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Abstract. We address the problem of computing the critical regularity
of groups of homeomorphisms of the interval. Our main result is that
if H and K are two non-solvable groups then a faithful C1,τ action of
H ˆ K on a compact interval I is not overlapping for all τ ą 0, which
by definition means that there must be non-trivial h P H and k P K with
disjoint support. As a corollary we prove that the right-angled Artin
group pF2 ˆ F2q ˚ Z has critical regularity one, which is to say that it
admits a faithful C1 action on I, but no faithful C1,τ action. This is the
first explicit example of a group of exponential growth which is without
nonabelian subexponential growth subgroups, whose critical regularity
is finite, achieved, and known exactly. Another corollary we get is that
Thompson’s group F does not admit a faithful C1 overlapping action on
I, so that F ˚ Z is a new example of a locally indicable group admitting
no faithful C1–action on I.

1. Introduction

Let I denote a compact unit interval. This paper is concerned with de-
termining the optimal regularity with which a group G can act faithfully on
the interval, and computes that regularity in many cases.

For a continuous map f : I Ñ R and τ P r0, 1q, we denote the τ–Hölder
norm of f as

r f sτ :“ sup
x‰y in I

| f pxq ´ f pyq|
|x´ y|τ

.

In the case when r f sτ ă 8, we say f is τ–Hölder-continuous. We let
Diffk,τ

` pIq denote the group of orientation–preserving Ck–diffeomorphisms
of I whose k–th derivatives are τ–Hölder-continuous.

Let G be a group. We define the critical regularity of G to be

CritRegpGq “ suptk ` τ | G ă Diffk,τ
` pIqu.
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Here, the supremum is taken over all abstract realizations of G in Diffk,τ
` pIq.

If G is countable and G ă Homeo`pIq then G is topologically conjugate to
a group of bi-Lipschitz homeomorphisms [8], so that by convention, if G ă

Homeo`pIq then CritRegpGq ě 1. If G is not a subgroup of Homeo`pIq
then we define CritRegpGq “ ´8. We are particularly interested in groups
with finite critical regularity.

The main theme of this paper is that non-overlapping actions of a group
G provide obstructions to smooth actions of G ˚ Z. Here, a group action on
a set X is overlapping if for all pairs of nontrivial elements g, h P G, there
is a point x P X such that g.x ‰ x and h.x ‰ x.

Principle (See Lemma 2.2). Suppose that G acts by C1–diffeomorphisms
on the interval I “ r0, 1s in a non-overlapping manner. Then there is
no C1–diffeomorphism t such that xG, ty – G ˚ Z. Thus, if the algebraic
structure of G forces all actions of G on I by C1–diffeomorphisms to be
non-overlapping, then G ˚ Z admits no C1–action on I.

This principle will inform most of the results in this paper, with the tech-
nical driver behind it being the abt–Lemma below (see Lemma 2.1).

1.1. Main results. Let G be a group. We write Gp0q “ G and Gpkq “
rGpk´1q,Gpk´1qs for the derived series of G. We say G is not solvable of
degree at most k if Gpkq is nontrivial. The main result of this paper is the
following.

Theorem 1.1. Let G and H be groups.
(1) Suppose G and H are not solvable of degree at most k ě 3, and that

τ satisfies τp1` τqk´2 ě 1. Then there does not exist an embedding

pG ˆ Hq ˚ ZÑ Diff1,τ
` pIq.

(2) If G and H are non-solvable groups, then there does not exist an
embedding

pG ˆ Hq ˚ ZÑ
ď

τą0

Diff1,τ
` pIq.

Let F2 denote a free group of rank two, and recall that Thompson’s group
F is defined to be the group of piecewise linear homeomorphisms of I
whose breakpoints are dyadic rational numbers and all slopes are powers
of two. It is known that F embeds in Diff8`pIq [11]. We have the following.

Corollary 1.2. The groups pF2 ˆ F2q ˚ Z and F ˚ Z have critical regularity
one.

Remark 1.3. The compactness of the interval I is essential here. For in-
stance, the above two groups embed into Diff8`pRq; see [1] and [17, Propo-
sition 6.1].
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The group F ˚ Z embeds in Homeo`pIq by general facts, and it follows
from [17] that CritRegpF ˚ Zq ď 2. The group F is highly self-similar, and
contains a copy of FˆF. Since F is not solvable, Theorem 1.1 immediately
implies the statement for F in the above corollary.

Strictly speaking, Corollary 1.2 only implies that F ˚ Z is not a subgroup
of Diff1,τ

` pIq for any τ ą 0. However, we have the following:

Theorem 1.4 (cf. Question 1.6 in [17]). Suppose that for an action

φ : F ˚ Z Ñ Diff1
`pIq,

we have that for each embedding ι : J ãÑ J and for each component J of
supp φιpFq, the restriction φιpFqæJ is either non-faithful or semi-conjugate
to the standard piecewise linear action of F. Then φ is non-faithful.

Remark 1.5. According to a recent result of the third author with J. Brum,
N. Matte Bon, and M. Triestino [5], every faithful C1 action of F on I is
semiconjugate to the standard piecewise linear action. Therefore, assuming
their result one can simply conclude that there are no faithful C1 actions
of F ˚ Z on I. As a consequence of these considerations, F furnishes an-
other example of a finitely generated group G which acts faithfully by C8

diffeomorphisms on I, but such that G ˚ Z has no faithful action by C1–
diffeomorphisms on I. The only such example in the literature was the
direct product of Z with a Baumslag–Solitar group; this was proved in [18,
Corollary 1.7], based on work in [4].

Recall that Thurston’s Stability Theorem [28] implies the group Diff1
`pIq

is locally indicable. Here, a group is locally indicable if every finitely gen-
erated subgroup admits a surjective homomorphism to Z. Thus, failure of
local indicability is an obstruction to admitting a faithful C1–smooth action
on I. Examples of groups which are locally indicable but not C1–smooth
were given by Calegari [6] and Navas [22]. A solvable group with this prop-
erty appears in [4]. Theorem 1.4 furnishes a new example of a group that
highlights the distinction between local indicability and C1–smoothability,
conditionally on the work in progress mentioned in Remark 1.5. Indeed, an
easy application of the Kurosh Subgroup Theorem [27] implies that F ˚ Z
is locally indicable. Thus, we have:

Corollary 1.6. Suppose the conditions of Remark 1.5 hold. Then the group
F ˚ Z is locally indicable but does not embed into Diff1

`pIq.

1.2. Remarks. This paper arose from our investigations of the following
question:

Question 1.7. Let Γ be a finite graph. How does the critical regularity of
the right-angled Artin group ApΓq depend on the combinatorics of Γ?
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Recall that the right-angled Artin group ApΓq is the group presentation

xVΓ | ra, bs “ 1 for each ta, bu P EΓy,

where VΓ and EΓ denote the vertex set and the edge set of Γ, respectively.
One of the main results of [17] (cf. [2]) is that CritRegpApΓqq ă 8 if and
only if ApΓq does not contain a subgroup isomorphic to pF2 ˆ Zq ˚ Z. This
implies that CritRegpApΓqq “ 8 if and only if ApΓq decomposes as a direct
product of free products of free abelian groups.

Right-angled Artin groups are residually torsion–free nilpotent [9], which
means that every nontrivial element of ApΓq survives in a torsion–free nilpo-
tent quotient of ApΓq. This implies ApΓq ă Diff1

`pMq for M P tI, S 1u [10,
13]. Theorem 1.1 implies that many right-angled Artin groups have critical
regularity exactly one. Indeed, a right-angled Artin group ApΓq contains a
copy of F2ˆF2 if and only if Γ contains a square as a full subgraph [15, 16],
and will contain a copy of pF2ˆF2q˚Z if, additionally, the complement of Γ
is also connected [16, Lemma 3.5]. Theorem 1.1 exhibits the first examples
of right-angled Artin groups whose critical regularities are both finite and
known exactly. A tantalizing open question remains:

Question 1.8. What is the critical regularity of pF2 ˆ Zq ˚ Z?

Question 1.8 is also interesting for other graphs such as the pentagon and
the path of length three. The right-angled Artin groups on these two latter
graphs contain copies of pF2ˆZq˚Z; to see this claim, it suffices to establish
it for the path P4 of length three, since it is a full subgraph of the pentagon
graph. That ApP4q contains a copy of pF2ˆZq ˚Z follows from the fact that
it contains a copy of F2 ˆ Z, and the fact that the extension graph of P4 has
infinite diameter; see [16, 17].

In general it is not easy to compute the exact critical regularity of groups
of diffeomorphisms, even when it is known that its critical regularity is fi-
nite. Previously known examples of at least C1–regularity were groups of
subexponential growth. The critical regularity of the universal class–pd´1q
nilpotent group Nd, which consists of dˆd unipotent integral matrices, was
shown to be 2 for d “ 3 [7], and 1.5 for d “ 4 [14]. Moreover, Navas [21]
proved that groups of intermediate growth (such as the one produced by
Grigorchuk and Machı̀ [12]) have critical regularity at most one.

In [18], the first two authors proved the existence of groups of prescribed
critical regularity r P r1,8q, though most of these groups are not finitely
presented (or even computably presented) and hence are not truly explicit
from an algebraic point of view. We note that Corollary 1.2 gives the first
example of finitely presented groups of exponential growth (more precisely,
without nonabelian subexponential growth subgroups) whose critical regu-
larity is simultaneously finite, known, and achieved.
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In the last section, we discuss some of the key difficulties in determining
the critical regularity of pF2 ˆ Zq ˚ Z, and we illustrate this difficulty more
explicitly in a certain topological smoothing problem for the “nested” action
of pZ oZq ˚Z. It seems that deciding the critical regularity of an overlapping
action of F2 ˆ Z is at least as difficult as determining the optimal regularity
that can be achieved by a topological conjugacy for this nested action.

2. Background on differentiable group actions and Conradian orderings

Throughout this article, we will use the symbols ă and ď to denote “less
than” and “less than or equal to” in an ordered structure, and also to denote
the subgroup relation.

Suppose a group G acts on a set X. For each g P G, we let

supp g :“ XzFix g.

This set will generally be called the support of g (often called the open
support of g in the literature). We also set supp G “

Ť

gPG supp g.
The following is one of the key ingredients for our proof of Theorem 1.1.

Lemma 2.1 ([17, abt–Lemma]). Let M be a compact connected one–manifold,
and let a, b, t P Diff1

`pMq be such that

supp aX supp b “ ∅.

Then xa, b, ty fl Z2 ˚ Z.

An action of a group G on a set X is called overlapping if for all pairs
of nontrivial elements g, h P G, we have psupp gq X psupp hq ‰ ∅. An
immediate reformulation of the abt–Lemma is as follows.

Lemma 2.2. If G is a group such that G ˚ Z ď Diff1
`pIq, then the action of

G is overlapping.

We say a pair of open intervals tJ1, J2u in R is a 2-chain [19] if J1X J2 is
a proper nonempty subinterval of J1 and J2. The following is elementary.

Lemma 2.3. If g and h are commuting elements in Homeo`pRq, then the
collection of intervals π0 supp gY π0 supp h does not contain a two–chain.

In Lemma 2.3 and throughout the rest of this article, for g P Homeo`pRq,
we use the notation π0 supp g to denote the set of components of the support
of g.

Much of the discussion in the remainder of this section is closely related
to the work of Navas [23], and we direct the reader there for more back-
ground on the relevant relationship between dynamics and orderings. For
an ordered space pΩ,ďq, let us denote by Sym`pΩq the group of order pre-
serving bijections. In this paper, we will mostly focus on the case when
Ω “ I or Ω is the support of a homeomorphism on I.
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Definition 2.4 (cf. [26]). Let pΩ,ďq be an ordered space, and let G ď

Sym`pΩq. We say that f , g P G are crossed if there exist points u ă w ă v
in Ω such that

(1) gnpuq ă w ă f npvq for all n P Z.
(2) There is N P Z such that gNpvq ă w ă f Npuq.

We say that the G-action is Conradian (or simply, the group G is Conradian
when the implied action is clear) if it has no crossed elements.

The following “two–chain criterion” for non-Conradian actions will be
later employed.

Lemma 2.5. Let G ď Homeo`pRq be a group, and let U Ď R be a G–
invariant set. Then GæU is non-Conradian if and only if there exists a two–
chain tJ1, J2u whose union intersects U such that each Ji is a connected
component of the support of some gi P G.

Proof. Suppose there exists such a two–chain tJ1, J2u. We may assume
inf J1 ă inf J2. Using the G–invariance of U, we can find w P J1 X J2 XU.
See Figure 1. Then there exist powers gn1

1 and gn2
2 of g1 and g2 such that

inf J1 ă u :“ gn1
1 pwq ă inf J2 ă w ă sup J1 ă v :“ gn2

2 pwq ă sup J2.

It is routine to check that the conditions in Definition 2.4 are satisfied for
suitable powers of g1 and g2.

Conversely, suppose that GæU is non-Conradian, and pick p f , g, u, v,w,Nq
as in Definition 2.4. Since u ă w ă f Npuq, there uniquely exists a J1 P

π1 supp f that contains tu,wu. We also find a unique J2 P π0 supp g that con-
tains tw, vu. Note that sup J1 ď v; for otherwise, we have that tw, vu Ď J1

and that f npvq ă w for some n. In particular, we see that sup J1 ă sup J2.
We similarly see that inf J1 ă inf J2. This shows that tJ1, J2u is a two–chain
containing w P U, as desired. �

u “ gn1
1 pwq

w v “ gn2
2 pwq

J1

g1 Ñ g2 Ñ

J2

Figure 1. The two–chain criterion.

For actions on the real line, we have several equivalent formulations.

Lemma 2.6. For a group G ď Homeo`pRq, the following are equivalent.
(1) G has crossed elements.
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(2) G has a pair of elements t f , gu, called a crossed pair, which have
the property that for some J P π0 supp f , one has gpBJq X J ‰ ∅.

(3) G has a pair of elements p f , gq, called a positive ping-pong pair (or
simply, a ping pair), such that for some a ă b in R one has

f paq “ a ă f pbq ă gpaq ă gpbq “ b.

(4) Some elements g, h P G and some interval J P π0 supp g satisfy both
hJ ‰ J and hJ X J ‰ ∅.

For a group G acting on a set, we let Fix G denote the set of global fixed
points. The following fact is well–known.

Lemma 2.7 ([24]). For a Conradian group action G ď Homeo`pRq such
that Fix G “ ∅, the following hold.

(1) If g P G fixes at least one point, then every connected component of
supp g is a finite interval.

(2) For all g, h P G and for all J P π0 supp g,K P π0 supp h, either

J X K “ ∅, or J Ď K or K Ď J.

(3) If there exists an element c P G such that Fix c “ ∅, then there exists
a non-trivial G–invariant Radon measure µ on R and a character
(i.e. homomorphism) τ : G Ñ R defined by

τpgq :“ signpgpxq ´ xq µrx, gpxqq,

which is independent of the choice of x. Moreover, the following
statements hold in this case:
‚ τ´1p0,8q “ tg P G | gpxq ą x for all x P Ru.
‚ Gp1q ď ker τ “ tg P G | Fix g ‰ ∅u.

(4) If G is finitely generated, then there exists c P G such that Fix c “ ∅.

We can classify each interval in π0 supp G as follows, as will be essential
for us in the proof of the main theorem.

Definition 2.8. Let G be a subgroup of Homeo`pRq. We consider a partition
of supp G into the crossed support crs G and the nested support nst G, whose
connected components are given as follows:

π0 crs G :“ π0 supp Gz
ď

gPG

π0 supp g,

π0 nst G :“ π0 supp G X

˜

ď

gPG

π0 supp g

¸

.
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We can rephrase the above definition as follows.

π0 crs G “ tJ P π0 supp G | J ‰ supp g for all g P Gu,

π0 nst G “ tJ P π0 supp G | J “ supp g for some g P Gu.

Lemma 2.9. If G ď Homeo`pRq is finitely generated, then each point in
crs G belongs to the union of a two–chain tJ1, J2u such that

J1, J2 P
ď

gPG

π0 supp g.

In particular, if U Ď R is a G–invariant set such that GæU is Conradian,
then U is disjoint from crs G.

Proof. Let x P J0 P π0 crs G. We fix a finite generating set S “ ts1, . . . , snu

of G. We denote by U the set of maximal intervals (with respect to inclu-
sion) in the collection of intervals

ď

sPS

π0 supp s.

There exists some J1 P U such that x P J1 Ď J0. Without loss of
generality, we may assume J1 P π0 supp s1. By the definition of crossed
supports, we know that J1 ‰ J0. Since U covers J0, one of the endpoints
of J1 must belong to some J2 P U . By maximality, we see that pJ1, J2q is a
two–chain. The second conclusion is now immediate from Lemma 2.5 �

We will apply the above lemma to the case when G ď Diff1
`pIq; here, G is

naturally regarded as a subgroup of Homeo`pRq using an extension by the
identity. In fact, after conjugating G by a suitable C8–homeomorphism we
may assume that g1pBIq “ 1 for all g P G. This conjugation is sometimes
called as the Müller–Tsuboi trick [20, 29]; see [18, Theorem A.3] for a
proof of the case in the intermediate regularity C1,τ. This let us regard G ď

Diff1
`pRq with supp G Ď I “ r0, 1s.

3. Interval actions with pk, uq–nesting

This section develops the remaining technical tools needed to establish
the main results of the paper. We are particularly intellectually indebted
to [21] for many of the ideas in this section.

Definition 3.1. Let k ě 2 be an integer, and let u P p0, 1s. We say a finite set
S Ď Homeo`pIq is a pk, uq–nesting if there exists a collection of nonempty
open intervals

J1 Ľ J2 Ľ ¨ ¨ ¨ Ľ Jk

such that the following two conditions hold for some infinite sequence α “
ps1, s2, . . .q in S and for twn :“ snsn´1 ¨ ¨ ¨ s1uně0:
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(i)
ř

ně0 |wnJ1|
u ă 8;

(ii) for each i “ 2, . . . , k and for each n ě 0 there exists some s P S
satisfying that swnJi X wnJi “ ∅ and that swnJi´1 “ wnJi´1.

We say that an element g of a group G centralizes a set S Ď G if g
commutes with every element of S .

Example 3.2. Suppose that a group G ď Homeo`pIq is centralized by some
c P Homeo`pIq such that Fix c “ BI. Assume there exist open intervals

J1 Ľ ¨ ¨ ¨ Ľ Jk

for some k ě 2 such that the closure of J1 is contained in the interior of
I. Assume there exist g2, . . . , gk P G such that giJi X Ji “ ∅ and such that
giJi´1 “ Ji´1 for each i “ 2, . . . , k. Then we can find N " 0 such that
J1 X cN J1 “ ∅. By setting wn :“ cNn, we see that

tcN , g2, . . . , gk´1, gku

is a pk, 1q–nesting in the group xG, cy.

In general, we allow the choice of s in part (ii) of Definition 3.1 to pos-
sibly depend on i and n. Before exhibiting our use of pk, uq–nestings, let us
first recall a simple estimate of C1,τ–displacements.

Lemma 3.3 ([21, Lemma 2.7]; cf. [18, Lemma 2.13]). If f P Diff1,τ
` ra, bs

and x P pa, bq, then

| f pxq ´ x| ď rD f sτ ¨ |x´ a|1`τ.

The following lemma is a common generalization of key analytic ingre-
dients in [21, Proposition 2.8 and Section 2.4.3] and also in [7, Proposition
2.1].

Lemma 3.4 (pk, uq–Nesting Lemma). If τp1 ` τqk´2 ě u, then Diff1,τ
` pIq

does not contain a pk, uq–nesting.

Proof. Assume for contradiction that Diff1,τ
` pIq contains a pk, uq–nesting

S . Consider a sequence psnqně1 and open intervals tJiu1ďiďk as in Defi-
nition 3.1. For i “ 1, 2, . . . , k and n ě 0, we denote

pan
i , b

n
i q :“ Jn

i :“ wnJi.

We let N :“ 1`maxtrs1sτ ` rlog s1sτ | s P S u and N̄ :“ N2k´2 ř

n |wnJ1|
u.

Claim. For each n ě 0, we have that

|Jn
k´1| ď N2k´2´1

|Jn
1 |
p1`τqk´2

.
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To see the claim, let us assume i “ 2, . . . , k´1 and n ě 0. By hypothesis,
there exists some s P S such that sJn

i´1 “ Jn
i´1 and such that sJn

i X Jn
i “ ∅.

By Lemma 3.3, we have that

|Jn
i | ď maxp|span

i q ´ an
i |, |spb

n
i q ´ bn

i |q ď N|Jn
i´1|

1`τ.

We inductively see that

|Jn
k´1| ď N|Jn

k´2|
1`τ
ď N1`2

|Jn
k´3|

p1`τq2
ď ¨ ¨ ¨ ď N1`2`22`¨¨¨`2k´3

|Jn
1 |
p1`τqk´2

.

This completes the proof of the claim.
Since S is finite, there exists some t P S satisfying part (ii) of Defini-

tion 3.1 for i “ k and for infinitely many n. Let us set

A ` :“ tn ě 0 | tJn
k´1 “ Jn

k´1 and tJn
k ą Jn

ku,

A ´ :“ tn ě 0 | tJn
k´1 “ Jn

k´1 and tJn
k ă Jn

ku.

Without loss of generality, we assume that A ` is infinite, for the other case
can be treated similarly using t´1.

For each n P A `, there exist xn P Jn
k´1, un P Jk, vn P Jk´1 such that

t1pxnq “
tpan

kq ´ tpan
k´1q

an
k ´ an

k´1

“ 1`
tpan

kq ´ an
k

an
k ´ an

k´1

ě 1`
|Jn

k |

|Jn
k´1|

“ 1`
w1npunq

w1npvnq
¨
|Jk|

|Jk´1|
.

Using the above claim, we see that∣∣∣∣∣∣log
w1npunq

w1npvnq

∣∣∣∣∣∣ ď n´1
ÿ

i“0

∣∣∣log s1i`1 ˝ wipunq ´ log s1i`1 ˝ wipvnq
∣∣∣ ď n´1

ÿ

i“0

N
∣∣∣Ji

k´1

∣∣∣τ
ď N ¨ Nτp2k´2´1q

n´1
ÿ

i“0

∣∣∣Ji
1

∣∣∣τp1`τqk´2

ď N2k´2
n´1
ÿ

i“0

∣∣∣Ji
1

∣∣∣u “ N̄.

In the last inequality, we used that τp1` τqk´2 ě u.
For all (hence, infinitely many) n P A ` we now see that

t1pxnq ě 1` e´N̄
|Jk|{|Jk´1|.

On the other hand, we have that t1 “ 1 at some point in each of Jn
k´1, the

length of which converges to 0 as n goes to infinity. This implies that

lim
nÑ8,nPA `

t1pxnq “ 1,

which is a contradiction. �

Remark 3.5. One can slightly weaken the condition of a pk, uq–nesting for
the purpose of the above lemma. That is, one may drop the condition that
S is finite, and instead assume

sup
sPS
rs1sτ ă 8,
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and moreover, assume some t P S satisfies part (ii) of Definition 3.1 for
i “ k and for infinitely many n. In this case, we only need to assume that t
is C1, not even C1,τ.

Remark 3.6. It is plausible that the bound τp1 ` τqk´2 ă u could be im-
proved. In the case when u “ 1, let us consider the integer function

kpτq :“ mintk ě 2 | Diff1,τ
` pIq does not contain a pk, 1q–nestingu.

In [8], it is shown that Diff1,τ
` pIq admits a pk, 1q–nesting whenever k ă 1 `

1{τ; in other words, kpτq ě 1 ` 1{τ. Under a certain stronger hypothesis
instead of pk, 1q–nesting (which involves a “k–level structure”

tJv | v P Zk
u

of lexicographically ordered intervals) the condition k ď 1 ` 1{τ is neces-
sary; see [21, Proposition 2.8 and Remark 2.9] for details.

Lemma 3.7 (cf. [7, Proposition 2.1]). Suppose we have an interval J Ď I, a
finite set S Ď Homeo`pIq, a real number τ P p0, 1q and an infinite sequence
tsnu in S such that

ÿ

ně0

|sn ¨ ¨ ¨ s1J|τ ă 8.

If c P Homeo`pIq nontrivially acts on J and centralizes S , then the set
S Y tcu is a p2, τq–nesting. In particular, we have S Y tcu Ď Diff1,τ

` pIq.

By Remark 3.5 one can strengthen the above lemma and say that either
c R Diff1

`pIq or S Ď Diff1,τ
` pIq.

Proof of Lemma 3.7. One can find another nonempty open interval J2 Ĺ J
such that cJ2 X J2 “ ∅. From the centrality of c, the two conditions of
Definition 3.1 easily follow after setting

k :“ 2, J1 :“ J, u :“ τ, t :“ c.

The second conclusion follows from Lemma 3.4. �

For an infinite sequence ω “ ps1, s2, . . .q, let us denote

ωn :“ ps1, s2, . . . , snq.

Lemma 3.8 ([8]). Let d P N, and let e1, . . . , ed denote the standard basis
vectors of Zd. Suppose α : Zd Ñ Rě0 is a function such that

ÿ

vPZd

αpvq ă 8.
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Then for each τ P p1{d, 1q and for almost all ω “ ps1, s2, . . .q with respect
to the uniform distribution measure in the space of random walks Ω :“
te1, . . . , edu

N we have that
ÿ

ně1

αps1 ` s2 ` ¨ ¨ ¨ ` snq
τ
ă 8.

Deroin, Kleptsyn and Navas established the above lemma by an averag-
ing argument [8]. We will employ the following variation of the lemma.

Lemma 3.9. Let Ω0 :“
š

ně1t1, 2, . . . , du
n, the space of all nonempty finite

sequences on d letters. If α is a probability measure on Ω0 and if τ ą 0,
then we have that

ÿ

ně1

αpωnq
τ
ă 8

for almost all ω with respect to the uniform distribution measure in the
space of random walks Ω :“ t1, 2, . . . , duN.

Proof. We see from the Hölder inequality that

E

«

ÿ

n

αpωnq
τ

ff

“
ÿ

n

E rαpωnq
τs “

ÿ

n

1
dn

ÿ

vPt1,2,...,dun

αpvqτ

ď
ÿ

n

1
dn

¨

˝

ÿ

vPt1,2,...,dun

αpvq

˛

‚

τ

pdnq
1´τ
ď
ÿ

n

1
dnτ ă 8.

In particular, almost all ω P Ω satisfies the desired inequality. �

We will later repeatedly use the following lemma in order to reduce the
main theorem to the case of Conradian actions.

Lemma 3.10 (Centralizer–Conradian Lemma). Let τ ą 0. If c belongs to
the center of a group G ď Diff1,τ

` pIq, then the restriction of G onto supp c is
Conradian.

Proof. This lemma is well-known for the case when Fix c “ BI; this case
coincides with [24, Proposition 4.2.2.25], where the result is attributed to
a unpublished work of Bonatti–Crovisier–Wilkinson. In this special case,
it suffices to assume c is C0 and G is C1. Alternatively, this case can be
recovered by applying the Two-jumps Lemma [2] to the c–translates of an
interval that contains a hypothetical two–chain.

Let us set U :“ supp c. We may now consider the case that U is a proper
subset of IzBI. It suffices for us to prove that the restriction of G to J X U
must be Conradian for each J P π0 supp G. In other words, we can assume
that Fix G “ BI.
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Assume for contradiction that GæU is not Conradian. By Lemma 2.5, we
can find a two–chain tJ1, J2u intersecting U such that Ji P π0 supp gi for
some gi P G. We may pick w P J1 X J2 X U as in Figure 1. Let U0 be the
component of U containing w. The open interval U0 cannot contain J1Y J2,
again by the above remark. This implies by Lemma 2.3 that U0 Ď J1 X J2.
Possibly after replacing gi’s by their powers, we may assume

inf J1 ă inf J2 ă g2U0 ă U0 ă g1U0 ă sup J1 ă sup J2.

We claim that for all distinct pair of positive words pw,w1q in tg1, g2u the
intervals wU0 and w1U0 are disjoint; this claim can be seen as an example
of the ping-lemma in the literature. To prove the claim, assume first the
special case that

w “ gm1
1 gm2

2 gm3
1 ¨ ¨ ¨

and
w1 “ gn1

2 gn2
1 gn3

2 ¨ ¨ ¨

for some nonnegative mi and ni such that m1n1 ‰ 0. Then we see that

inf J2 ă w1U0 ă U0 ă wU0 ă sup J1.

The general case easily follows by induction on the lengths of w and w1. We
also note that g1 and g2 generate a rank–two free semigroup.

Applying Lemma 3.9 (possibly after a rescaling) to

pps1, . . . , snq :“ |sn ¨ ¨ ¨ s1pU0q|,

we can find an infinite sequence ω “ ps1, s2, . . .q in the set tg1, g2u so that
ÿ

n

∣∣∣sn ¨ ¨ ¨ s1pJq
∣∣∣τ ă 8.

Lemma 3.7 implies that G is not C1,τ–smooth, which is a contradiction. �

Remark 3.11. It was remarked to the authors by M. Triestino that in the
C1 setting, a non–Conradian group action G ď Diff1

`pIq admits an element
g P G with a hyperbolic fixed point [8, 3]. Such an element g cannot be
centralized by a fixed–point free C1 diffeomorphism.

Remark 3.12. By Remark 3.5, it actually suffices to assume that c P Diff1
`pIq

centralizes G ď Diff1,τ
` pIq. This can be rephrased as follows. If c P Diff1

`pIq
centralizes tg1, g2u P Diff1,τ

` pIq and if J1 P π0 supp g1 and J2 P π0 supp g2

form a two–chain then J1 Y J2 is disjoint from supp c.

The following lemma relates a pk, 1q–nesting with the non-solvability of
a group, in an essentially the same fashion as [21, Section 2.4.3]. We will
apply the lemma after R is replaced by a finite open interval.
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Lemma 3.13. Suppose that a nontrivial element c P Homeo`pRq central-
izes a Conradian group G ď Homeo`pRq. If c has no fixed points and if G
is not solvable of degree at most k ě 2, then there exists a pk, 1q–nesting in
the group xG, cy.

Proof. We follow the argument in [21, Section 2.4.3] closely. Let µ be
a G–invariant measure on R, and let τµ be its associated character as in
Lemma 2.7. Pick a nontrivial element gk P Gpkq. Since τµpgkq “ 0, we
can also pick a finite open interval Jk´1 P π0 supp gk. Since Fix gk X Jk´1 is
empty, we can find a proper open interval Jk Ď Jk´1 such that gkJkXJk “ ∅.

The interval Jk´1 is not Gpk´1q–invariant; for otherwise, one can apply
Lemma 2.7 (3) to the Conradian group Gpk´1qæJk´1 and see that gk fixes
a point in Jk´1, a contradiction. Let us choose gk´1 P Gpk´1q such that
gk´1Jk´1X Jk´1 “ ∅. Since gk´1 P Gp1q ď ker τµ, we can find another finite
open interval Jk´2 P π0 supp gk´1 such that Jk´1 Ĺ Jk´2.

Continuing this way, we have a properly nested sequence of finite open
intervals

J1 Ľ J2 Ľ ¨ ¨ ¨ Ľ Jk

and homeomorphisms gi P Gpiq for i “ 2, . . . , k as in Example 3.2. We thus
obtain a pk, 1q–nesting. �

4. Proofs of the main results

4.1. Non-overlapping actions of products of non-solvable groups. We
will now prove Theorem 1.1, for which it suffices to establish the following
fact.

Theorem 4.1. Let G and H be finitely generated groups that are not solv-
able of degree at most k ě 3. Suppose τ P p0, 1q satisfy τp1 ` τqk´2 ě 1.
Then there does not exist an embedding

pG ˆ Hq ˚ ZÑ Diff1,τ
` pIq.

The proof will occupy the remainder of this section. By the abt–Lemma
(Lemma 2.1), it suffices for us to show that there does not exist a faithful
overlapping C1,τ–action of G ˆ H on I.

Assume for a contradiction that G ˆ H ď Diff1,τ
` pIq is overlapping. Pick

nontrivial gk P Gpkq and hk P Hpkq. Since supp gk and supp hk are nontrivially
intersecting, we can find J0 P π0 supp G such that

psupp gk X J0q X supp hk ‰ ∅.

We saw in the Centralizer–Conradian Lemma (Lemma 3.10) that the restric-
tion of G on supp hk is Conradian. By Lemma 2.9, we see that J0 P π0 nst G;
in particular, we can find some g0 P G such that J0 “ supp g0.
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We claim that every element h P H fixes some point in J0. For otherwise,
there exists some J1 P π0 supp h such that J0 Ď J1. By the Centralizer–
Conradian Lemma again, we see that the restriction of G ˆ xhy on J1 is
Conradian. Since the restriction of gk on J1 is nontrivial, Lemma 3.13 im-
plies that xG, hy admits a finite pk, 1q–nesting. By Lemma 3.4, this contra-
dicts τp1`τqk´2 ě 1. Thus the claim is proved, and we may see furthermore
that HpJ0q “ J0.

To complete the proof, we write

ḡ0 “ g0æJ0 , H̄ “ HæJ0 ,

for compactness of notation. We have an action of xḡ0, H̄y on J0, where
ḡ0 acts without fixed points. Yet another application of the Centralizer–
Conradian Lemma shows that this action is Conradian. The assumption
J0 X supp hk ‰ ∅ implies that H̄pkq is nontrivial. This again contradicts the
bound on τ, by Lemma 3.4 and Lemma 3.13. This completes the proof of
Theorem 4.1.

4.2. No smooth action of F ˚Z. In this section, we establish Theorem 1.4,
which says (conditionally) that F ˚ Z cannot be realized as a subgroup of
Diff1

`pIq. We remark that to establish its unconditional validity, we would
require the following result of the third author with Brum, Matte Bon, and
Triestino [5]:

Theorem 4.2. Let φ : F Ñ Diff1
`pIq be a faithful action. Then φ is semi-

conjugate to the standard piecewise linear action of F.

Here, a semiconjugacy is a monotone, surjective, continuous function
I Ñ I which intertwines two actions.

Let us now resume the proof of Theorem 1.4. As is standard, we realize
F ď PLr0, 1s. We let F´ be the elements of F supported in r0, 1{2s, and
let F` be the elements supported in r1{2, 1s. The conclusion would be
immediate from Lemma 2.1 if we show that φpFq is non-overlapping. We
will prove the following stronger result.

Lemma 4.3. Under the hypothesis of Theorem 1.4, we have that

supp φrF´, F´s X supp φrF`, F`s “ ∅.

Proof. Let us first consider the special case that φ is faithful and does not
have global fixed points other than BI. Assume for contradiction that f1 P

rF´, F´s and f2 P rF`, F`s have intersecting supports under φ. We have
some Ji P π0 supp φp fiq satisfying J1 X J2 ‰ ∅.

By our hypotheses, there exists a semiconjugacy h : I Ñ I from φ to
the standard action φstd of F. Generally, φpFqæp0,1q either is minimal, has
a discrete orbit or admits a wandering interval [24]. Using the assumption
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that f1 and f2 have disjoint supports under the minimal action φstd, and that
φ has no global fixed point other than BI, we see the first two alternatives
do not occur here. Moreover, J1 or J2 maps to a singleton, say y, under h.
Let J be a maximal wandering interval, defined as the interior of h´1pyq.

By symmetry, we may assume y ě 1{2. The standard action of F´
fixes y, and so, φpF´q preserves J; in particular, J1 Ď J. Since φp f1qæJ P

φrF´, F´sæJ is nontrivial, we see that φpF´qæJ is nonabelian. This implies
that F´ acts faithfully on J under φ. We will deduce a contradiction in this
case.

Again by our hypotheses, there exists a semiconjugacy from J to I that
intertwines φpF´qæJ with the standard action

F´
– // F

φstd // PLpIq.

From this, we can find in J a two–chain tU1,U2u such that Ui P π0 supp φpgiq

for some gi P F´. We may further require that the closure of

supp φstdpg1q Y supp φstdpg2q

is properly contained in p0, 1{2q. There exists some g P F centralizing
xg1, g2y such that supp φstdpgq contains y. Here, g is not necessarily con-
tained in F`, especially when y “ 1{2. Then a component of supp φpgq
contains J. By applying Remark 3.12 to the action of φ pxg, g1, g2yq on
supp g, we obtain a contradiction.

We now consider the general case that φ is allowed to have global fixed
points, and possibly non-faithful. We can write

IzFix φpFq “
ž

iě1

Ji

for some open intervals Ji. We set φi :“ φæJi . If φipFq is abelian then
clearly supp φirF, Fs “ ∅. If not, then φi must be faithful and our consider-
ation of the special case above implies that the supports of φirF´, F´s and
φirF`, F`s are disjoint. Since the support of g P F under the action φ is the
union of supp φipgq for i ě 1, the conclusion follows. �

5. Further discussion: lamplighter groups

The simplest right-angled Artin group with unknown critical regularity is
pF2ˆZq ˚Z. Recall from [17] that such a critical regularity is at most 2. We
have the following slightly refined version of Question 1.8, which we state
for the convenience of the reader.

Question 5.1. Does the group pF2 ˆ Zq ˚ Z admit a faithful C1,τ–action on
r0, 1s for some τ ą 0?
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If the answer to Question 5.1 is negative, then one would have a di-
chotomy that the critical regularity of a right-angled Artin group is either
1 or the infinity. Note that the adjective “orientation–preserving” is not
needed in the question as every finite index subgroup of pF2 ˆ Zq ˚ Z con-
tains a copy of itself.

Let us write F2 ˆ Z “ xa, by ˆ xty. If one tries to employ a technique
used in the proof of Theorem 1.1, one encounters the following problematic
configuration: there exist supporting intervals J0, J1, J2 of a, b, t respectively
so that

J2 Ď J1, J1 Ď J0.

A particularly simple case when a similar difficulty would arise can be
described as follows. We define a nested action of pZ oZqˆZ “ pxay oxbyqˆ
xty on an interval I as a faithful topological action such that for some open
intervals J1 and J2 we have that

π0 supp t Q J2 Ď J2 Ď J1 “ supp b Ď J1 Ď supp a “ IzBI.

Question 5.2. What is the supremum τ P p0, 1q such that a nested action of
pZ o Zq ˆ Z is topologically conjugate to a C1,τ–action?

Let us denote the above supremum as τLL, where LL stands for Lamp–
Lighter. The supremum τLL will be at least 1{2. Indeed, one can start with
the C1`1{2´ε–action of Z3 “ xa, b0, ty in [30] such that certain supporting
intervals of a, b0 and t are nested (in the decreasing order). One then re-
places b0 by b :“ b0æJ, the restriction of b0 on some supporting interval J
of b0. This gives a nested C1`1{2´ε–action of pZ o Zq ˆ Z for a small ε ą 0.

One actually has a better lower bound of τLL.

Proposition 5.3. For each τ ă p´1 `
?

5q{2 there exists a nested C1,τ–
action of pZ o Zq ˆ Z.

Recall that the golden ratio is defined as

φ :“
1`

?
5

2
.

The proposition asserts that τLL ě φ ´ 1. We remark that the appearance
of the golden ratio in critical regularity questions is perhaps surprising, but
not completely unexpected. Indeed, the golden ratio appears in [25], in the
context of smoothing of group actions and codimension one foliations.

Proof of Proposition 5.3. Let τ P p0, φ´ 1q. We put

e1 “ p1, 0, 0q, e2 “ p0, 1, 0q, e3 “ p0, 0, 1q.

Let us consider a collection of compact intervals tIvuvPZ3 in R that form a
“three–level structure” as follows.
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‚ For u, v P Z3 satisfying u ď v in the lexicographical order, we have
Iu ď Iv;

‚ The closure of
Ť

vPZ3 Iv is the given compact interval I.
It will be convenient for us to write

Ii, j :“
ď

k

Ii, j,k, Ii :“
ď

j

Ii, j

for each i, j.
Let us pick parameters pp, q, q1, rq P p1,8q, whose values will be deter-

mined later depending on the choice of τ. We assign the length

|Ii, j,k| “

#

1{pip ` jq ` krq, if i ‰ 0
1{p jq1 ` krq, if i “ 0.

Following Tsuboi’s construction [30], we have a map a, b, t P Homeo`pRq
satisfying the following properties for each v P Z3.

‚ a maps Iv to Iv`e1 by a C8–diffeomorphism such that

a1psup Ivq “ |Iv`e1 |{|Iv|, a1pinf Ivq “ |Iv´e3`e1 |{|Iv´e3 |.

‚ t maps Iv to Iv`e3 by a C8–diffeomorphism such that

t1psup Ivq “ |Iv`e3 |{|Iv|, t1pinf Ivq “ |Iv|{|Iv´e3 |.

‚ For v “ p0, i, jq, the map b maps Iv to Iv`e2 by a C8–diffeomorphism
such that

b1psup Ivq “ |Iv`e2 |{|Iv|, b1pinf Ivq “ |Iv´e3`e2 |{|Iv´e3 |.

‚ b is the identity outside I0.
‚ Let g P ta, b, tu. For some universal constant M ą 0, if g maps Iu

onto Iv for some u, v P Z3, then

rlog DgæIus1 ď
M
|Iu|

∣∣∣∣∣∣ |Iu|{|Iv|

|Iu´e3 |{|Iv´e3 |
´ 1

∣∣∣∣∣∣.
Here, r¨s1 denotes the Lipschitz norm. It is easy to see that a, b, t are C1–
diffeomorphisms supported in I. It suffices for us to prove the following
claim.

Claim. If τ ă φ ´ 1, then there exists a tuple pp, q, q1, rq P R4
` so that the

action of xa, b, ty described above are C1,τ.

We will only sketch the proof, as the details involve tedious computa-
tions. Briefly speaking, the following three conditions imply that a, b and t
are C1,τ–diffeomorphisms on Iu for each u P Z3:
(A) rτ ď q1{q ă 1;
(B) 1{p` 1{q` 1{r ă 1;
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(C) 1{q1 ` 1{r ă 1.
Then the two extra conditions below guarantee that a, b, t are globally C1,τ:
(D) τp

`

1´ 1
r

˘

ď 1.
(E) τq1

`

1´ 1
r

˘

ď 1.
We omit the details; similar computations can be found in [30] and [7].

We eliminate q1 and r from the above five inequalities, and are left with
the following single condition:

τ

1´ τ
ă

q
p
ă min

ˆ

p1´ τqq´ 1,
p1´ τ2qq´ τ

τ2q` τ

˙

.

We can pick a sufficiently large q ą 1 so that the leftmost term is smaller
than the rightmost term; here, we used τ ă φ´ 1 as we have

lim
qÑ8

p1´ τ2qq´ τ

τ2q` τ
“

1´ τ2

τ2 ą
τ

1´ τ
.

It is now easy to pick p, q1 and r so that the conditions (A) through (E) are
all satisfied. �

To the authors’ knowledge, it is still unknown if τLL “ φ´ 1. We make a
relevant observation below, which deals with an action of Z2 whose optimal
regularity is less than C1,φ´1.

Proposition 5.4. Suppose the group Z2 “ xa, ty faithfully acts on I by
orientation–preserving C1,τ–diffeomorphisms such that Fix a “ BI and Fix t Ľ
BI. If some y P Fix t and z P IzFix t satisfy

ÿ

iě0

ˇ

ˇaiy´ aiz
ˇ

ˇ

τ
ă 8,

then we have that τ ă φ´ 1.

To provide some context for the statement of this proposition, we remark
that in [30], Tsuboi also exploited a connection between the regularity of
an abelian group action and a bounded τ–variation condition similar to the
inequality appearing in Proposition 5.4. In the same paper, he also con-
structed a faithful Conradian C2´ε action of Z2 on I, for all ε ą 0.

Proof of Proposition 5.4. The proof uses a similar idea to [21] and to Lemma 3.4.
Let us set I “ r0, 1s. Possibly after replacing a and t by their inverses and
reducing the lengths |aiy´ aiz|, we may assume that

y “ ty ă z ă tz ă ay.

Assume for contradiction that τ ě φ´ 1. For each i ě 0, we set

Li :“ aiz´ aiy, Mi :“ taiz´ aiz.
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Since aiy P Fix t, Lemma 3.3 implies that

Mi ď rDtsτL1`τ
i .

From τ ě φ´ 1, we note τp1` τq ě 1. Hence,
n´1
ÿ

j“0

Mτ
j ď rDtsττ

n´1
ÿ

j“0

Lp1`τqτj ď rDtsττ
n´1
ÿ

j“0

L j ď rDtsττ.

The rest of the proof proceeds similarly to Lemma 3.4. We set

K :“
ÿ

iě0

ˇ

ˇaiy´ aiz
ˇ

ˇ

τ
.

For each n ě 0 there exists un P py, zq and vn P pz, tzq such that

Mn

Ln
“

DanpvnqM0

DanpunqL0
.

We have that∣∣∣∣∣∣log
Danpvnq

Danpunq

∣∣∣∣∣∣ ď rD log asτ
n´1
ÿ

j“0

∣∣∣a j
pvnq ´ a j

punq
∣∣∣τ

ď rD log asτ
n´1
ÿ

j“0

`

∣∣∣a j
pyq ´ a j

pzq
∣∣∣τ ` ∣∣∣a j

pzq ´ a j
ptzq
∣∣∣τ˘

ď rD log asτ pK ` rDtsττq “: A ă 8.

We note that tMn{Lnu is bounded away from zero since

Mn{Ln ě e´A
¨ M0{L0.

On the other hand, the inequality Mn ď rDtsτL1`τ
n implies that

lim
nÑ8

Mn{Ln “ 0.

We have a contradiction, so we conclude that τ ă φ´ 1. �
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3. C. Bonatti, É. Farinelli, Centralizers of C1-contractions of the half line, Groups Geom.
Dyn. 9 (2015), no. 3, 831–889. MR3420546

4. C. Bonatti, I. Monteverde, A. Navas, and C. Rivas, Rigidity for C1 actions on the
interval arising from hyperbolicity I: solvable groups, Math. Z. 286 (2017), no. 3-4,
919–949. MR3671566

5. J. Brum, N. Matte Bon, C. Rivas, and M. Triestino, Locally moving groups acting on
the line and R-focal actions. In preparation.

6. D. Calegari, Nonsmoothable, locally indicable group actions on the interval, Algebr.
Geom. Topol. 8 (2008), no. 1, 609–613. MR2443241 (2009m:37109)

7. G. Castro, E. Jorquera, and A. Navas, Sharp regularity for certain nilpotent group
actions on the interval, Math. Ann. 359 (2014), no. 1-2, 101–152. MR3201895

8. B. Deroin, V. Kleptsyn, and A. Navas, Sur la dynamique unidimensionnelle en
régularité intermédiaire, Acta Math. 199 (2007), no. 2, 199–262. MR2358052

9. G. Duchamp and D. Krob, The lower central series of the free partially commutative
group, Semigroup Forum 45 (1992), no. 3, 385–394. MR1179860 (93e:20047)

10. B. Farb and J. Franks, Groups of homeomorphisms of one-manifolds. III. Nilpo-
tent subgroups, Ergodic Theory Dynam. Systems 23 (2003), no. 5, 1467–1484.
MR2018608 (2004k:58013)
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