induced simple closed curve.

For examples, see Figure 3.2 and 3.3.
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SS

∂1S∂1S ∂2S∂2S

∂3S∂3S

∂4S∂4S

αααα

(a) (b)

Figure 3.2: Strips and channels. Here, the bold curves are properly embedded arcs
in B0, and the dotted curves denote boundaries of strips {ηγ : γ ∈ B0}. In (a), the
shaded region, along with the boundary components intersecting with the region, is

chan(α). In (b), the darker region is c̃han(α) \ chan(α).

V

V

V

SS

∂1S∂1S ∂2S∂2S

∂3S∂3S

α̂α̂

α̂′

∂4S∂4S

αα

(a) (b)

Figure 3.3: Induced simple closed curves. The curves with arrows are showing homo-
topy classes of induced simple closed curves (an actual induced simple closed curve
consists of intervals in ∂S and in the boundaries of strips). Note that in (a), α is not
one-sided if α̂ and α̂′ are different. But in (b), α is one-sided.

Remark 3.8. (1) When we have a set of disjoint properly embedded arcs, we

always assume that a set of arc representatives and strips are chosen a priori.
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(2) Any induced simple closed curve can be written as a concatenation of paths

α̂ = α′
1 · δ1 · α

′
2 · δ2 · α

′
3 · · ·α

′
r

where for each i, δi ⊆ ∂S and α′
i is a properly embedded arc homotopic to

some αi ∈ B0.

(3) Let α̂ be an induced simple closed curve of α. Consider the surface S ′ =

S \ chan(α). An inward unit normal vector field on α̂, considered as a boundary

component of S ′, will give rise to an annulus in S ′. So one can write c̃han(α) =

chan(α)∪A, where A = ⊔iAi is a disjoint union of annuli {Ai}. The intersection

of each Ai with chan(α) is an induced simple closed curve (each Ai corresponds

to a darker region in Figure 3.2 (b)). Whenever needed, we implicitly assume

that each annulus is sufficiently narrow for the purpose of the argument.

Lemma 3.9 (unique frontier of c̃han(α)). Let B0 be a set of disjoint properly em-

bedded arcs on a surface S, such that each arc in B0 is one-sided. Let α ∈ B0. Then

c̃han(α) has only one boundary component that is not in the boundary of S, and this

boundary component separates S.

Proof) We follow the notations in Definition 3.7. Fix α ∈ B̄0, and we let α̂ denote

the (unique) induced simple closed curve of α.

We denote the boundary components of S by ∂1S, ∂2S, . . . , ∂mS. We say that a

boundary component of S or a strip is good, if it intersects with α̂.

Claim 1. If a strip is good, then so is any boundary component of S that the strip

intersects.
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Suppose a strip ηβ : I × [−1, 1] → S is good for some β ∈ B0. Then ηβ(I ×

{−1, 1}) ∩ α̂ 6= ∅. Since β is one-sided, ηβ(I × {−1, 1}) ⊆ α̂, and in particular,

ηβ({0, 1} × {−1, 1}) ⊆ α̂. Hence the boundary components of S that intersect with

the strip ηβ intersects with α̂.

Claim 2. If a boundary component of S is good, then so is any strip intersecting

with it.

If ∂iS is good, then there exists a strip that contains an intersection point of α̂ and

∂iS. So ∂iS is intersecting with at least one good strip. Suppose ∂iS intersects with

a strip that is not good. By choosing a nearest pair, on ∂iS, of a good strip X

and a strip X ′ that is not good, one can find an induced simple closed curve β̂ that

intersects with X and X ′ and also with ∂iS (Figure 3.4). Since X is good, there

exists a unique induced simple closed curve intersecting with X, namely α̂. So β̂ = α̂

and X ′ is also good, which is a contradiction.

By Claim 1 and 2, it immediately follows that

Claim 3. If two boundary components of S are connected by an arc in B0, and one

boundary component is good, then so is the other one.

From Claim 3, we see that all the boundary components and the strips in chan(α)

are good, since chan(α) is connected.

Now choose any component κ of ∂c̃han(α) \ ∂S. There exists a unique induced

simple closed curve β̂ ⊆ chan(α) such that κ and β̂ bound an annulus contained

in c̃han(α) \ chan(α) (Remark 3.8). Since β̂ intersects with chan(α), β̂ intersects

with a good strip, and since any arc in B0 is one-sided, β̂ = α̂. Hence κ is uniquely
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determined by α̂. This proves that ∂c̃han(α) contains only one component that is

not in ∂S.

From the construction S \ c̃han(α) has an interior point, and so, c̃han(α) 6= S \ {δ}.

Any path from an interior point of c̃han(α) to an interior point S \ c̃han(α) will

intersect δ, since ∂c̃han(α) \ ∂S = {δ}. Hence δ separates S. �

V

VS

∂jS ∂iS

∂kS

α̂

α̂

X ′

X

β̂

Figure 3.4: Proof of Claim 2 in Lemma 3.9.

We denote the interior of a surface S by Int(S).

Lemma 3.10. Let S be a surface. Suppose B0 is a set of disjoint properly embedded

arcs on S such that each arc is one-sided. Let ∂0S be the union of the boundary

components of S that intersect with arcs in B0. Let α̂ be an induced simple closed

curve of α ∈ B0.

(1) For any curve γ on S, either γ ∩ (∪B0) 6= ∅, or γ is a properly embedded arc

intersecting ∂0S, or γ  S \ c̃han(α).

(2) Suppose α̂ is null-homotopic. Then ∂0S = ∂S, and any essential simple closed

curve on S intersects with an arc in B0.
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Proof) Let B̄0 denote a set of arc representatives.

(1) Suppose γ ∩ (∪B0) = ∅ and γ ∩ ∂0S = ∅.

Case 1. γ is a simple closed curve.

We have

γ ⊆ S \ (∪B0) ⊆ S \ (∪B̄0) ∼ S \ (∪β∈B im ηβ) ⊆ S \ chan(α) ∼ S \ c̃han(α)

The first homotopy is obtained by enlarging each arc in B̄0 to a strip, and the second

homotopy is retracting each annulus discussed in Remark 3.8 (3) onto a circle.

Case 2. γ is a properly embedded arc.

The argument for this case is almost the same as Case 1. One has only to show that

that there exists a homotopy that maps γ into S \ c̃han(α), leaving the endpoints

on ∂S. For this, we choose c̃han(α) as a sufficiently small regular neighborhood of

chan(α) such that ∂γ ∩ c̃han(α) = ∅. This is possible since γ does not intersect ∂0S.

Then the homotopies in Case 1 do not move ∂γ. Note that in (1) we did not use the

assumption that each arc is one-sided.

(2) Supose α̂ ∼ 0. From Lemma 3.9, there exists κ ∼ α̂ such that ∂c̃han(α) ⊆

{κ}∪∂0S. Since κ separates, one can write S = c̃han(α)∪S ′ such that c̃han(α)∩S ′ =

κ. c̃han(α) 6∼ 0, since ∂iS 6∼ 0. Hence S ′ is a disk, and ∂S ⊆ ∂c̃han(α). So

∂c̃han(α) = {κ} ∪ ∂S, and ∂0S = ∂S.

Let γ be any simple closed curve, not intersecting with any arc in B0. By (1),

γ  S \ c̃han(α) ⊆ S ′. This implies that γ is not essential. �
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If α and α′ are homotopic properly embedded arcs, then a transverse orientation of α

determines a unique transverse orientation of α′, which is preserved by the homotopy.

In this case, we say that the transverse orientation of α′ is induced by that of α.

If α is a subarc of β which is a simple closed curve or a properly embedded arc, then

a transverse orientation of α uniquely determines that of β so that the transverse

orientation coincides on α. We say then, the transverse orientation of β is induced

by (or, inherits) that of α.

Definition 3.11 (induced arc). (1) Let B0 be a set of disjoint properly embedded

arcs in S. Let α̂ be an induced simple closed curve α ∈ B0. An induced arc of

α is a path β ⊆ α̂, so that β can be written as a concatenation

β = α′
1 · δ1 · α

′
2 · δ2 · · ·α

′
r

where each α′
i is homotopic to a properly embedded arc αi in B0, and δi ⊆ ∂S.

We say that α′
1 is the initial arc of β.

(2) Suppose each arc in B0 is transversely oriented. Then, in (1), this induces a

transverse orientation of the initial arc α′
1, which β can inherit. This transverse

orientation of β is said to be according to its initial arc α′
1. More generally, the

transverse orientation of β according to α′
i is defined in a similar fashion.

Remark 3.12. An induced arc is not necessarily a properly embedded arc, but it is

arbitrarily close to one (Figure 3.7 (a)).

Now let S be a surface and (H, λ) be a cellular label-reading pair with the underlying

graph Γ. Write H = B⊔C where B is a set of properly embedded arcs and C is a set

of simple closed curves. By a strip, a channel, a channel surface, an induced simple
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closed curve and an induced arc of α ∈ B with respect to (H, λ), we mean those

terms with respect to the set of properly embedded arcs B ∩ λ−1(λ(α)). Moreover,

the boundary component α̂′ of c̃han(α), which is homotopic to an induced simple

closed curve α̂ of α, is always assumed to be transversely intersecting with H, not

intersecting with C ∩ λ−1(λ(α)).

Definition 3.13 (regular label-reading pair). Let S be a hyperbolic surface with the

boundary components ∂1S, ∂2S, . . . , ∂mS (We put m = 0 if S is closed), and (H, λ)

be a label-reading pair on S with the underlying graph Γ. We say that (H, λ) is

regular, if the following conditions hold.

(i) Two curves of the same label do not intersect.

(ii) For any properly embedded arcs α, β ∈ H intersecting with the same boundary

component of S, λ(α) and λ(β) are same or adjacent.

(iii) An associated label-reading map φ : π1(S)→ A(Γ) is injective.

Remark 3.14. (1) Any label-reading pair with an injective associated label-reading

map on a closed surface is regular, as long as two curves of the same label do

not intersect.

(2) A regular label-reading pair is not necessarily cellular. Indeed, one can al-

ways generate an annulus component of S \ (∪H) by adding two homotopic

simple closed curves with opposite transverse orientations and with the same

label, inside S \ (∪H), without disturbing the regularity condition. The re-

sulting label-reading pair will be equivalent to the original label-reading pair

(Figure 3.5).
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(3) In the case when a label-reading pair (H, λ) is cellular, then one can rephrase

the condition (ii) in the Definition 3.13 as follows. For a proof, see Lemma 5.6.

Let f : X(S,H) → XΓ be the associated cubical map. Then for

any boundary component ∂iS, there exists a complete graph K ≤ Γ,

such that f(∂iS) ⊆ XK .
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Figure 3.5: Generating an annulus component of S \ H.

Definition 3.15 (normalized label-reading pair). (1) Let (H, λ) be a regular label-

reading pair on a hyperbolic surface S, and B be the set of properly embedded

arcs in H. Define the complexity of H to be the 4-tuple

c(H) = (|(∪B) ∩ ∂S|, |H/ ∼ |, |B/ ∼ |,
∑

(α,β)∈H×H
α6=β

|α ∩ β|)

where ∼ denotes the homotopy equivalence relation onH, and on B. We denote

the lexicographical ordering of the complexities by �.

(2) We say that a regular label-reading pair (H, λ) is normalized, if for any other

regular label-reading pair (H′, λ′) which is equivalent to (H, λ), c(H) � c(H′).

It is obvious that any regular label-reading pair is equivalent to a normalized one.
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Lemma 3.16 (normalization I). Let Γ be a graph, S be a hyperbolic surface, and

(H, λ) be a normalized label-reading pair. B denotes the set of properly embedded

arcs in H.

(1) If α, β ∈ B have the same label, and intersect with the same boundary compo-

nent ∂iS, then the transverse orientation of α and that of β induce the same

orientation on ∂iS at their intersections with ∂iS. In particular, each properly

embedded arc in H intersects with two distinct boundary components of S.

(2) Any two curves in H are minimally intersecting. This means that for any

α 6= β ∈ H, |α ∩ β| = i(α, β).

(3) There does not exist any null-homotopic or boundary-parallel curves in H.

Proof) (1) Let a = λ(α) = λ(β). Suppose the transverse orientations of α and β

do not induce the same orientation on ∂iS at their intersection points {Pα, Pβ}. By

choosing a nearest one among such a pair of intersection points on ∂iS, We may

assume a component of ∂iS \ {Pα, Pβ} does not intersect with any arc labeled by a.

By Lemma 2.38, one can reduce |(∪B) ∩ ∂S| by 2 without changing the equivalence

class of (H, λ) (Figure 3.6). Note that the new label-reading pair is still regular, for

an intersection of two curves of the same label is not generated by this procedure.

The second assertion follows from the orientability of S.

(2) and (3) immediately follow from Lemma 2.38. Note that one can always remove

a bigon formed by two curves in H. �

Remark 3.17. By π1-injectivity of an associated label-reading map, a simple closed

curve γ ⊆ S \(∪H) bounds a disk D. By (3), D does not contain a curve in H. Since
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Figure 3.6: Reducing complexity. Here, the labels b, c of the curves between α and
β are adjacent to a in Γ, by the regularity of H. The change in the region bounded
by the dotted curve is allowed by Lemma 2.38.

γ ∩ (∪H) = ∅, it follows that D ∩ (∪H) = ∅, and γ is null-homotopic in S \ (∪H).

This proves that H fills the surface. Hence a normalized label-reading pair is always

cellular ([CW04]).

For a given label-reading pair (H, λ) on S, we say that two curves α and β are

sufficiently close if

(i) they are homotopic,

(ii) each of α and β either intersects ∪H transvsersely or is contained in H, and

(iii) any curve in H transversely intersecting with one of α and β transversely

intersects with the other.

Lemma 3.18 (eliminating an induced arc). Let S be a surface, (H, λ) be a normal-

ized label-reading pair with the underlying graph Γ, and α be a properly embedded

arc in H. Suppose a properly embedded arc α̃ is sufficiently close to an induced arc

α̂ of α, with respect to (H, λ). Give a transverse orientation to α̂ according to its

initial arc, and let α̃ inherit this. Label α̃ by λ(α). One gets another label-reading

pair (H′, λ′) by adding the transversely oriented and labeled curve α̃ to (H, λ). Then
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(H′, λ′) is equivalent to another label-reading pair (H′′, λ′′) such that the set of simple

closed curves of H′′ is same as that of H (and so, that of H′), and the set of homo-

topy classes of properly embedded arcs in H′′ is contained in that of H. Moreover,

|H′′ ∩ ∂S| ≤ |H′ ∩ ∂S|.

Proof) Let B be the set of the properly embedded arcs in H, and a = λ(α).

Suppose γ ∈ H intersects with α̃. Since α̃ is sufficiently close to α̂, either γ intersects

with an a-arc, or a boundary component of S that meets a-arcs. Hence λ(γ) ∈

Link(a). Hence, (H′, λ′) is a label-reading pair, and two curves in H′ of the same

label do not intersect.

Write α̂ as a concatenation of paths (see Figure 3.7).

α̂ = α′
1 · δ1 · α

′
2 · δ2 · α

′
3 · · ·α

′
r

where for each i, δi ⊆ ∂S and α′
i is a properly embedded arc homotopic to αi ∈

B ∩ λ−1(a). Let ∂1S be the boundary component of S that intersects both α1 and

α2.

α̂ has the transverse orientation according to its initial arc α′
1. So, the transverse ori-

entation of α′
2, as a subarc of α̂ will be opposite to the one induced by α2 (Lemma 3.16

(1)). See Figure 3.7 (a). In this way, one sees that the transverse orientation of α′
i,

as a subarc of α̂ will be opposite to the one induced by αi if and only if i is even.

Then one can obtain another label-reading pair (H′′, λ′′) by adding arcs homotopic to

α1, α3, α5, . . . and removing arcs α2, α4, α6, . . . (Figure 3.7 (c)). By the construction,

|H′′ ∩ ∂S| ≤ |H′ ∩ ∂S| is trivial. �
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Figure 3.7: Proof of Lemma 3.18. Here, the shaded regions denote strips around
a-arcs. (a) Bold curves are in H′. α̃ is a properly embedded arc homotopic to
α̂ = α′

1 · δ
′
1 · α

′
2 · δ

′
2 · α

′
3 · · · . (b) An equivalent label-reading pair. (c) Bold curves are

in H′′.

Lemma 3.19 (normalization II). Let S be a hyperbolic surface, and (H, λ) be a

normalized label-reading pair on S with the underlying graph Γ. Then each properly

embedded arc in H is one-sided with respect to (H, λ).

Proof)

Suppose there exists a properly embedded arc α1, which is not one-sided. Let α̂ be
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one of the two induced simple closed curves of α1 with respect to (H, λ), transversely

oriented according to α1.

First consider the case when no other curve in H is homotopic to α1.

Let a = λ(α1). Write

α̂ = α′
1 · δ1 · α

′
2 · δ2 · · ·α

′
r · δr

where for each i, α′
i is a properly embedded arc homotopic to an a-arc αi ∈ B, and

δi ⊆ ∂S. Consider an embedding g : S1 × I → S, such that g(S1 × {0}) = α̂

(Remark 3.8 (3)). Put γ 1
2

= g(S1 × {1
2
}) and γ1 = g(S1 × {1}). We may assume γ1

is sufficiently close to α̂. Let γ1 have the transverse orientation induced from α̂, and

γ 1
2

have the opposite orientation (Figure 3.8 (a)). By adding γ 1
2

and γ1 to H, we

have a new label-reading pair (H1, λ1) which is equivalent to (H, λ) (Remark 3.14).

Then (H1, λ1) is equivalent to another label-reading pair (H2, λ2) by removing α1

and replacing γ 1
2

by a properly embedded arc γ′ which is homotopic α′
2 · δ2 · · ·α

′
r.

The transverse orientation of α2 induces that of α′
2 · δ2 · · ·α

′
r, and in turn, that of γ′

(Figure 3.8 (b)).

Note that H2 does not contain any properly embedded arc in the homotopy class

of α1. α′
2 · δ2 · · ·α

′
r is an induced arc with respect not only to (H, λ), but also to

(H2 \ {γ′}, λ2), since for each i > 1, α′
i 6∼ α1 (recall that α1 is not one-sided). By

Lemma 3.18, (H2, λ2) is equivalent to another label-reading pair (H3, λ3), with B3

denoting the set of the properly embedded arcs in H3, such that |H3/ ≃ | ≤ |H/ ≃ |,

and |B3/ ≃ | ≤ |B/ ≃ | − 1. This is because the homotopy class of α1 does not exist

in B3. We have a contradiction to that (H, λ) is normalized.
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In the case when there exists l > 1 properly embedded arcs in H homotopic to α1, we

consider a set of disjoint, transversely oriented simple closed curves γ 1
2l
, γ 2

2l
, . . . , γ 2l

2l

all parallel to α̂, such that γ 1
2l
, γ 2

2l
, . . . , γ l

2l
have the opposite transverse orientations

to that of α̂. By letting H1 = H ∪ {γ 1
2l
, γ 2

2l
, . . . , γ 2l

2l
}, a similar argument applies.
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Figure 3.8: Reducing complexity, if α1 is not one-sided.



Chapter 4

Co-contraction of Graphs

In Chapter 3, we have seen that the graph product of any non-trivial groups on a

cycle of length at least 5 contains a hyperbolic surface group. In this Chapter, we will

define an operation on graphs, called co-contraction, and show that co-contraction

induces an embedding between graph products of groups. As a corollary, we prove

that a graph product of non-trivial groups on any anti-cycle of length at least 5

contains a hyperbolic surface group for n ≥ 5. We also exhibit some other choices of

such embeddings in the case of right-angle Artin groups.

A dual van Kampen diagram, introduced in Chapter 2, will be used crucially for the

proof of the main theorem (Theorem 4.10) in this chapter. Other than that, the

proof will be largely independent of the material in Chapter 2 and 3.

76
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4.1 Co-contraction of graphs

Let Γ be a graph and B ⊆ V (Γ). We say B is connected, if ΓB is connected. B is

anticonnected, if ΓB is connected.

Suppose B ⊆ V (Γ). A vertex q in Γ is a neighbor of B, if q is adjacent to some vertex

in B and q 6∈ B. q is called a common neighbor of B, if q is adjacent to each vertex

in B and q 6∈ B.

Definition 4.1 ((co-)contraction). Let Γ be a graph and B ⊆ V (Γ).

(1) If B is connected, the contraction of Γ relative to B is the graph CO(Γ, B)

defined by:

V (CO(Γ, B)) = (V (Γ) \B) ∪ {vB}

E(CO(Γ, B)) = E(ΓV (Γ)\B) ∪ {{vB, q} : q is a neighbor of B}

(2) IfB is anticonnected, the co-contraction of Γ relative to B is the graph CO(Γ, B)

defined by:

V (CO(Γ, B)) = (V (Γ) \B) ∪ {vB}

E(CO(Γ, B)) = E(ΓV (Γ)\B) ∪ {{vB, q} : q is a common neighbor of B}

(3) More generally, if B1, B2, . . . , Bm are disjoint connected subsets of V (Γ), then

inductively define

CO(Γ, (B1, B2, . . . , Bm)) = CO(CO(Γ, (B1, B2, . . . , Bm−1)), Bm)
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and if B1, B2, . . . , Bm are disjoint anticonnected subsets, then similarly,

CO(Γ, (B1, B2, . . . , Bm)) = CO(CO(Γ, (B1, B2, . . . , Bm−1)), Bm)

A vertex of the (co-)contraction corresponding to some Bi is called a contracted

vertex.

(4) In (3), let Γ̂ denote the (co-)contraction. Then the (co-)contraction map of Γ

relative to B1, B2, . . . , Bm is the map p : V (Γ)→ V (Γ̂) defined by:

p(q) =

{
vBi

if q ∈ Bi for some i
q otherwise

For any subgraph Λ̂ of Γ̂, the pre-image of Λ̂ with respect to the (co-)contraction

map is the subgraph of Γ induced by p−1(V (Λ̂)).

Remark 4.2. (1) If B is connected, then CO(Γ, B) is obtained by (homotopically)

collapsing ΓB onto the contracted vertex vB and removing any loops or multi-

edges.

(2) In (1) and (2) of Definition 4.1, let p : Γ → Γ̂ be the (co-)contraction map,

and Λ̂ ≤ Γ̂. If Λ ≤ Γ is the pre-image of Λ̂ with respect to the (co-)contraction

map, then V (Λ) either contains or is disjoint from B, depending on whether

the contracted vertex vB is in Λ̂ or not. Hence, Λ̂ is a (co-)contraction of Λ,

with respect to V (Λ) ∩ B.

The following observations are immediate from the definition (see Figure 4.1).

Proposition 4.3. If B is an anticonnected set of vertices in Γ, then

CO(Γ, B) = CO(Γ, B). �
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Figure 4.1: c and f are common neighbors of {a, b} in C6. Hence v{a,b} is adjacent
to c and f in CO(C6, {a, b}). This can be also viewed by looking at the complement
graph of C6, namely C6, and collapsing the edge {a, b}.

Lemma 4.4 (contracting two vertices at a time). Γ is a graph.

(1) Let B ⊆ V (Γ) be connected. Then there exists a sequence of graphs

Γ0 = Γ,Γ1,Γ2, . . . ,Γp = CO(Γ, B)

such that for each i = 0, 1, . . . , p − 1, Γi+1 is a contraction of Γi relative to a

pair of adjacent vertices of Γi.

(2) Let B ⊆ V (Γ) be anticonnected. Then there exists a sequence of graphs

Γ0 = Γ,Γ1,Γ2, . . . ,Γp = CO(Γ, B)

such that for each i = 0, 1, . . . , p− 1, Γi+1 is a co-contraction of Γi relative to

a pair of non-adjacent vertices of Γi.�

Lemma 4.5. (1) If B is a connected subset of p vertices of Cn, then CO(Cn, B) ∼=

Cn−p+1.



CHAPTER 4. CO-CONTRACTION OF GRAPHS 80

(2) If B is an anticonnected subset of p vertices of Cn, then CO(Cn, B) ∼= Cn−p+1.

Proof) (1) is obvious from the definition. From (1), one gets (2) by taking comple-

ments. �

Definition 4.6 (weakly chordal graph[Hay85]). A graph Γ is called weakly chordal

if Γ does not contain an induced Cn or Cn for any n ≥ 5.

Note that a graph Γ is weakly chordal if and only if so is Γ. We define

W = {Γ : Γ is a weakly chordal graph}

We will later show thatN is closed under co-contraction (Corollary 4.11). The follow-

ing theorem shows one of the similarities between N andW (see also Question 4.14).

The proof is given in the appendix to this chapter.

Theorem 4.7. W is closed under contraction and co-contraction.

4.2 Embeddings between graph products of groups

We let Γ be a graph, B ⊆ V (Γ) be anticonnected and A = V (Γ) \ B. Let Γ̂ =

CO(Γ, B) and v̂ denote the contracted vertex vB of Γ̂. For each q ∈ A, q̂ denotes

the corresponding vertex in V (Γ̂), and let Â = {q̂ : q ∈ A} ⊆ V (Γ̂) (see Figure 4.3).

Consider a collection of non-trivial groups {Gq : q ∈ V (Γ)} indexed by V (Γ), and

let G = GP(Γ, {Gq}). Fix an arbitrary word w0 ∈ 〈{Gq : q ∈ B}〉 ≤ G, and define

Ĝv̂ to be the cyclic group generated by one element v̂, such that o(v̂) = oG(w0). Let

Ĝq̂ = Gq for q ∈ A. This defines a graph product of groups Ĝ = GP(Γ̂, {Ĝx : x ∈

V (Γ̂)}).
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Consider the subgroup Ĥ = 〈{Ĝq̂ : q ∈ A}〉 ∼= GP(Γ̂Â, {Ĝq̂}q̂∈Â). Let H be the

corresponding subgroup of G, i.e. H = 〈{Gq : q ∈ A}〉 ∼= GP(ΓA, {Gq}q∈A). Since

Γ̂Â
∼= ΓA and Gq = Ĝq̂ for each q ∈ A, we have Ĥ ∼= H (Figure 4.2).

If a vertex q̂ of Γ̂ = CO(Γ, B) is adjacent to v̂ = vB, then q is a common neighbor

of B in Γ, and so, for any z ∈ Ĝq̂ = Gq, [z, w0] =G 1. So we have a map φ : Ĝ→ G

satisfying that

φ(z) =

{
w0 if z = v̂

z if z ∈ Ĝq̂ = Gq for some q ∈ A = V (Γ) \B

Γ̂ Γ
CO( ,B)
oo Ĝ = GP(Γ̂, {Ĝq̂}q̂∈Â ∪ {Ĝv̂ = 〈v̂〉})

φ
// G = GP(Γ, {Gq}q∈A ∪ {Gq}q∈B)

Γ̂Â ΓA∼=
oo Ĥ = GP(Γ̂Â, {Ĝq̂}q̂∈Â) ∼=

// H = GP(ΓA, {Gq}q∈A)

Figure 4.2: A map induced by co-contraction.

Example 4.8. Let the vertices of Γ ∼= C6 be labeled as in Figure 4.3. Consider

vertex groups {Gq : q ∈ V (Γ)} defining G = GP(Γ, {Gq : q ∈ V (Γ)}). Put Γ̂ =

CO(Γ, {a, b}) ∼= C5 and label the vertices of Γ̂ as above, so that the contracted

vertex is denoted by v̂, and c, d, e and f are mapped onto ĉ, d̂, ê and f̂ by the co-

contraction map p : V (Γ) → V (Γ̂). Choose a0 ∈ Ga and b0 ∈ Gb. Define Ĝq̂ = Gq

for q ∈ V (Γ) \ {a, b} and Ĝv̂ = 〈v̂〉 where o(v̂) = o(a0). We let Ĝ = GP(Γ̂, {Ĝx : x ∈

V (Γ̂)}). Then there exists a map φ : Ĝ→ G satisfying φ(v̂) = b0
−1a0b0, such that φ

maps the subgroup Ĥ = 〈Ĝĉ, Ĝd̂, Ĝê, Ĝf̂〉 isomorphically onto H = 〈Gc, Gd, Ge, Gf〉.

The main theorem is that φ is injective for a suitable choice of w0. The crucial case

is when |B| = 2 (Lemma 4.9).
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Figure 4.3: Example 4.8. A co-contraction induced map.

Lemma 4.9 (co-contraction of two vertices). Let Γ be a graph, and Γ̂ = CO(Γ, {a, b}),

where {a, b} is a pair of non-adjacent vertices in Γ. Let G be the graph product

of groups {Gq : q ∈ V (Γ)} with the underlying graph Γ. Fix a0 ∈ Ga \ {1} and

b0 ∈ Gb \ {1}. Let q̂ denote the vertex of Γ̂ corresponding to q ∈ V (Γ) \ {a, b},

and let Ĝq̂ = Gq. Also, let v̂ denote the contracted vertex of Γ̂, and define Ĝv̂ to be

the cyclic group of order o(a0), the generator of which is denoted also by v̂. Define

Ĝ = GP(Γ̂, {Ĝx : x ∈ V (Γ̂)}). Then the map φ : Ĝ→ G uniquely determined by the

following condition is injective.

φ(z) =

{
b0

−1a0b0 if z = v̂

z if z ∈ Ĝq̂ = Gq for some q ∈ V (Γ) \ {a, b}

Proof) Let A = V (Γ) \ {a, b}, Â = {q̂ : q ∈ A}, H = 〈{Gq : q ∈ A}〉 and Ĥ = 〈{Ĝq̂ :

q̂ ∈ Â}〉. See Figure 4.3, for an illustration of the notations.
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Suppose φ is not injective. Let ŵ =
∏m

i=1 ĝi be a word of minimal length in ker φ\{1}.

Let gi = φ(ĝi) for each i, and put w =
∏m

i=1 gi. Let ∆ be a dual van Kampen diagram

for w. Since ŵ 6∈ Ĥ , ĝj = v̂k for some j and k 6= 0, and in this case, we note that

gj = φ(ĝj) = φ(v̂k) = b0
−1 · ak0 · b0, which is of length 3 in G.

Choose an innermost Ga-graph Ya in ∆. This means that a component of ∂∆ \

∂Ya does not intersect with any other Ga-graphs in ∆. Cyclically conjugating w if

necessary, one may write

w = b0
−1 · ak0 · b0 · w1 · b0

−1ak
′

0 · b0 · w2

for some subwords w1 and w2 such that Ya intersects with ak0 and ak
′

0 , and w1 does not

contain any Ga-segment. In w, a Gb-segment is always next to a Ga-segment, since

a Gb-segment appears only in the subword of the form b0
−1al0b0, for some l. Hence,

w1 does not contain any Gb-segment, either. Since Ya does not intersect with any

Gb-graph, the b0-segment, which is between ak0 and w1, is connected by a Gb-graph,

say Yb, to the b0
−1-segment between w1 and ak

′

0 (Figure 4.4).

One can write ŵ = v̂kŵ1v̂
k′ŵ2, so that ŵ1 ∈ Ĥ and φ(ŵi) = wi for i = 1, 2. Note

that any subword of a word in a normal form is again in a normal form. So ŵ1 6= 1 is

in a normal form, and since Ĥ ∼= H (Figure 4.2), w1 is in a normal form also.

Suppose that Gc-graph Yc intersects with a segment in w1, for some c ∈ A = V (Γ) \

{a, b}. Then Yc does not intersect with any other segment in w1, since w1 is in a

normal form (Lemma 2.19). So Yc intersects with segments in w2 (Lemma 2.17).

This implies that Yc intersects Ya and Yb, and so, the vertex c is adjacent to both a

and b in Γ. This is true for any segment in w1. So [ŵ1, v̂] = 1, and ŵ is equivalent
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to a shorter word v̂k+k
′

ŵ1ŵ2.�

>

>
>

>

>
>

w = b0
−1 · ak

0 · b0 · w1 · b0
−1 · ak′

0 · b0 · w2

w1

w2

ak
0

Ya

Yb

ak′

0

b0
b0

b0
b0

Figure 4.4: ∆ in the proof of Lemma 4.9.

Note that in the proof of Lemma 4.9, o(b0
−1a0b0) = o(a0). The main theorem of this

chapter follows, using routine induction argument.

Theorem 4.10 (co-contraction induced embedding). Let Γ be a graph, and B1,B2,. . .,Bm

be disjoint, anticonnected sets of vertices of Γ. Consider {Gq : q ∈ V (Γ)}, which is

a collection of non-trivial groups indexed by V (Γ). Put G = GP(Γ, {Gq}).

Put Γ̂ = CO(Γ, {B1, . . . , Bm}). Let q̂ denote the vertex of Γ̂ corresponding to q ∈

V (Γ)\∪iBi, and v̂i denote the contracted vertex vBi
of Γ̂ corresponding to Bi ⊆ V (Γ).

For each 1 ≤ i ≤ m, choose mi ∈ {o(g) : g ∈ (∪q∈Bi
Gq) \ {1}}. For x ∈ V (Γ̂), define

Ĝx =

{
〈v̂i〉 ∼= Zmi

if x = v̂i, for some i
Gq if x = q̂, for some q ∈ V (Γ) \ ∪iBi

Put Ĝ = GP(Γ̂, {Ĝx}x∈V (Γ̂)). Then there exists an embedding from Ĝ into G.

Proof) The case when m = 1 and |B1| = 2 is precisely Lemma 4.9. The general case

follows from induction (Lemma 4.4). �
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Corollary 4.11 (co-contraction induced embedding in A(Γ)). Let Γ be a graph and

Γ1 be a graph obtained from Γ by co-contraction. Fix 0 < m ≤ ∞, and let G and

G1 be the graph products of cyclic groups of order m with the underlying graphs Γ

and Γ1, respectively. Then G1 embeds into G. In particular, A(Γ1) and C(Γ1) embed

into A(Γ) and C(Γ), respectively.

Using the theorem, we can extend the result of Proposition 2.42.

Corollary 4.12 (A(Cn) and A(Cn) contain hyperbolic surface groups). Let Γ be

a cycle or an anti-cycle, of length at least 5. Then the graph product of non-trivial

groups on Γ contains a hyperbolic surface group. In particular, the right-angled Artin

group and the right-angled Coxeter group on Γ contain hyperbolic surface groups.

Proof) Let G be the graph product of non-trivial groups on Γ.

The case when Γ is a cycle of length at least 5 is in Theorem 3.6. Now suppose Γ = Cn

for some n ≥ 6. By Lemma 4.5, C5 = C5 is obtained from Γ by co-contraction. From

Theorem 4.10, G contains the graph product of certain non-trivial cyclic groups on

C5. By Theorem 3.6 again, G contains a hyperbolic surface group.�

Now we give the negative answer to Question 1.2.

Corollary 4.13. There exists an infinite family A of graphs satisfying the following.

(i) Each element in A does not contain an induced Cn for n ≥ 5.

(ii) Each element in A is not an induced subgraph of another element in A.

(iii) for each Γ ∈ A, the graph product of non-trivial groups with the underlying

graph Γ contains a hyperbolic surface group. In particular, the right-angled
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Artin group and the right-angled Coxeter group on Γ contain hyperbolic surface

groups.

Proof) Let A be the set of anti-cycles of length at least 6. (i) is in Proposition 2.4.

(ii) is obvious by looking at the complements. (iii) is Corollary 4.12.�

Recall that N denotes the family of the graphs Γ such that the right-angled Artin

group on Γ does not contain a hyperbolic surface group. From Corollary 4.12, it

follows that any graph in N is weakly chordal (Definition 4.6). Moreover, N and W

are both closed under co-contraction (Corollary 4.11, Theorem 4.7). We ask whether

N and W are actually equal.

Question 4.14 (N =W?). (1) Does A(Γ) contain a hyperbolic surface group if

and only if Γ is not weakly chordal?

(2) More generally, does a graph product of non-trivial cyclic groups contain a hy-

perbolic surface group if and only if the underlying graph is not weakly chordal?

In the next chapter, we describe similarities between N andW in more detail.

4.3 Contraction words

The material in this section will not be referred to in this thesis, and thus, may be

skipped at the first reading.

From this point on, we restrict our attention to the case when all the vertex groups

are infinite cyclic, and so, the graph products are right-angled Artin groups. Let Γ

be a graph and B be an anticonnected set of vertices of Γ. Recall that V (Γ) can be
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considered as a set of generators for A(Γ). Following the notations in Section 4.2,

we let Γ̂ = CO(Γ, B), v̂ = vB, A = V (Γ) \B, Â = {q̂ : q ∈ A} ⊆ V (Γ̂), H = 〈A〉 and

Ĥ = 〈Â〉. Choose a word w0 ∈ 〈B〉, to define a map φ : A(Γ̂)→ A(Γ) by

φ(x) =

{
w0 if x = v̂
q if x = q̂, for some q ∈ A = V (Γ) \B

From the proof of Lemma 4.9, it follows that φ is injective in the case when B = {a, b}

and w0 = b−1ab. In this section, we will give other sufficient conditions for the word

w0, so that the map φ is injective.

Definition 4.15 (contraction word). (1) Let Γ0 be an anticonnected graph. A

sequence b1, b2, . . . , bp of vertices in Γ0 is a contraction sequence of Γ0, if the

following holds: for any (b, b′) ∈ V (Γ0) × V (Γ0), there exists l ≥ 1 and 1 ≤

k1 < k2 < · · · < kl ≤ p such that, bk1 , bk2, . . . , bkl
is a path from b to b′ in Γ.

(2) Let Γ be a graph and B be an anticonnected set of vertices of Γ. A reduced

word w =
∏p

i=1 b
ei

i , where bi ∈ B and ei = ±1 for each i, is called a contraction

word of B if b1, b2, . . . , bp is a contraction sequence of ΓB. An element of A(Γ)

is called a contraction element, if it can be represented by a contraction word.

Example 4.16. (1) If a and b are non-adjacent vertices in Γ, then any reduced

word in 〈a, b〉 \ {ambn : m,n ∈ Z}±1 is a contraction word of {a, b}.

(2) Suppose (a1, a2, . . . , am) is a (possibly redundant) path in Γ such that two

consecutive terms are different, and V (Γ) = V (Γ) = {a1, a2, . . . , am}. Then

(am, am−1, . . . , a2, a1, a2, a3, . . . , am) is a contraction sequence. Hence,

am
−1am−1

−1 · · ·a2
−1a1a2a3 · · ·am
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is a contraction word. From this, we deduce that for any anticonnected set

B ⊆ V (Γ), there exists a contraction word of B.

We first note the following general lemma.

Lemma 4.17 (reduced word for a power). Let Γ be a graph and g ∈ A(Γ). Then

g =A(Γ) u
−1vu for some words u, v such that u−1vmu is reduced for each m 6= 0.

Proof) Choose words u, v such that u−1vu is a reduced word representing g and the

length of u is maximal. We will show that u−1vmu is reduced for any m 6= 0.

Assume that u−1vmu is not reduced for some m 6= 0. We may assume that m > 0.

Let w be a reduced word for u−1vmu. Draw a dual van Kampen diagram ∆ for

u−1vmuw−1. Let vi denote the v-interval on ∂∆ corresponding to the i-th occurrence

of v from the left in u−1vmu (Figure 4.5 (a)).

By Lemma 2.22, there exists a q-arc γ joining two q-segments of u−1vmu for some

q ∈ V (Γ). Let w0 denote the interval between those two q-segments. We may

choose q and γ so that the number of the segments in w0 is minimal. Then any arc

intersecting with a segment in w0 must intersect γ. It follows that any letter in w0

should commute with q. Moreover, w0 does not contain any q-segment.

Case 1. The intervals u−1 and u do not intersect with γ.

Since w0 does not contain any q-segment, γ joins vi and vi+1 for some i (Figure 4.5

(b)). Then one can write v = w1q
±1w2q

∓1w3 for some subwords w1, w2, w3 of v such

that and w0 = w3w1. Since any letter in w0 commutes with q, [w3, q] =A(Γ) 1 =A(Γ)

[w1, q]. So u−1vu =A(Γ) u
−1q±1w1w2w3q

∓1u, which contradicts to the maximality of
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u.

Case 2. γ intersects u- or u−1-interval.

Suppose u−1 intersects γ. Since u−1v = u−1v1 is reduced, γ cannot intersect v1. So,

w0 contains v1. Since w0 does not contain any q-segment, v does not contain the

letters q or q−1 and so, γ cannot intersect any vi for i = 1, . . . , m. γ should intersect

with the u-interval of u−1vmu (Figure 4.5 (c)). This implies that γ intersects with

the rightmost q-segment of the u−1-interval, and with the leftmost q-segment of the

u-interval, in u−1vmu. One can write u−1vmu = u2
−1q±1u1

−1vmu1q
∓1u2 such that

any letter in w0 = u1
−1vmu1 commutes with q, hence, [q, u1] =A(Γ) 1 =A(Γ) [q, v]. But

then u−1vu =A(Γ) u2
−1u1

−1vu1u2, which is a contradiction to the assumption that

u−1vu is reduced.�
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Figure 4.5: Proof of Lemma 4.17.

Lemma 4.18 (power of a contraction word). (1) Any reduced word for a contrac-

tion element is a contraction word.

(2) Any non-trivial power of a contraction element is a contraction element.
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Proof) (1) Let w =
∏p

i=1 b
ei

i be a contraction word of an anticonnected set B in

V (Γ). Here, bi ∈ B and ei = ±1 for each i. Suppose w′ is a reduced word, such that

w′ =A(Γ) w. There exists a dual van Kampen diagram ∆ for ww′−1. Note that any

properly embedded arc of ∆ meets both of the intervals w and w′, since w and w′ are

reduced (Lemma 2.22). Now let b, b′ ∈ B. w is a contraction word, so one can find

l ≥ 1 and 1 ≤ k1 < k2 < · · · < kl ≤ p such that, bki
and bki+1

are non-adjacent for

each i = 1, . . . , l − 1, and b = bk1 , b
′ = bkl

. Let γi be the arc that intersects with the

segment bki
of w. Since γ1, γ2, . . . , γl are all disjoint, the boundary points of those

arcs on w′ will yield the desired subsequence of the letters of w′.

(2) Let u−1vu be a reduced word for a contraction element g as in Lemma 4.17. Note

that a sequence, containing a contraction sequence as a monotonic subsequence, is

again a contraction sequence. So the reduced word u−1vmu is a contraction word of

B, for each m 6= 0. �

Definition 4.19 (canonical expression). Let Γ be a graph, and P and Q be disjoint

subsets of V (Γ). Suppose P1 is a set of words in 〈P 〉 ≤ A(Γ). A canonical expression

for g ∈ 〈P1, Q〉 with respect to {P1, Q} is a word
∏k

i=1 c
ei

i , where

(i) for each i, ci ∈ P1 ∪Q and ei = 1 or −1,

(ii)
∏k

i=1 c
ei

i =A(Γ) g

such that k is minimal. k is called the length of the canonical expression.

Remark 4.20. In the case when P1 ⊆ P , a word is a canonical expression with

respect to {P1, Q}, if and only if it is reduced in A(Γ).

Now we compute intersections of certain subgroups of A(Γ).
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Lemma 4.21 (intersections). Let Γ be a graph, P,Q be disjoint subsets of V (Γ) and

P1 be a set of words in 〈P 〉 ≤ A(Γ). Let R be any subset of V (Γ).

(1) If w is a canonical expression with respect to {P1, Q}, then there does not exist

a q-pair of w for any q ∈ Q.

(2) 〈P1, Q〉 ∩ 〈R〉 ⊆ 〈P1, Q ∩R〉. Moreover, the equality holds if P ⊆ R.

(3) Suppose P is anticonnected. Let g be a contraction element of P , and P1 = {g}.

Assume P 6⊆ R. Then 〈P1, Q〉 ∩ 〈R〉 = 〈Q ∩ R〉.

Proof)

(1) Let w be a canonical expression, Suppose there exists a q-pair of w for some

q ∈ Q. Then by Lemma 2.22, one can write w = w1q
±1w2q

∓1w3 for some subwords

w1, w2 and w3 such that w2 ∈ 〈LinkΓ(q)〉. It follows that w =A(Γ) w
′′ = w1w2w3.

Since P ∩ Q = ∅, w1, w2 and w3 are also canonical expressions with respect to

{P1, Q}. This contradicts to the minimality of k.

(2) Let w be a canonical expression for an element in 〈P1, Q〉 ∩ 〈R〉, and w′ =A(Γ) w

be a reduced word. Consider a dual van Kampen diagram ∆ for ww′−1.

Suppose that there exists a q-segment in w, for some q ∈ Q. Then by (1), the

q-segment should be joined, by a q-arc, to another q-segment of w′. Since w′ is a

reduced word representing an element in 〈P1, Q〉 ∩ 〈R〉 ⊆ 〈R〉, each segment of w′ is

labeled by R±1 (Lemma 2.23 (2)). Therefore, q ∈ Q∩R. This shows 〈P1, Q〉∩〈R〉 ⊆

〈P1, Q ∩ R〉.

If P ⊆ R, then 〈P1, Q ∩R〉 ⊆ 〈P1, Q〉 ∩ 〈R〉 is obvious.
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(3) 〈Q ∩ R〉 ⊆ 〈P1, Q〉 ∩ 〈R〉 is trivial.

To prove the converse, suppose w ∈ (〈P1, Q〉 ∩ 〈R〉) \ 〈Q ∩ R〉. w is chosen so that

w is a canonical expression with respect to {P1, Q}, and the length (as a canonical

expression) is minimal.

Let w̃ be a reduced word for g. One can write w̃ = u−1vu such that u−1vmu is

reduced for any m 6= 0 (Lemma 4.17).

Write w =
∏k

i=1 c
ei

i (ci ∈ {P1, Q}, ei = ±1). From the proof of (2), ci ∈ P1∪(Q∩R) =

{w̃}∪ (Q∩R) for each i. Any shorter canonical expression than w, for an element in

〈P1, Q〉∩〈R〉 is in 〈Q∩R〉. This implies that c1, ck 6∈ Q∩R, and hence, c1 = w̃ = ck.

So we can write w = w̃mw1w̃
ew2 for some subwords w1, w2 of w, m ∈ Z \ {0} and

e ∈ {1,−1}. Here, w1 is chosen so that the letters of w1 are in (Q ∩ R)±1. We will

show that [w1, w̃] =A(Γ) 1.

Consider another word w′ = u−1vmuw1w̃
ew2 =A(Γ) w. Let w′′ be a reduced word for

w′, and ∆ be a dual van Kampen diagram for w′w′′−1.

Fix b ∈ P \R. Let β ⊆ ∆ be the b-arc that intersects with the leftmost b-segment of

w′, considered as a subset of ∂∆. This leftmost b-segment will be contained in the

contraction word u−1vmu (Figure 4.6). Since u−1vmu is reduced and b 6∈ Q ∩ R, β

intersects with w′′ or w̃ew2 on ∂∆. Since b 6∈ R, β intersects with w̃ew2.

Let b′ be any element in P . Using the assumption that u−1vmu is a contraction word,

one can find a sequence of arcs β1, β2, . . . , βl ∈ H such that

(i) λ(β1) = b, λ(βl) = b′,
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(ii) λ(βi) and λ(βi+1) are non-adjacent in Γ, for each i = 1, 2, . . . , l − 1, and

(iii) each βi intersects with a segment in u−1vmu and a segment in the interval

w̃ew2.

Note that (iii) comes from the assumptions that no arc joins two segments in u−1vmu,

and that the letters of w1 are in (Q ∩ R)±1.

As in (1), each segment of w1 is joined to a segment in w′′. In particular, [b′, w1] =

[λ(βl), w1] =A(Γ) 1. Since this is true for any b′ ∈ P , [w1, w̃] =A(Γ) 1, and so,

w =A(Γ) w1w̃
m+ew2. One has w̃m+ew2 ∈ (〈P1, Q〉 ∩ 〈R〉) \ 〈Q∩R〉, since w 6∈ 〈Q∩R〉

and w1 ∈ 〈Q∩R〉. By the minimality of w, we have w1 = 1. This argument continues,

and finally one can write w =A(Γ) w̃
m′

for some m′ 6= 0. In particular, any reduced

word for w is a contraction word of P (Lemma 4.18). This is a contradiction to the

assumption w ∈ 〈R〉, since P 6⊆ R. �
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Figure 4.6: ∆ in the proof of Lemma 4.21.

Lemma 4.22 (co-contraction induced embedding by contraction word). Let Γ be a

graph, B be an anticonnected set of vertices of Γ and g be a contraction element of
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B. Then there exists an injective map φ : A(CO(Γ, B))→ A(Γ) satisfying

φ(x) =

{
g if x = vB
x if x ∈ V (Γ) \B

Proof)

As in the proof of Lemma 4.9, let Γ̂ = CO(Γ, B), v̂ = vB and A = {q : q ∈ V (Γ)\B}.

For q ∈ A, let q̂ denote the corresponding vertex in Γ̂, and Â = {q̂ : q ∈ A}. There

exists a map φ : A(Γ̂)→ A(Γ) satisfying

φ(x) =

{
g if x = v̂

q if x = q̂ ∈ Â

To prove that φ is injective, we use an induction on |A|.

If A = ∅, then V (Γ) = B and Γ̂ is the graph with one vertex v̂. So, φ maps

〈v̂〉 = A(Γ̂) ∼= Z isomorphically onto Z ∼= 〈g〉 ≤ A(Γ).

Assume the injectivity of φ for the case when |A| = k, and now let |A| = k+1.

Choose any t ∈ A. Let A0 = A \ {t} and Â0 = {q̂ : q ∈ A0}. Let Γ0 be the

induced subgraph on A0 ∪ B in Γ, and Γ̂0 be the induced subgraph on Â0 ∪ {v̂}

in Γ̂. We consider A(Γ0) and A(Γ̂0) as subgroups of A(Γ) and A(Γ̂), respectively,

so that A(Γ0) = 〈A0, B〉 and A(Γ̂0) = 〈Â0, v̂〉. Let K = 〈A0, g〉 = φ(A(Γ̂0)) and

J = 〈A, g〉 = φ(A(Γ̂)). By the inductive hypothesis, φ maps A(Γ̂0) isomorphically

onto K (Figure 4.7).

From Lemma 2.24, we can identify A(Γ) = A(Γ0)∗C , where C = 〈LinkΓ(t)〉 and t is

the stable letter. Since J = 〈A0, g, t〉 = 〈K, t〉, Lemma 2.25 implies that we can also
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identify J = (J ∩ A(Γ0))∗J∩C, where t is the stable letter again. Also, we identify

A(Γ̂) = A(Γ̂0)∗D, where D = 〈LinkΓ̂(t̂)〉 and t̂ is the stable letter.

By Lemma 4.21 (2),

J ∩ A(Γ0) = 〈g, A〉 ∩ 〈A0, B〉 = 〈g, A ∩ (A0 ∪B)〉 = 〈g, A0〉 = K = φ(A(Γ̂0))

Applying Lemma 4.21 (3) for the case when R = LinkΓ(t),

J ∩ C = 〈g, A〉 ∩ 〈LinkΓ(t)〉

=

{
〈LinkΓ(t) ∩ A, g〉 if B ⊆ LinkΓ(t)
〈LinkΓ(t) ∩ A〉 otherwise

From the definition of co-contraction, we note that

D = LinkΓ̂(t̂) =

{
{q̂ : q ∈ LinkΓ(t) ∩ A} ∪ {v̂} if B ⊆ LinkΓ(t)
{q̂ : q ∈ LinkΓ(t) ∩ A} otherwise

Hence, J ∩ C = φ(D). This implies that φ : A(Γ̂) → J is an isomorphism, as

follows.

D

∼=
��

≤ A(Γ̂0)

∼=
��

≤ A(Γ̂0)∗D = A(Γ̂)

φ
��

J ∩ C ≤ K = J ∩ A(Γ0) ≤ (J ∩A(Γ0))∗J∩C = J

�

By an induction onm, one can prove the following generalization of Theorem 4.10.

Theorem 4.23. Let Γ be a graph and B1,B2,. . . ,Bm be disjoint subsets of V (Γ)

such that each Bi is anticonnected. For each i, let vBi
denote the contracted vertex

correponding to Bi in CO(Γ, (B1, B2, . . . , Bm)), and gi be a contraction element of
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Bi. Then there exists an injective map φ : A(CO(Γ, (B1, B2, . . . , Bm))) → A(Γ)

satisfying

φ(x) =

{
gi if x = vBi

, for some i
x if x ∈ V (Γ) \ ∪mi=1Bi

A(Γ) = A(Γ0)∗C

lllllllllllll

A(Γ̂) = A(Γ̂0)∗D
φ

t̂ 7→ t
// J = 〈A, g〉 A(Γ0) = 〈A0, B〉

mmmmmmmmmmmmmm

A(Γ̂0) = 〈Â0, v̂〉
φ ⇂
∼=

// K = 〈A0, g〉 C = 〈LinkΓ(t)〉

D = 〈LinkΓ̂(t̂)〉 // J ∩ C

Figure 4.7: Proof of Lemma 4.22. Note that V (Γ) = A ⊔ B = A0 ∪ {t} ∪ B and
V (Γ̂) = Â ⊔ {v̂} = Â0 ∪ {t̂} ∪ {v̂}.
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Appendix: Proof of Theorem 4.7

Lemma 4.24. Let Γ be a graph and {a, b} be an edge of Γ. If CO(Γ, {a, b}) contains

an induced Cn for some n ≥ 3, then Γ contains an induced Cn or Cn+1.

Proof) Put Γ̂ = CO(Γ, {a, b}). Let v̂ denote the contracted vertex v{a,b} in Γ̂. Let Γ′

be the pre-image of an induced Cn in Γ̂. By Remark 4.2 (2), a contraction of Γ′ is

Cn. So it suffices to consider only the case when Γ̂ itself is Cn.

Label the vertices of the Γ̂ as v̂, a1, a2, . . . , an−1, such that ai and ai+1 are adjacent

for i = 1, 2, . . . , n − 2, and v̂ is adjacent to a1 and an−1. By the definition of the

contraction, neither a nor b is adjacent to any of a2, a3, . . . , an−2. Also, each of a1

and an−1 is adjacent to at least one of a or b.

Case 1. a or b is adjacent to both of a1 and an−1.

We may assume a is adjacent to both of a1 and an−1. In this case, the vertices

a, a1, a2, a3, . . . , an−1 span an induced Cn.

Case 2. Each of a and b is adjacent to exactly one of a1 and an−1.

Again, we may assume that a is adjacent to a1, but not to an−1. This will imply

that b is adjacent to an−1, but not to a1. In this case, a, a1, a2, . . . , an−1, b span an

induced Cn+1. �

Lemma 4.25. Let Γ be a graph, and {a, b} be a pair of non-adjacent vertices of Γ.

Put Γ̂ = CO(Γ, {a, b}).

(1) If Γ̂ contains an induced Cn, then Γ contains an induced Cn or Cn+1.
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(2) If Γ̂ contains an induced Cn for some n ≥ 6, then Γ contains an induced Cm

for some 5 ≤ m ≤ n.

Proof)

Let v̂ denote the contracted vertex v{a,b} in Γ̂.

(1) Immediate from Lemma 4.24 by considering the complement graphs.

(2) As in the proof of Lemma 4.24, it suffices to consider the case Γ̂ = Cn (Re-

mark 4.2).

Label the vertices of the Γ̂ as v̂, a1, a2, . . . , an−1, such that ai and ai+1 are adjacent for

i = 1, 2, . . . , n−2, and v̂ is adjacent to both a1 and an−1. By the definition of the co-

contraction, each of a and b is adjacent to both a1 and an−1, and for i = 2, 3, . . . , n−2,

each ai cannot be adjacent to both of a and b.

Now suppose that Γ does not have an induced Cm for any 5 ≤ m ≤ n. We show the

following claims.

Claim 1. Let 2 ≤ i ≤ n− 3. Then each of a and b is adjacent to at least one of ai

and ai+1.

Assume neither ai nor ai+1 is adjacent to a. Note that ai−1, ai, ai+1 and ai+2 span an

induced path γ1 of length 3 in Γ. Also, the induced subgraph of Γ on

{ai+2, ai+3, . . . , an−1, a, a1, a2, . . . , ai−1}

contains an induced path γ2 from ai+2 to ai−1. Since ai−1 are ai+2 are not adjacent

in Γ, the length of γ2 is at least 2, and at most n−3. Then the subgraph γ1∪γ2 of Γ
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is an induced Cm for some 5 ≤ m ≤ n, which is a contradiction. The same argument

applies for b in place of a.

Claim 2. For 2 ≤ i ≤ n− 2, each ai is adjacent to exactly one of a or b.

We know that ai cannot be adjacent to both of a and b. Suppose ai is non-adjacent

to both of a and b. If i = 2, 3, . . . , n− 3, then by Claim 1, ai+1 must be adjacent to

both of a and b, which is a contradiction. If i = n − 2, the same reasoning shows

that an−3 is adjacent to both of a and b, which is also a contradiction.

By the above claims, we may assume that a2, a4, . . . are adjacent to a, and a3, a5, . . .

are adjacent to b. Since n ≥ 6, the vertices a, a1, b, a3, a4 span an induced C5 (Fig-

ure 4.8).�

a1a

b

a4 a3

a2

· · ·

•

•

••

•

• MMMMMMMMM qqqqqqqqq
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22

2

��
��
�

Figure 4.8: Proof of Lemma 4.25 (1).

Proof of Theorem 4.7. Let Γ be weakly chordal, B be anticonnected and Γ̂ =

CO(Γ, B). We show that Γ̂ is weakly chordal. The case when |B| = 2 follows

from Lemma 4.25. The general case follows by an induction, since Γ̂ can be obtained

from Γ by a succession of co-contractions (Lemma 4.4).

So we see thatW is closed under co-contraction. W is closed under contraction also,

since W is closed under taking complement graphs. �



Chapter 5

The Graph Classes N and N∞

Recall that N is the class of graphs Γ such that A(Γ) does not contain a hyperbolic

surface group. In the previous chapters, we have seen that

(i) N ⊆ W, where W is the class of weakly chordal graphs (Corollary 4.12).

(ii) N is closed under co-contraction (Corollary 4.11).

In this chapter, we find a subclass F ofN , using graph-theoretic properties ofN (Def-

inition 5.11). F is large enough to contain any chordal graphs and chordal-bipartite

graphs. This might be considered as a step toward combinatorial characterization

of the graph class N . For our purpose, it turns out to be more useful to consider

another graph class N∞, which is a “relative version” of N .

5.1 Chordal and chordal bipartite graphs

In this section, we describe chordal graphs and chordal bipartite graphs ([Dir61],

[GG78]). For the reader’s convenience, we give proofs to their well-known proper-

100
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ties.

Definition 5.1 ([Dir61, GG78]). (i) A graph Γ is chordal if Γ does not contain

an induced cycle of length at least 4.

(ii) A graph Γ is chordal bipartite, if Γ is bipartite and Γ does not contain an

induced cycle of length at least 6.

Remark 5.2. Any anti-cycle of length at least 6 contains an induced triangle and

an induced square (Figure 4.1). So if a graph is chordal, then it is weakly chordal

and does not contain an induced square. The converse is also true by the definition.

Similarly, a graph is chordal bipartite, if and only if it is weakly chordal and does

not contain an induced triangle. In particular, chordal graphs and chordal bipartite

graphs are weakly chordal.

Definition 5.3 (bisimplicial edge). An edge {a, b} of Γ is bisimplicial, if for any

a′ ∈ Link(a) and b′ ∈ Link(b), either a′ = b′ or {a′, b′} ∈ E(Γ).

One can easily verify that any induced subgraph of chordal (resp. chordal bipartite)

graph is chordal (resp. chordal bipartite). Also, if Γ is chordal bipartite and e

is a bisimplicial edge, then Γ \ e̊ is chordal bipartite. So the following theorem

gives a recursive characterization of chordal and chordal bipartite graphs. We give

a complete proof, following [CRS02] in the appendix to this chapter. A recursive

formulation of the graph class F (Definition 5.11) is motivated by Theorem 5.4.

Theorem 5.4 ([Dir61],[GG78]). Let Γ be a graph.

(1) If Γ is chordal but not complete, then there exist Γ1,Γ2 � Γ such that Γ1 ∩ Γ2

is complete, and Γ = Γ1 ∪ Γ2.
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(2) If Γ is chordal bipartite but not discrete, then Γ contains a bisimplicial edge.

5.2 A characterization of N∞

In this section, we define and study various combinatorial properties of the graph

class N∞. As a result, we give a recursively defined graph class F as a lower bound

for N and N∞. This section essentially concludes the thesis, postponing the proofs

of two crucial lemmas to Section 5.3 and 5.4.

Definition 5.5. N∞ is the set of the graphs Γ such that there does not exist a

π1-injective map f : S → XΓ from a compact hyperbolic surface S satisfying the

following.

For each boundary component ∂0S of S, there exists K ∈ K(Γ), such

that f(∂0S) ⊆ XK .

Lemma 5.6 (normalization). Γ 6∈ N (Γ 6∈ N∞, respectively) if and only if there

exists a normalized label-reading pair on a closed hyperbolic surface (a compact hy-

perbolic surface, respectively) with the underlying graph Γ.

Proof) The statement for N is trivial from Lemma 2.39 ( [CW04]).

Now suppose (H, λ) is a normalized label-reading pair on a compact hyperbolic

surface S with the underlying graph Γ. By Remark 3.17, (H, λ) is cellular and

so, induces a unique cubical map f : X(S,H) → A(Γ). Let ∂0S be a boundary

component of S. Since (H, λ) is regular, there exists a complete graph K ≤ Γ such

that ∂0S intersects only with the curves labeled by vertices in V (K). Hence, the
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edge-path f(∂0S) is contained in XK .

Conversely, suppose Γ is a graph, and f : S → XΓ is a π1-injective map such that for

each boundary component ∂0S, we can find a complete subgraph K ≤ Γ satisfying

f(∂0S) ⊆ XK . By Proposition 2.41, f∗ is a label-reading map associated with a

label-reading pair (H, λ), such that no two curves of the same label intersect. We

have only to show that (H, λ) can be chosen to be regular. Let di be an element of

π1(S) corresponding to a boundary component ∂iS of S. There exists a complete

graph K ≤ Γ such that f(∂iS) ⊆ XK . So one can write f∗(di) = w′
i
−1wiw

′
i, where

wi is a word of the letters in V (K) ∪ V (K)−1. By Proposition 2.41 again, we may

choose (H, λ) such that any curve in H intersecting with ∂iS is labeled by V (K). So

(H, λ) is regular.�

Lemma 5.7. K1 ∈ N∞.

Proof) Note that A(K1) ∼= Z does not contain any hyperbolic surface group or non-

abelian free group.�

Recall that for two graphs Γ1 and Γ2,

Join(Γ1,Γ2) = Γ1 ⊔ Γ2

Lemma 5.8 (closed under join). If Γ1,Γ2 ∈ N∞, then Join(Γ1,Γ2) ∈ N∞.

Proof) Suppose Γ = Join(Γ1,Γ2) 6∈ N∞. There exists a normalized label-reading

pair (H, λ) with the underlying graph Γ on a hyperbolic surface S, and an associated

label-reading map φ : π1(S)→ A(Γ) ∼= A(Γ1)×A(Γ2). Let pi : A(Γ)→ A(Γi) be the

natural projection map.
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We claim that p1◦φ or p2◦φ is injective. Suppose not, and choose a1 ∈ ker(p1◦φ)\{1}

and a2 ∈ ker(p2 ◦ φ) \ {1}. Write φ(a1) = (1, b2) and φ(a2) = (b1, 1) for some

b1 ∈ A(Γ1) \ {1} and b2 ∈ A(Γ2) \ {1}. Then

φ[a1, a2] = [φ(a1), φ(a2)] = [(1, b2), (b1, 1)] = 1

Since S is hyperbolic, a1, a2 ∈ 〈c〉 for some c ∈ π1(S) (Lemma 2.32). This would

imply

Z× Z ∼= 〈(1, b2), (b1, 1)〉 = 〈φ(a1), φ(a2)〉 ⊆ 〈φ(c)〉

which is a contradiction. Hence, we may assume that ker(p1 ◦ φ) = 1, i.e. p1 ◦ φ

is injective. This means that the label-reading map π1(S) → A(Γ1) obtained by

removing curves in H labeled by V (Γ2) is injective. So Γ1 6∈ N∞.�

From the above lemmas, we note that any complete graphs and complete bipartite

graphs are in N∞. Now we state two key lemmas concerning properties of N∞. Their

proofs are given in Section 5.3 and 5.4, respectively.

Lemma 5.9 (complete graph amalgamation). Let Γ be a graph. Suppose Γ1,Γ2 ≤ Γ

satisfies

(i) Γ1 ∪ Γ2 = Γ,

(ii) Γ1 ∩ Γ2 is complete, and

(iii) Γ1,Γ2 ∈ N∞.

Then Γ ∈ N∞.

Lemma 5.10 (bisimplicial edge addition). Let Γ be a graph with a bisimplicial edge

e. If Γ \ e̊ ∈ N∞, then Γ ∈ N∞.
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Definition 5.11. We let F denote the smallest family of the graphs satisfying the

following conditions.

(i) K1 = • ∈ F .

(ii) Γ1,Γ2 ∈ F , then Join(Γ1,Γ2) ∈ F .

(iii) If Γ1,Γ2 ∈ F and Γ1 ∩ Γ2 = Kn for some n ≥ 0, then Γ1 ∪ Γ2 ∈ F .

(iv) Suppose e is a bisimplicial edge of a graph Γ. If Γ \ e̊ ∈ F , then Γ ∈ F .

(v) Γ ∈ F and B is an anticonnected subset of V (Γ), then CO(Γ, B) ∈ F .

Remark 5.12. (i) Every complete graph is in F , by (i) and (ii). Applying The-

orem 5.4 and (iii), we see that every chordal graph is in F .

(ii) By (i) and (iii) (with n = 0), every discrete graph is in F . From Theorem 5.4

and (iv), it follows that every chordal bipartite graph is in F .

From the lemmas in this section and Lemma 4.11, N∞ satisfies the conditions (i)

through (v) in Definition 5.11. By Corollary 4.12, we have N ⊆ W. So the follow-

ing theorem summarizes the results on right-angled Artin groups included in this

thesis.

Theorem 5.13 (bounds for N ). F ⊆ N∞ ⊆ N ⊆ W.

Corollary 5.14. Any chordal graphs and chordal bipartite graphs are in N∞. Hence,

the right-angled Artin groups on such graphs do not contain hyperbolic surface groups.

It is not hard to verify that W also satisfies the conditions of Definition 5.11 (see

Theorem 4.7). This naturally leads to the following questions.

Question 5.15. (1) Is N∞ =W?
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(2) More weakly, is N∞ = N ?

(3) Note that W is closed under taking complement graphs. If A(Γ) contains a

hyperbolic surface group, does A(Γ̄) necessarily contain a hyperbolic surface

group?

Remark 5.16. P6 is weakly chordal (Figure 5.1). It is an interesting question

whether A(P6) contains a hyperbolic surface group or not.
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Figure 5.1: P6

In Section 5.3, we will see that an affirmative answer to the Question 5.15 (2) would

follow from Conjecture 5.22, which is seemingly simpler.

5.3 Complete graph amalgamation

In this section, we prove Lemma 5.9.

Recall the convention that for a graph Γ, X∅ denotes the 0-skeleton of XΓ.

Lemma 5.17 (disjoint union). Let Γ1,Γ2 ∈ N . Then Γ1 ⊔ Γ2 ∈ N .

Proof) Suppose there exists an embedding of a hyperbolic surface group φ : π1(S)→

A(Γ1⊔Γ2) ∼= A(Γ1)∗A(Γ2). Note that π1(S) is freely indecomposable [LS77, Proposi-

tion 5.14]. By Kurosh subgroup theorem, π1(S) embeds into A(Γ1) or A(Γ2).�

Lemma 5.18 (complete graph amalgamation, weaker version). Suppose Γ is a graph,

such that Γ = Γ1 ∪ Γ2 for some induced subgraphs Γ1 and Γ2. Furthermore, assume
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that Γ1 ∩ Γ2
∼= Kn for some n ≥ 0. If Γ1,Γ2 ∈ N∞, then Γ ∈ N

Proof) Let K = Γ1 ∩ Γ2. XΓ is homotopic to XΓ1 ∪XK × I ∪XΓ2 amalgamated by

the embeddings XK×{0} → XΓ1 and XK×{1} → XΓ2. Now suppose Γ 6∈ N . Then

there exists a π1-injective map f from a closed surface S to XΓ. By transversality

(Lemma 2.40), we may assume that f−1(XK × {
1
2
}) is a disjoint set of simple closed

curves. f restricts to π1-injective maps from the components of S \ f−1(XK × {
1
2
})

into XΓi
, for i = 1 or 2. One of the components must be a hyperbolic surface and

so, Γi 6∈ N∞ for i = 1 or 2. �

From Lemma 5.18, we see that it is more natural to consider N∞ in studying hy-

perbolic surface subgroups of A(Γ). Recall that for a given label-reading pair (H, λ)

on S, we say that two curves α, β are sufficiently close if they are homotopic, trans-

versely intersect H (or in H), and any curve in H transversely intersecting with one

of α and β transversely intersects with the other also.

Definition 5.19 ([Gol04]). A vertex q of a graph Γ is called simplicial, if Link(q) is

a complete graph.

Lemma 5.20 (simplicial vertex addition, for N∞). Let Γ be a graph. Suppose

{q1, . . . , qr} is a set of pairwise non-adjacent simplicial vertices in Γ. Define Γ′ =

Γ \ ∪rj=1
˚Star(qj). If Γ′ ∈ N∞, then Γ ∈ N∞.

Proof) Assume that Γ 6∈ N∞, and we prove Γ′ 6∈ N∞.

First consider the case when r = 1, and let q = q1.

Choose a normalized label-reading pair (H, λ) with the underlying graph Γ on a

hyperbolic surface S, and let φ : π1(S) → A(Γ) be an associated injective label-
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reading map. Also, let f : X(S,H)→ XΓ be the associated cubical map.

Put Hq = λ−1(q).

Case 1. Hq consists of simple closed curves.

Choose a connected component S ′ of S \ (∪Hq), so that S ′ is hyperbolic. The curves

in the set (∪H)∩S ′ naturally inherit transverse orientations and labels from those of

(H, λ), and so, determine a label-reading pair (H′, λ′) with the underlying graph Γ′

on S ′. Note that H′ does not have any q-curve. Let φ′ be an associated label-reading

map with respect to (H′, λ′). We have the following commutative diagram with a

suitable choice of the basepoint.

π1(S
′)

φ′
//

incl∗
��

A(Γ′)

incl
��

π1(S)
φ

// A(Γ)

Since φ and incl∗ : π1(S
′)→ π1(S) are injective, so is φ′.

A simple closed curve in Hq intersects with a curve in H labeled by a vertex in

Link(q). So each boundary component ∂iS
′ of S ′ either is a boundary component of

S, or comes from a curve in Hq. In the latter case, any curve in H′ intersecting with

∂iS
′ must be labeled by a vertex in Link(q). Since Link(q) spans a complete graph

in Γ′, Γ′ 6∈ N∞.

Case 2. Hq contains a properly embedded arc γ. Suppose γ joins a boundary compo-

nents ∂1S to another ∂2S. By Lemma 3.16, ∂1S 6= ∂2S. Also, any curve intersecting

with ∂iS has a label in Link(q) ∪ {q}, for i = 1, 2.



CHAPTER 5. THE GRAPH CLASSES N AND N∞ 109

Choose γ′ ∼ γ, which transversely intersects H, and assume that γ′ is sufficiently

close to γ. Then wγ′ ∈ 〈Link(q)〉.

Consider ∂iS as a loop based at γ′ ∩ ∂iS, for i = 1, 2. Put α = ∂1S, and β =

γ′ · ∂2S · γ′−1 (Figure 5.2). Then wα ∈ 〈Link(q) ∪ {q}〉, and wβ = wγ′w∂1Swγ′
−1 ∈

〈Link(q) ∪ {q}〉. Hence φ([[α], [β]]) = [wα, wβ] = 1. Since φ is injective, α ∼ β±1,

which is impossible unless S is an annulus (Lemma 2.32).

Now consider the case when r > 1. Note that qr is a simplicial vertex of Γ\∪ ˚Stari<rqi.

By induction, we see that Γ′ 6∈ N∞. �

V

V

γ

α

β

∂1S ∂2S

Figure 5.2: Proof of Lemma 5.20

Remark 5.21. Since every chordal graph has a simplicial vertex (Theorem 5.34), it

already follows that all chordal graphs are in N∞.

It is not known if Lemma 5.20 is still true if N∞ is replaced by N . Namely,

Conjecture 5.22 (simplicial vertex addition, for N ). Let q be a simplicial vertex

of a graph Γ, and Γ′ be the induced subgraph of Γ on V (Γ) \ {q}. If Γ′ ∈ N , then

Γ ∈ N .

Lemma 5.23 (eventual nontriviality). Suppose we have a group presentation

F = 〈x1, . . . , xs, y1, . . . , yn|Xy1y2 · · · yn = 1〉

where n ≥ 1 andX is a word of {x±1
1 , x±1

2 , . . . , x±1
s }. Choose u1, . . . , u2l+1, v1, . . . , v2l ∈
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F such that

(i) v1, . . . , v2l ∈ {y1, . . . , yn}

(ii) If vi = vi+1, then ui+1 6∈ 〈vi〉.

Then there exists M0, such that for any r > M0, the word

f(r) = u1v
r
1u2v

−r
2 · · ·u2lv

−r
2l u2l+1

is non-trivial in F .

Proof)

For the convenience of notations, we prove the lemma for (n + 1) in place of n.

That is, we let F = 〈x1, . . . , xs, y1, . . . , yn+1|Xy1y2 · · · yn+1 = 1〉, for some n ≥ 0, and

v1, . . . , v2l ∈ {y1, . . . , yn+1}. We consider F as the free group 〈x1, . . . , xs, y1, . . . , yn|−〉

and yn+1 as the word yn+1 = Y = (Xy1y2 · · · yn)−1, so that v1, . . . , v2l ∈ {y1, . . . , yn, Y }.

RegardX, Y, ui and vi as (freely) reduced words. Note that v±ri is a cyclically reduced

words for each i. Let l : F → N ∪ {0} be the length fuction. Put M = maxi{l(ui)}

and choose any M0 > 2M . Suppose r > M0 and f(r) = 1. Consider a dual van

Kampen diagram ∆ = (H, λ) of the word f(r) = u1v
r
1 · · ·u2lv

−r
2l u2l+1 in F , where

F is considered as a right-angled Artin group on the discrete graph with vertices

{x1, . . . , xs, y1, . . . , yn}. All the curves in H are disjoint, and hence, any subword

between a cancelling pair is trivial in F .

Consider any subword v±ri of f(r). Write v±ri = w1 · w2 · w3, where w1 = w3 = v±Mi ,

and w2 = v
±(r−2M)
i . Any letter y±1

j in the interval w2 is called a mid-word letter of

f(r). Since r > M0 > 2M , every v±ri in f(r) contains a mid-word letter.
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Let γ be an arc in H, intersecting with a mid-word letter, say yj or yj
−1 for some

j. May assume γ is innermost among the arcs intersecting with mid-word letters.

Without loss of generality, that mid-word letter yj or yj
−1 is assumed to be contained

in a subword vri , rather than v−ri , for some i. From now on, these i and j are

fixed.

Case 1. vi = yj.

In this case, the mid-word letter in vri is a yj-segment.

Claim 1. The yj
−1-segment, joined by γ, is contained in some v±ri′ .

Suppose it is in some ui′. Since γ is chosen to be innermost, and each v±rk contains

mid-word letters, i′ = i or i′ = i + 1. We may assume i′ = i + 1. One can write

ui+1 = u · yj
−1 · u′ such that for some p ≥ 0, the first and the last letter in the

following interval (which is a subword of vri ui+1 = yrjuyj
−1u′) on ∂∆ are joined by

γ:

yjy
M+p
j uy−1

j

Since the word between a cancelling pair is trivial in F , we have yM+p
j u = 1, i.e.

u = y
−(M+p)
j . This is a contradiction to the assumption that l(u) ≤ l(ui+1) < M/2.

The claim is proved.

So the yj
−1-segment that γ intersects is in some v±ri′ . Moreover, we see from the

above argument that i′ = i or i′ = i + 1. We may set i′ = i + 1 (Figure 5.3 (a)).

We have vi+1 = yj or vi+1 = Y . Since that the word Y −r = (Xy1 · · · yn)r does not

contain the letter y−1
j , for r > 0, we have vi+1 = yj. Then for some nonnegative

integers p and q, the cancelling pair that γ joins consists of the first and the last
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letter in the following interval (which is a subword of vri ui+1v
−r
i+1 = yrjui+1y

−r
j ) in ∂∆

(Figure 5.3):

yjy
M+p
j ui+1y

−q
j y−1

j

Since the word between a cancelling pair is trivial in F , yM+p
j ui+1y

−q
j = 1 But that

would imply vi = yj = vi+1 and ui+1 = y
q−(M+p)
j , which violates the restriction on

ui+1 6∈ 〈vi〉 = 〈yj〉. This complete the proof for the Case 1.

Case 2. vi = Y .

The proof for this case is similar, as follows. Let γ intersects with a mid-word letter

yj
−1 in the word vri = Y r = (Xy1 · · · yn)−r.

Claim 2. The other letter joined by γ is in some v±ri′ .

Suppose not. Then γ intersects with ui or ui+1, say ui+1, for γ is an innermost arc

among those intersecting with a mid-word letter. As in Case 1, for some nonnegative

integer p, one can write ui+1 = u · yj · u′ such that the first and the last letter of

the following interval (which is a subword of vri ui+1 = Y ruyju
′) in ∂∆ is joined by

γ.

yj
−1yj−1

−1 · · · y1
−1X−1Y M+puyj

So yj−1
−1yj−2

−1 · · ·X−1Y M+αu = 1. SinceX ∈ 〈x1, . . . , xs〉, yj−1
−1yj−2

−1 · · ·X−1Y M+α

has the length at least M + α. This contradicts to l(u) ≤ l(ui+1) ≤
M
2

.

Now we may assume that the other letter yj that γ intersects is contained in vi or vi+1,

say vi+1, without loss of generality (Figure 5.3 (b)). vi+1 = yj or vi+1 = Y . Since v−ri+1

should contain the letter yj and r > 0, we have vi+1 = Y . Again, the first and the
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last letter in the following interval (which is a subword of vri ui+1v
−r
i = Y rui+1Y

−r)

on ∂∆ are the cancelling pair that γ intersects with, for some p, q ≥ 0:

yj
−1yj−1

−1 · · · y1
−1X−1Y M+pui+1Y

−qXy1y2 · · · yj

hence yj−1
−1 · · · y1

−1X−1Y M+pui+1Y
−qXy1y2 · · · yj−1 = 1 This implies ui+1 = Y −(M+p)+q

As in Case 1, this is again a contradiction, since vi = Y = vi+1.

So we have f(r) 6= 1. �

Remark 5.24. When vi = Y for each i, this lemma becomes a special case of a

proposition in [Bau62].

V

V



V

V

V

V


V

V

(a) Case 1. (b) Case 2.

f(r)f(r)

vri = yrj

v−ri+1 = Y −r
ui+1ui+1

v−ri+1 = y−rj

yjyj
yM+p
j

y−qj
yj

−1yj
−1

vri = Y r

γγ
∆∆

A B

Figure 5.3: Proof of Lemma 5.23. In (b), we let A = yj−1
−1 · · · y1

−1X−1Y M+p and
B = Y −qXy1y2 · · · yj−1.

For a compact surface S, recall our convention that the boundary components

∂1S, ∂2S, . . . , ∂mS are oriented so that
∑

[∂iS] = 0 in H1(S). We let D(S) denote

the double of S along its boundary.

Lemma 5.25 (eventual injectivity). Let S be a surface with the boundary components

∂1S, . . . , ∂mS, for some m ≥ 1. Let q : D(S)→ S be the natural quotient map. Define

Ti : D(S) → D(S) to be the full Dehn twist about ∂iS, and let T = T1 ◦ · · · ◦ Tm.
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Then, for any non-trivial x ∈ π1(D(S)), there exists r ≥ 0 such that (q ◦ T r)∗(x) is

non-trivial in π1(S).

Proof)

Fix a homeomorphism g : S → S ′, and write D(S) = S ∪S ′, where each ∂iS is glued

to g(∂iS) for each i. Fix a basepoint c ∈ Int(S) of π1(D(S)), a point ci ∈ ∂iS for

each i, and a path ei from c to ci for each i, such that ei ∩ ∂S = {ci} (Figure 5.4).

Let c′ = g(c) be the basepoint of π1(S
′), and fi be the path from c to c′ obtained by

juxtaposing ei and g(ei)
−1. We consider ∂iS as a loop based at ci, and let δi be the

loop in Int(S), homotopic to the concatenation ei · ∂iS · e
−1
i .

Now fix a non-trivial x ∈ π1(D(S)). Let i : S → D(S) be the natural inclusion. If

x = i∗(y) for some y ∈ π1(S), then q∗(x) = (q ◦ i)∗(y) = y 6= 1. So we may assume

x 6∈ i∗(π1(S)).

Claim 1. For some l ≥ 1, there exist loops γ1, . . . , γ2l+1 and indices i1, . . . , i2l such

that

(i) γ2i−1 is a loop in Int(S), based at c, for each i = 1, . . . , l + 1,

(ii) γ2i is a loop in Int(S ′), based at c′, for each i = 1, . . . , l,

(iii) x is the homotopy class of the concatenated paths

α = γ1 · fi1 · γ2 · f
−1
i2
· γ3 · fi3 · · ·γ2l · f

−1
i2l
· γ2l+1

Moreover, by choosing l to be minimal, we may assume that

(iv) if i2j = i2j+1, then [γ2j+1] 6∈< [δi2j
] >=< [δi2j+1

] > in π1(S).
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(v) if i2j−1 = i2j, then [γ2j] 6∈< [g(δi2j−1
)] >=< [g(δi2j+1

)] > in π1(S
′).

Finding a representative α for x satisfying (i),(ii) and (iii) is immediate, by making

α transversely intersect ∂S. Note that l ≥ 1, since we assume that x 6∈ i∗(π1(S)).

For (iv) and (v), note that f−1
j · δ

k
j · fj is homotopic, with the basepoint at c′, to a

loop g(δj)
k, and similarly fj · g(δj)k · fj−1 is homotopic, with the basepoint at c, to

a loop δkj . The claim follows from the minimality of l.

Now set di = [δi], for each i. We have set a presentation

π1(S) =< x1, . . . , x2g, d1, . . . , dm|

g∏

i=1

[x2i−1, x2i]d1d2 · · · dm = 1 >

From Claim 1, we can write

(q ◦ T r)∗(x) = [γ1 · δ
r
i1
· g−1(γ2) · δ

−r
i2
· γ3 · δ

r
i3
· · · g−1(γ2l) · δ

−r
i2l
· γ2l+1]

So it follows that:

Claim 2. There exist u1, . . . , u2l+1 ∈ π1(S) and v1, . . . , v2l ∈ {d1, . . . , dm} for some

l ≥ 1, such that

(i)

(q ◦ T r)∗(x) = u1v
r
1u2v

−r
2 · · ·u2lv

−r
2l u2l+1

(ii) If vi = vi+1, then ui+1 6∈< vi >=< vi+1 >.

Apply Lemma 5.23 for F = π1(S) and X =
∏g

i=1[x2i−1, x2i], to conclude that (q ◦

T r)∗(x) 6= 1 for sufficiently large r. �

Definition 5.26. Let Γ be a graph. Define a graph D∞(Γ) by

(i) V (D∞(Γ)) = V (Γ) ⊔ {vK,u|K ∈ K(Γ), u ∈ V (K)}
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V

V

V

V

V

V

S S ′ = g(S)

∂1S

∂2S

e1

e2

g(e1)
−1

g(e2)
−1

c c′ = g(c)

c1

c2

Figure 5.4: The double of a surface.

(ii) E(D∞(Γ)) = E(Γ) ⊔ {{vK,u, u′}|K ∈ K(Γ), u, u′ ∈ V (K)}

D∞(Γ) is obtained from Γ by adding a simplicial vertex (denoted by vK,u) for each

maximal complete subgraph K and a vertex u of K. For examples of D∞(Γ), see

Figure 5.5.

(a) (b)

ΓΓ D∞(Γ)D∞(Γ)

 
 

x

x
x

x y y

y
y

z
z

z

zvK,x

vK,y

vL,y

vL,z

vK,xvK,y

vK,z

Figure 5.5: Examples of D∞(Γ). In (a), the maximal complete subgraphs are, K =
{x, y} and L = {y, z}. In (b), it is K = Γ.

Lemma 5.27 (decomposing D∞(Γ)). Suppose Γ is a graph, such that Γ = Γ1 ∪ Γ2

for some induced subgraphs Γ1 and Γ2. Furthermore, assume that Γ1∩Γ2 is complete.
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Then there exists an induced subgraphs Γ∗
1 and Γ∗

2 of D∞(Γ), such that

(i) D∞(Γ) = Γ∗
1 ∪ Γ∗

2.

(ii) Γ∗
1 ∩ Γ∗

2 is complete.

(iii) For each i, Γi is obtained from Γ∗
i by removing a set of pairwise non-adjacent

simplicial vertices in Γ∗
i .

Proof) Let K̄ = Γ1 ∩ Γ2. We may set K̄ 6= ∅, otherwise the conclusion is obvi-

ous.

Claim 1. For any complete subgraph K of Γ, either K ≤ Γ1 or K ≤ Γ2.

This is because there does not exist an edge between a vertex in V (Γ1) \ V (Γ2) and

a vertex in V (Γ2) \ V (Γ1).

Claim 2. K(Γ) ⊆ K(Γ1) ∪ K(Γ2)

This follows from Claim 1.

Claim 3. , K(Γ1) ∩ K(Γ2) ⊆ {K̄}. The equality holds if and only if K̄ ∈ K(Γ).

If K ∈ K(Γ1)∩K(Γ2), then K ≤ Γ1∩Γ2 = K̄. By maximality, K = K̄. If K̄ ∈ K(Γ),

the other inclusion is immediate.

Claim 4. If for some i, K ∈ K(Γi) \ K(Γ), then K = K̄. Therefore, if K̄ ∈ K(Γ),

then K(Γ1) ∪ K(Γ2) = K(Γ).

If K ∈ K(Γ1)\K(Γ), then K � K ′ ∈ K(Γ), for some K ′ containing a vertex in Γ2. By

Claim 1, K � K ′ ≤ Γ2, and so K ≤ Γ1∩Γ2 = K̄. Since K is maximal in Γ1, K = K̄.

If K̄ ∈ K(Γ), then K(Γi)\K(Γ) = ∅ for i = 1, 2. Hence K(Γ1)∪K(Γ2) ⊆ K(Γ).
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Now we consider four cases.

Case 1. K̄ ∈ K(Γ).

Let Γ∗
1 be the induced subgraph of D∞(Γ) on the vertex set V (Γ1) ∪ {vK,u|K ∈

K(Γ1) \ {K̄}, u ∈ V (K)}. Put Γ∗
2 = D∞(Γ2) ≤ D∞(Γ). By Claim 3 and 4,

K(Γ1) ∩ K(Γ2) = {K̄} and (K(Γ1) \ {K̄}) ⊔ K(Γ2) = K(Γ). This implies that

Γ∗
1 ∩ Γ∗

2 = Γ1 ∩ Γ2 = K̄ and Γ∗
1 ∪ Γ∗

2 = D∞(Γ).

Case 2. K̄ 6∈ K(Γ) and K̄ ∈ K(Γ1).

By Claim 3, K̄ 6∈ K(Γ2). Since K(Γ) is the disjoint union of K(Γ1) \ {K̄} and K(Γ2),

Γ∗
1 and Γ∗

2 as defined in Case 1 satisfy the desired properties.

Case 3. K̄ 6∈ K(Γ) and K̄ ∈ K(Γ2).

Similar to Case 2, by symmetry.

Case 4. K̄ 6∈ K(Γ1) ∪ K(Γ2).

Put Γ∗
1 = D∞(Γ1) and Γ∗

2 = D∞(Γ2). Note that K(Γ) is the disjoint union of K(Γ1)

and K(Γ2). So Γ∗
1 ∩ Γ∗

2 = Γ1 ∩ Γ2 = K̄, and Γ∗
1 ∪ Γ∗

2 = D∞(Γ).�

The following lemma is a key step to the proof of Lemma 5.9.

Lemma 5.28 (from bounded to closed). Let Γ be a graph. If D∞(Γ) ∈ N , then

Γ ∈ N∞.

Proof) Assume Γ 6∈ N∞. We prove that D∞(Γ) 6∈ N .

Choose a normalized label-reading pair (H, λ) on a hyperbolic surface S with the

underlying graph Γ. Let ∂1S, . . . , ∂mS denote the boundary components of S.
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We will define a closed surface D̂(S), which is homeomorphic to D(S).

Fix a homeomorphism g : S → S ′ and put ∂iS
′ = g(∂iS). Let D(S) = S ∪ S ′ where

∂iS is glued to ∂iS
′ by g. Now consider a disjoint union S ⊔ S ′. For each i, we glue

an annulus Ai = S1 × I to S ⊔ S ′, so that one boundary component, say ∂0Ai, is

identified with ∂iS, and the other one, say ∂1Ai, with ∂iS
′. D̂(S) is defined to be

the resulting quotient space of S ∪ S ′ ∪ A1 ∪ A2 ∪ · · ·Am. In this proof, it is more

convenient to consider D̂(S) instead of D(S). We choose a properly embedded arc

of the form {a point}× I in each Ai, which we will call the principal arc of Ai.

Write H = B ⊔ C where B is a set of the properly embedded arcs and C is a set of

simple closed curves. We now describe a natural way of constructing a label-reading

pair (Ĥ, λ̂) on D̂(S) with the underlying graph D∞(Γ) (Figure 5.6).

For each β ∈ B, there is a unique way of constructing a simple closed curve, say β̂,

on D̂(S), such that β̂ is the union of β, g(β) and two arcs parallel to principal arcs.

We let β̂ inherit the transverse orientation and labeling, denoted by λ̂, from those of

β, so that λ̂(β̂) = λ(β). Let B̂ = {β̂ : β ∈ B}. Also, let Ĉ = C ∪ g(C), where each

element of Ĉ inherits the transverse orientation and labeling of the corresponding

element in C and g(C).

Consider any boundary component ∂iS. There exists K ∈ K(Γ) such that each α ∈ B

intersecting with ∂iS is labeled by a vertex in V (K). Let {β ∈ B : β ∩ ∂iS 6= ∅} =

{β1, β2, . . . , βs}. We choose disjoint essential simple closed curves α1, . . . , αs in the

interior of Ai, and let λ̂(αj) = vK,λ(βj) ∈ V (D∞(Γ)), for each j. Moreover, we let the

transverse orientation of αj be from ∂0Ai to ∂1Ai, if the transverse orientation of βj
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coincides with the orientation of ∂iS, and from ∂1Ai to ∂0Ai otherwise. Let Ĉ0 be the

union of all such αj’s, where the union is taken over all the boundary components

(Figure 5.6 (a)).

Let Ĥ = B̂∪Ĉ∪Ĉ0, with the labeling given by λ̂ : Ĥ → V (D∞(Γ)). The label-reading

pair (Ĥ, λ̂) defines a label-reading map, say, φ̂ : π1(D(S)) ∼= π1(D̂(S))→ A(D∞(Γ)).

Now it suffices show that φ̂ is injective.

Using the notation in Lemma 5.25, we define qr = (q ◦T r)∗ : π1(D̂(S))→ π1(S). We

also define pr : A(D∞)→ A(Γ) by p(vK,u) = ur, for K ∈ K(Γ) and u ∈ V (K).

We have a diagram

π1(D̂(S))

qr

��

φ̂
// A(D∞(Γ))

pr

��
π1(S)

φ=f∗ // A(Γ)

Claim 1. The above diagram commutes, with a suitable choice of the basepoints.

Let H̄ = B̂ ∪ Ĉ ⊆ Ĥ and λ̄ = λ̂ ⇂ H̄. Then for each [γ] = x ∈ π1(D̂(S)), φ ◦ qr(x) =

φ[(q ◦ T r)(γ)] is equal to the image of [γ] by the label-reading map with respect to

the pair (T−r(H̄), λ̄ ◦ T r) on D̂(S).

Consider a label-reading pair (H̃, λ̃) defined as follows. We replace each simple closed

curve α̂ ∈ Ĉ0 inside an annulus, say Ai, by r copies of disjoint essential simple closed

curves α̃1, α̃2, . . . , α̃r on Ai with the same transverse orientation as α̂. If λ̂(α̂) = vK,u,

then let λ̃(α̃j) = u for each j. Then define C̃0 to be the union of all such α̃j ’s, where

the union is taken over all the annuli Ai, i = 1, 2, . . . , m.
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Then define H̃ = B̂ ∪ Ĉ ∪ C̃0, with the labeling λ̃ which coincide with λ̂ on B̂ ∪ Ĉ.

Note that two curves of the same label are not necessarily disjoint in this construction

(Figure 5.6 (b)).

The image of [γ] by the label-reading map with respect to the pair (H̃, λ̃) is pr ◦ φ̂(x).

Note that (H̃, λ̃) is also equivalent to the pair (T−r(H̄), λ̄ ◦ T r) on D̂(S) (Figure 5.6

(c)). Therefore, pr ◦ φ̂(x) = φ ◦ qr(x) (with a suitable choice of the basepoints). The

claim is proved.

Now suppose x is a non-trivial element in π1(D̂(S)). By Lemma 5.25, there exists

r ≥ 0 such that qr(x) 6= 0. The injectivity of φ and the commutativity of the diagram

imply that φ̂(x) is non-trivial. This proves that φ̂ is injective, and so D∞(Γ) 6∈

N∞.�

V VV V
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


V V

 








V V







b

b

b b

bb
a

aa

aa

(a) (Ĥ, λ̂) (b) (H̃, λ̃), r = 2 (c) (T−2(H̄), λ̄ ◦ T 2)

vK,a vK,b

∂iS ∂iS
′

K = {a, b}

Ai

Figure 5.6: Inducing a label-reading pair on D̂(S). (b) and (c) are equivalent label-
reading pairs.

Proof of Lemma 5.9

Assume Γ 6∈ N∞, and we will show that Γi 6∈ N∞ for i = 1 or 2. By Lemma 5.28,

D∞(Γ) 6∈ N . Write D∞(Γ) = Γ∗
1 ∪ Γ∗

2 as in Lemma 5.27. By Lemma 5.18, Γ∗
i 6∈ N∞
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for i = 1 or 2. Then by Lemma 5.20, Γi 6∈ N∞, for i = 1 or 2. �

Remark 5.29. We can now prove that Conjecture 5.22 implies an affirmative answer

to Question 5.15, as follows. Suppose Γ 6∈ N∞. By Lemma 5.28, D∞(Γ) 6∈ N . Note

that D∞(Γ) is obtained by adding vertices to Γ, such that the new vertices are

simplicial in D∞(Γ). Hence, if Conjecture 5.22 is true, we have Γ 6∈ N . This would

prove N ⊆ N∞. N∞ ⊆ N is trivial.

5.4 Adding a bisimplicial edge

We prove Lemma 5.10, by the steps described in Lemma 5.31.

Notation 5.30. Throughout this section, we fix the following notations.

(1) Let S be a hyperbolic surface, with the boundary components of S denoted by

∂1S, ∂2S, . . . , ∂mS. Let Γ be a graph, and (H, λ) be a normalized label-reading

pair with the underlying graph Γ on S. φ : π1(S) → A(Γ) will denote an

associated label-reading map. B and C denote the set of properly embedded

arcs and the set of simple closed curves, respectively, in H.

(2) Consider a vertex a of Γ. We let Ba = B∩λ−1(a) and Ca = C ∩λ−1(a). We call

each curve in Ba as an a-arc. B̄a denotes a set of a-arc representatvies. Also,

let ∂aS be the union of the boundary components of S that intersects with an

a-arc. For each α ∈ Ba, we have chosen a strip, denoted by ηα : I×[−1, 1]→ S,

so that the strip im ηα contains any a-arc homotopic to α. Moreover, any two

strips in {ηβ : β ∈ Ba}, are disjoint or identical.
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(3) For α ∈ B, chan(α) denotes the channel of α with respect to the set of the arcs

Bλ(α), and c̃han(α) denotes a channel surface of α. We also let α̂ be the induced

simple closed curve of α. Recall that this means α̂ is the unique component of

the frontier of chan(α) in S.

Lemma 5.31. Following Notation 5.30, suppose (H, λ) is a normalized label-reading

pair with the underlying graph Γ on a hyperbolic surface S. Let e = {a, b} be a

bisimplicial edge of Γ. Assume further that λ(H) 6⊆ Link(a) ∪ {a} and λ(H) 6⊆

Link(b) ∪ {b}. Then the following are true.

(1) Suppose α and β are essential closed curves on S such that wα ∈ 〈Link(a)〉 and

wβ ∈ 〈Link(b)〉. If α and β intersect, then they are homotopic up to orientation.

(2) (∪Ca) ∩ (∪Cb) = ∅.

(3) If α ∈ Ba and β ∈ Bb, then α 6∼ β.

(4) If a b-arc β joins two components in ∂aS, then β intersects a curve γ ∈ H that

is not labeled by a vertex in Link(a) ∪ {a}.

(5) Let α̂ be an induced simple closed curve of an a-arc α, and α̂′ be the boundary

component of c̃han(α), homotopic to α̂. Then wα̂′ ∈ 〈Link(a)〉.

(6) An induced simple closed curve of an a- or b-arc is essential.

(7) (∪Ba) ∩ (∪Cb) = ∅.

(8) Let α ∈ Ba and β ∈ Bb. Choose the induced simple closed curves α̂ and β̂ of α

and β, respectively. Suppose either
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(i) α and β intersect, or

(ii) α̂ and β̂ intersect, and there exists a boundary component which intersects

with both α and β.

Then α̂ is homotopic to β̂ up to orientation, c̃han(α)∩∂S = c̃han(β)∩∂S, and

moreover, there exists a homotopy from c̃han(α) onto c̃han(β) fixing c̃han(α)∩

∂S.

(9) Suppose a b-arc β joins two components of ∂aS that are contained in c̃han(α),

for some a-arc α. Let α̂ and β̂ be the induced simple closed curves of α and β,

respectively. Then α̂ ∩ β̂ = ∅.

(10) (∪Ba) ∩ (∪Bb) = ∅.

(11) ∂aS ∩ ∂bS = ∅.

For (4),(5),(6),(7) and (9), the statements with the roles of a and b being inter-

changed, are also true.

Proof)

Note that the given condition is symmetric for a and for b. The condition that

λ(H) 6⊆ Link(a) ∪ {a} and λ(H) 6⊆ Link(b) ∪ {b} will be used only for (6) through

(11).

(1)

We may choose the basepoint of π1(S) in α ∩ β. We have φ[[α], [β]] = [wα, wβ] = 1,

since any vertex in Link(a) is adjacent to any vertex in Link(b). By Lemma 2.32,
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α ∼ β±1.

(2)

Suppose p ∈ α ∩ β, for some α ∈ Ca and β ∈ Cb. Choose the basepoint x0 in one

of the disk components of S \ (∪H), so that the disk component contains p on its

boundary. Choose a closed curve α′, based at x0, such that α′ is sufficiently close

to, but disjoint from, α. Similarly we choose β ′ ∼ β. Then wα′ ∈ Link(a), since any

curve intersecting with α is labeled by a vertex in Link(a). Also, wβ′ ∈ Link(b). By

(1), we have α′ ∼ β ′±1, and so α ∼ β±1. This contradicts to the fact that the curves

in H are minimally intersecting (Lemma 3.16).

(3)

Suppose an a-arc α and a b-arc β are homotopic to each other, intersecting with ∂1S

and ∂2S. Note that α ∩ β = ∅ (Lemma 3.16 (2)). Consider an embedding of a strip

η : I × [−1, 1] → S such that η(I × {0}) = α and β ⊆ η(I × (−1, 1)). As in (2),

consider a properly embedded arc β ′ 6= β, which is sufficiently close to β.

Now suppose γ ∈ H intersects with β ′. Then γ ∩ β 6= ∅ and λ(γ) ∈ Link(b). If γ

does not intersect α, then as in the proof of Lemma 3.10, one can find γ′ ∼ γ such

that γ′ ∩ im (η) = ∅. This implies that γ′ ∩ β = ∅, which is a contradiction to the

assumption that β and γ are minimally intersecting (Lemma 3.16). So γ intersects

with α also, and λ(γ) ∈ Link(a) ∩ Link(b).

Let the loops ∂1S and ∂2S based at β ′ ∩ ∂1S and β ′ ∩ ∂2S, respectively, and let the
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arc β ′ travel from ∂1S to ∂2S. We have,

w∂1S, w∂2S, wβ′ ∈ 〈{a, b} ∪ (Link(a) ∩ Link(b))〉

Choose the basepoint of π1(S) at ∂1S∩β
′. Then φ[∂1S] = w∂1S and φ[β ′ ·∂2S ·β

′−1] =

wβ′w∂2Swβ′
−1 are commuting, since {a, b}∪(Link(a)∩Link(b)) span a complete graph

in Γ. This leads to a contradiction again, for in a hyperbolic surface group, two

boundary components do not commute (Lemma 2.32).

(4)

This is similar to (3). Choose β ′ sufficiently close to β. Assume that each curve

γ ∈ H that is intersecting with β ′ is labeled by a vertex in Link(a) ∪ {a}. Note that

γ is labeled by a vertex in Link(b) also, since β ′ is close to β.

Let ∂1S, ∂2S be the boundary components joined by β. Since ∂iS ⊆ ∂aS ∩ ∂bS

for i = 1, 2, w∂1S, w∂2S ∈ 〈{a, b} ∪ (Link(a) ∩ Link(b))〉. By assumption, wβ′ ∈

〈(Link(a) ∪ {a}) ∩ Link(b)〉 = 〈{a} ∪ (Link(a) ∩ Link(b))〉. As in the proof of (3),

[[∂1S], [β ′ · ∂2S · β ′−1]] = 1, which is a contradiction.

(5)

This is obvious, since any curve in H transversely intersecting with α̂ has the label

in Link(a).

(6)

Suppose an induced simple closed curve α̂ of α is null-homotopic. By Lemma 3.10

(2), any properly embedded arc is labeled by a vertex in Link(a) ∪ {a}, and any
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simple closed curve in H is labeled by a vertex in Link(a). By the assumption that

λ(H) 6∈ Link(a) ∪ {a}, this is forbidden.

(7)

Supose α ∈ Ba and β ∈ Cb intersect at p, and choose the basepoint x0 of π1(S) as in

(2). Let α̂ be the induced simple closed curve of α with respect to (H, λ), and α′ ∼ α̂

be the unique boundary component of c̃han(α) that is not in ∂S (Lemma 3.9). α′ 6∼ 0

by (6). By (5), wα′ ∈ 〈Link(a)〉. Since α∩ β 6= ∅, α′ ∩ β 6= ∅. By (1), α′ ∼ β±1. So,

i(α, β) = (α, α′) = 0. This contradicts to the assumption that α and β are minimally

intersecting.

(8)

Note that in the case when α ∩ β 6= ∅, α̂ ∩ β̂ 6= ∅.

As in (7), we choose α′ ∼ α̂ and β ′ ∼ β̂, which are boundary components of c̃han(α)

and c̃han(β), respectively. Since α̂ and β̂ are intersecting, so are α′ and β ′. By (1) and

(5), we have α′ ∼ β ′±1. By Lemma 3.9, both α′ and β ′ are separating simple closed

curves of S. So either c̃han(α) ∼ c̃han(β) or c̃han(α) ∼ S \ c̃han(β). I claim that

c̃han(α) 6∼ S \ c̃han(β). Suppose not. Then any boundary component of S contained

in c̃han(α) will not be contained in c̃han(β). So no boundary component of S can

intersect both α and β. Moreover, α  S \ c̃han(β) and i(α, β) = 0. So neither (i)

nor (ii) of the given conditions cannot hold. Hence c̃han(α) ∼ c̃han(β).

(9)

Assume a b-arc β joins ∂1S and ∂2S which are contained in c̃han(α), and α̂∩ β̂ 6= ∅.
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By (4), there exists γ ∈ H, intersecting with β, such that λ(γ) 6∈ Link(a) ∪ {a}.

Then γ ∩ (∪Ba) = ∅ and γ ∩ ∂aS = ∅. By (8) and Lemma 3.10,

γ  S \ c̃han(α) ∼ S \ c̃han(β)

So i(β, γ) = 0, which is a contradiction.

(10)

Suppose α ∈ Ba and β ∈ Bb intersect. By (8), α̂ ∼ β̂ and c̃han(α) ∼ c̃han(β). This

implies that c̃han(α) ∩ ∂S = c̃han(β) ∩ ∂S, and β ⊆ c̃han(β) joins two boundary

components contained in c̃han(α). We have a contradiction by (9).

(11)

Suppose ∂iS intersects with an a-arc α and a b-arc β. By choosing a nearest pair

of such arcs on ∂iS, we can find induced simple closed curves α̂ and β̂ of α and β

such that α̂ ∩ β̂ 6= ∅ (Figure 5.7). By (8) again, we see that β joins two boundary

components of c̃han(α). This is a contradiction by (9). �





V

V b

a

α

β

α′
β ′ ∂S

p

Figure 5.7: Proof of Lemma 5.31 (11). Here, α′ denotes a homotopic curve to the
induced arc α̂ of α, and similarly define β ′ ∼ β̂.

Proof of Lemma 5.10
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Suppose Γ 6∈ N∞ and let e = {a, b} be a bisimplicial edge of Γ. Set Γ′ = Γ \ e̊. We

will prove that Γ′ 6∈ N∞.

Choose a normalized label-reading pair (H, λ) on a hyperbolic surface S with the

underlying graph Γ, and let φ denote an associated label-reading map.

First consider the case when λ(H) ⊆ Link(a) ∪ {a}. Let Γ′′ = ΓLink(a)∪{a}. Then

im φ ⊆ A(Γ′′), and hence Γ′′ 6∈ N∞. Put Γ′′′ = ΓLink(a). Then Γ′′ = Join({a},Γ′′′).

By Lemma 5.8, Γ′′′ 6∈ N∞. Since Γ′′′ ≤ Γ′, we have Γ′ 6∈ N∞. The case when

λ(H) ⊆ Link(b) ∪ {b} is similar.

Now assume λ(H) 6⊆ Link(b) ∪ {b} and λ(H) 6⊆ Link(b) ∪ {b}. By Lemma 5.31

(2),(7),(10) and (11), (H, λ) is also a label-reading pair with the underlying graph

Γ′. From the following commutative diagram, an associated label-reading map φ′ is

also injective.

A(Γ′)

[a, b] 7→ 1
��

π1(S)

φ′
;;

φ
// A(Γ)

Hence Γ′ 6∈ N∞. �

Remark 5.32. Suppose Γ is a graph with a bisimplicial edge e, such that Γ 6∈ N .

Let Γ′ = Γ \ e̊. Then there exists a normalized label-reading pair (H, λ) with the

underlying graph Γ on a closed surface S. Note that the statements of Lemm 5.31

(3) through (11) are trivial when S is closed. Hence, from Lemma 5.31 (2) only, we

already see that (H, λ) is a normalized label-reading pair with the underlying graph

Γ′ also, and hence, Γ′ 6∈ N . It again follows that any chordal bipartite graphs are in

N (Theorem 5.4).
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Appendix: Proof of Theorem 5.4

Definition 5.33 ([CRS02]). An induced Pk of a graph Γ is simplicial, if it is not

contained in the (topological) interior of any induced Pk+2.

Note that a simplicial vertex, as defined in Definition 5.19, is a simplicial P1, and

vice versa. A simplicial P2 is called a simplicial edge.

Theorem 5.34. ([CRS02]) Let k be a positive integer and Γ be a graph without any

induced cycle of length at least k + 3. If Γ contains an induced Pk, then it has a

simplicial Pk.

Proof) We use an induction on |V (Γ)|.

For any A ⊆ V (Γ), we let N(A) = {q ∈ V (Γ) : q is a neighbor of A} ∪ A, and

M(A) = V (Γ) \N(A).

Let S be the set of subsets A ⊆ V (Γ) such that

(i) ΓA is connected, and

(ii) the induced subgraph on M(A) contains an induced Pk.

Note that ∅ ∈ S, so we may choose a maximal A ∈ S.

First, consider the case when A = ∅. If an induced Pk, say (q1, q2, . . . , qk), is not

simplicial, one can find an induced Pk+2, (q0, q1, . . . , qk, qk+1), for some vertices q0

and qk+1. Then (q2, q3, . . . , qk+1) is an induced Pk in ΓM(q0). Then {q0} ∈ S, and

this contradicts to the maximality of A. So any induced Pk is simplicial, and we are

done.
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Now we may assume that A 6= ∅. By the inductive hypothesis, ΓM(A) contains an

induced subgraph ΓB, which is a simplicial Pk in ΓM(A). We will prove that ΓB is

simplicial in Γ.

Let ΓB = (q1, q2, . . . , qk). Suppose ΓB is contained in the interior of induced Pk+2,

say (q0, q1, . . . , qk, qk+1). q0 and qk+1 do not belong to A, for q1, qk ∈M(A). Since ΓB

is simplicial in ΓM(A), at least one of q0 and qk+1 is not in M(A), and so, is adjacent

to a vertex in A. If both are adjacent to some vertices in A, then let γ be a shortest

path from q0 to qk+1 in the connected graph ΓA∪{q0,qk+1}. Then the union of γ and

(q0, q1, . . . , qk, qk+1) will be an induced cycle of length at least k + 3 in Γ, which is a

contradiction (Figure 5.8 (a)). So exactly one of q0 and qk+1, say qk+1, is adjacent to

a vertex in A. Let A′ = A ∪ {qk+1}. Then ΓA′ is connected, and (q0, q1, . . . , qk−1) is

an induced Pk in ΓM(A′) (Figure 5.8 (b)). This contradicts to the maximality of A.

�

AA

q0q0

q1q1 q2q2

qkqk

qk+1qk+1

(a) (b)

Figure 5.8: Proof of Theorem 5.34

Proof of Theorem 5.4 from Theorem 5.34) (1) If Γ is chordal, then Theorem 5.34

applies with k = 1, and Γ has a simplicial vertex q. By simpliciality, any two vertices



CHAPTER 5. THE GRAPH CLASSES N AND N∞ 132

in Link(q) are adjacent. Let Γ1 and Γ2 be the induced subgraphs on {q} ∪ Link(q)

and V (Γ) \ {q}, respectively. Then Γ1 ∩ Γ2 = ΓLink(q) is complete, and Γ = Γ1 ∪ Γ2.

We note that Γ1 is also complete.

(2) Suppose Γ is chordal bipartite. By Theorem 5.34 for k = 2, there exists a

simplicial edge e = {a, b} in Γ. Let c ∈ Link(a) and d ∈ Link(b). Since Γ is bipartite

d 6∈ Link(a) and c 6∈ Link(b). If c and d are not adjacent, then (c, a, b, d) will be an

induced P4 containing {a, b} in its interior. By simpliciality of e, we see that c and

d are adjacent. It follows that e is bisimplicial. �
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theorem, 26
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List of Notations

Γ ∈ N A(Γ) does not contain a hyperbolic surface group (p.12)

N∞ a “relative version” of N (p.12)

Γ1
∼= Γ2 Γ1 is (combinatorially) isomorphic to Γ2 (p.16)

V (Γ) the set of vertices of Γ (p.16)

E(Γ) the set of edges of Γ (p.16)

Γ the complement graph of Γ (p.16)

LinkΓ(q),Link(q) the set of vertices adjacent to q in Γ (p.16)

˚StarΓ(q), ˚Star(q) the open star of q in Γ (p.16)

dΓ(q), d(q) the degree of q in Γ (p.16)

∂Γ {v ∈ V (Γ) : dΓ(v) = 1} (p.16)

⊔ a disjoint union (p.17)

Join(·, ·) the join of two graphs (p.17)

Kn a complete graph on n vertices (p.17)

Km,n a complete bipartite graph on m and n vertices (p.17)

Dn a discrete graph on n vertices (p.17)

Pn a path on n vertices (p.17)

Cn a cycle on n vertices (p.17)
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Cn an anti-cycle on n vertices (p.17)

K(Γ) the set of maximal complete subgraphs of Γ (p.17)

ΓS the induced subgraph of Γ on S (p.18)

wγ the label-reading of γ (p.21)

GP(Γ, {Gq}) the graph product of {Gq} with the underlying graph Γ (p.23)

A(Γ) the right-angled Artin group on Γ (p.24)

C(Γ) the right-angled Coxeter group on Γ (p.24)

LinkX(v) the link of v in X (p.41)

fv the simplicial map on the links induced by f (p.41)

XΓ the standard Eilenberg-Maclane space of A(Γ) (p.42)

X∅ the set of the unique vertex of XΓ (p.43)

D(Γ) the double of Γ (p.43)

α ∼ β α and β are homotopic (p.45)

α A α can be homotoped into A (p.45)

i(·, ·) the geometric intersection number (p.45)

chan(α) the channel of α (p.60)

c̃han(α) a channel surface of α (p.60)

W the class of weakly chordal graphs (p.80)

oG(g), o(g) the order of g in a group G (p.80)

F a recursively defined class of graphs contained in N∞ (p.105)

D(S) the double of a surface S along its boundary (p.113)
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D∞(Γ) Γ, along with certain simplicial vertices attached (p.115)
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