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Abstract. We show that if G1 and G2 are non-solvable groups, then no
C1,τ action of pG1ˆG2q˚Z on S 1 is faithful for τ ą 0. As a corollary, if S
is an orientable surface of complexity at least three then the critical reg-
ularity of an arbitrary finite index subgroup of the mapping class group
ModpS q with respect to the circle is at most one, thus strengthening a
result of the first two authors with Baik.

1. Introduction

Let G be a group, and let M be a smooth manifold. For k P N and
τ P r0, 1s, we denote by Diffk,τ

0 pMq the group of Ck diffeomorphisms of
M whose kth derivatives are τ–Hölder continuous and are isotopic to the
identity.

The critical regularity of G with respect to M is defined to be

CritRegMpGq “ suptk`τ | k P N, τ P r0, 1s and G injects into Diffk,τ
0 pMqu.

By convention, Homeo0pMq “ Diff0
0pMq, and if G admits no injective ho-

momorphism into Homeo0pMq then CritRegMpGq “ ´8.

1.1. Main results. In this article, we concentrate on computing the critical
regularity of certain groups in the case M “ S 1, and we will suppress M
from the notation; therefore, we write

CritRegpGq :“ CritRegS 1pGq.

Note that Homeo0pS 1q “ Homeo`pS 1q, where the right hand side denotes
the group of orientation preserving homeomorphisms of S 1. Our main re-
sult is as follows.

Theorem 1.1. If G1 and G2 are non-solvable groups, then

CritRegppG1 ˆG2q ˚ Zq ď 1.
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Every countable subgroup G of Homeo`pS 1q is topologically conjugate
to a group of bi–Lipschitz homeomorphisms of S 1 by [6]. Moreover, the
group G ˚ Z admits an embedding into Homeo`pS 1q by [3]. It follows that

CritRegpGq “ CritRegpG ˚ Zq ě 1.

The following is now an immediate corollary of the main theorem.

Corollary 1.2. We have

CritRegppF2 ˆ F2q ˚ Zq “ 1.

We note that the group pF2 ˆ F2q ˚ Z admits a faithful C1–action on S 1

and on I :“ r0, 1s, as does every finitely generated residually torsion–free
nilpotent group [8, 11], and so Corollary 1.2 is optimal.

Corollary 1.2 allows us to compute the critical regularity of many map-
ping class groups of surfaces. Recall that if S is an orientable surface of
genus g and with n punctures, boundary components, and marked points,
we write ModpS q for the group of isotopy classes of homeomorphisms of
S that preserve the punctures, boundary components, and marked points
(pointwise). We use ξpS q for the complexity of S , which is defined by

ξpS q “ 3g´ 3` n.

If g ě 2 and n “ 1 then ModpS q acts faithfully on S 1, and if S has a
boundary component then ModpS q acts faithfully on I [4, 22, 10]. It was
shown in [9] that the critical regularity of ModpS q is at most two, provided
that g ě 3. This was strengthened in [23, 17], where it was shown that
the critical regularity of ModpS q is at most one. These latter results in fact
showed that any C1 action of the full mapping class group on S 1 factors
through a finite group.

For finite index subgroups H ă ModpS q, the critical regularity ques-
tion is more complicated because finite index subgroups of mapping class
groups are poorly understood. The first two authors and Baik [2] proved
that if ξpS q ě 2, then every finite index subgroup H of ModpS q satis-
fies CritRegpHq ď 2, answering a question of Farb in [7]. In [23], it is
shown that if every finite index subgroup of the mapping class group has
finite abelianization when g ě 3 (i.e. if the Ivanov Conjecture holds), then
CritRegpHq ď 1 for H ă ModpS q of finite index and S of genus at least 6
(and in fact no faithful C1 action exists).

Whereas Corollary 1.2 does not rule out the existence of a faithful C1

action of a finite index subgroup of the mapping class group, it does show
that the critical regularity of a finite index subgroup of ModpS q is bounded
above by one.
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Corollary 1.3. Let S be a surface with ξpS q ě 3, and let τ ą 0. If H is
a finite index subgroup of ModpS q then it admits no faithful C1,τ–action on
the circle; in particular CritRegpHq ď 1.

It is currently an open question for which surface S a finite index sub-
group of ModpS q admits a faithful C0–action on S 1. In the case when
H is such a finite index subgroup we have from the above corollary that
CritRegpHq “ 1. We note that it is usually quite difficult to compute the
critical regularity of a particular group whose critical regularity is known to
be finite. For a survey of results, the reader is directed to [19, 5, 12, 14, 18].

Corollary 1.3 follows immediately from Corollary 1.2 after observing
that under the assumption that ξpS q ě 3, the group ModpS q and all of its
finite index subgroups contain copies of pF2 ˆ F2q ˚ Z (cf. [16, 2, 15]).

In the case where ξpS q ď 1, the mapping class group of S is virtually
free, so that CritRegpHq “ 8 for a suitable finite index subgroup H of
ModpS q. The only case that is left out from Corollary 1.3 is exactly when
ξpS q “ 2:

Question 1.4. Let S be a twice–punctured torus or a five–times punctured
sphere. Does some finite index subgroup of ModpS q admit a faithful C1,τ

action on S 1 with τ ą 0?

1.2. A dynamical perspective on the main result. For the remainder of
this section, we frame the discussion of this article in a more precise manner,
and while doing so introduce some relevant concepts. Let G be a group
acting on a space X, and define the (open) support of g P G by

supp g :“ XzFix g.

The support of G is the set

supp G :“
ď

gPG

supp g.

We call each point in

Fix G :“
č

gPG

Fix g

a global fixed point of G.
Let us say G admits a disjointly supported pair (or, G is non–overlapping)

if there exist nontrivial elements g, h P G satisfying

supp gX supp h “ ∅.

In [15], the authors proved the following result, which was partially based
on the methods in [19]:
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Theorem 1.5 ([15], Theorem 1.1). If G1 and G2 are non-solvable groups,
and if τ ą 0, then there is no faithful C1,τ action of pG1 ˆ G2q ˚ Z on a
compact interval.

In that paper, the main technical result was the following.

Theorem 1.6 ([15, Section 4.1]). Let τ ą 0 be a real number, and let k ě 3
be an integer such that τp1 ` τqk´2 ě 1. If G1 and G2 are groups that are
not solvable of degree at most k, and if

G :“ G1 ˆG2 ÝÑ Diff1,τ
` pr0, 1sq

is an embedding, then G contains a disjointly supported pair.

Theeorem 1.5 follows from Theorem 1.6 by an application of the abt–
Lemma from [13]:

Proposition 1.7 (The abt–Lemma). Let M P tI, S 1u and let a, b P Diff1
`pMq

be such that
supp aX supp b “ ∅.

Then if t P Diff1
`pMq is arbitrary, the group xa, b, ty is not isomorphic to

Z2 ˚ Z.

Proposition 1.7 implies that if a group G always has elements with dis-
joint supports whenever acting on I or S 1 by diffeomorphisms of some reg-
ularity, then G ˚ Z never acts faithfully by diffeomorphisms on I or S 1 of
that regularity. Thus, to prove Theorem 1.1, it will suffice for us to establish
the following:

Proposition 1.8. Let τ ą 0, and let G1 and G2 be non-solvable groups. If
φ is a C1,τ–action of G1 ˆ G2 on S 1, then G admits a disjointly supported
pair.

We will argue Proposition 1.8 by showing directly that the commutator
subgroup of G1 ˆ G2 admits a global fixed point, thus reducing to Theo-
rem 1.5.

2. Preliminaries

For a direct product of groups

G “ G1 ˆG2,

we identify G1 with G1 ˆ t1u and G2 with t1u ˆG2, so that Gi is a normal
subgroup of G for i P t1, 2u; moreover, we have G “ xG1,G2y.

Now, suppose a subgroup G ď Homeo`pS 1q is given. A Borel probabil-
ity measure µ on S 1 is said to be G–invariant if for all g P G and for all
measurable A Ă S 1, we have µpAq “ µpg´1Aq. The support of µ, denoted
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as supp µ, means the largest closed subset X Ă S 1 such that every open
subset of X has positive measure.

Recall that the rotation number

rot : Homeo`pS 1
q ÝÑ R{Z

is defined as follows. Let f P Homeo`pS 1q, and lift f to F P Homeo`pRq.
Note that such a lift is always periodic, and that any two such lifts differ by
an integer translation. One chooses an arbitrary x P R and writes

rotp f q “ lim
nÑ8

Fnpxq
n

pmod Zq.

It is not difficult to check that the definition is independent of all the choices
made.

A standard fact is that an orientation preserving homeomorphism of S 1

has nonzero rotation number if and only if it has no fixed points [1, 20]. We
will appeal to the following basic fact relating rotation numbers and invari-
ant measures; note that the second part of the proposition is an immediate
consequence of the first.

Proposition 2.1 (See [20], Theorem 2.2.10). If G ď Homeo`pS 1q admits
an invariant measure µ, then the restriction

rot æG : G Ñ R{Z

is a group homomorphism satisfying

rotpgq “ µrx, gpxqq

for all g P G and x P S 1. Moreover, the kernel of this homomorphism fixes
every point in supp µ.

We now recall some ideas from [15] that will be crucial in the proof of our
main result. Following [21], we say that two elements f , g P Homeo`pRq
are crossed if there exist point u ă w ă v in R such that:

(1) gnpuq ă w ă f npvq for all n P Z;
(2) There is an N P Z such that gNpvq ă w ă f Npuq.

A group action of G on R by orientation preserving homeomorphisms is
called Conradian if it admits no crossed elements.

Lemma 2.2 ([15], Lemma 3.10 (Centralizer–Conradian Lemma)). Let τ ą
0, and let G ď Diff1,τ

` pr0, 1sq. If c is a central element of G, then the restric-
tion of G to supp c is Conradian.

The relationship between C1,τ actions and Conradian actions is elucidated
by the following technical fact.
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Lemma 2.3 ([15], Lemmas 3.4). If τ, u ą 0 are real numbers, and if k ě 2
is an integer satisfying τp1`τqk´2 ě u, then Diff1,τ

` pr0, 1sq does not contain
a pk, uq–nesting.

Briefly speaking, a pk, uq–nesting is a finite set S Ď Homeo`pr0, 1sq such
that for some infinite sequence ps1, s2, . . .q of elements from S , for some
nested open intervals

J1 Ľ J2 Ľ ¨ ¨ ¨ Ľ Jk,

and for some choices

ttn,i | 2 ď i ď k, n ě 0u Ď S ,

one has
ÿ

ně0

|sn ¨ ¨ ¨ s2s1J1|
u
ă 8,

together with

tn,iwnJi X wnJi “ ∅, tn,iwnJi´1 “ wnJi´1.

A pk, uq–nesting is a feature of an action that is weaker than the classical
notion of a “k–level structure” [19].

Lemma 2.4 ([15], Lemma 3.13). Let G ď Homeo`pr0, 1sq be a Conradian
group such that Gpkq ‰ 1 for some k ě 2. If c is a central element of G
fixing no points in p0, 1q, then G contains a pk, 1q–nesting.

One may take the pk, uq–nesting as a black box for the purpose of this
paper, and only note the following immediate consequence of the three pre-
ceding lemmas.

Lemma 2.5. Let τ ą 0 be a real number and k ě 3 be an integer such that
τp1 ` τqk´2 ě 1. If c is a central element of G ď Diff1,τ

` pr0, 1sq fixing no
points in p0, 1q, then Gpkq “ 1.

A fixed point a of g P Diff1
`pS

1q is called a hyperbolic fixed point if
g1paq ‰ 1. The following deep theorem of Deroin–Kleptsyn–Navas (which
is a generalization of a result due to Sacksteder) will be an important ingre-
dient for us.

Theorem 2.6 ([6]). If a subgroup G of Diff1
`pS

1q preserves no probability
measure on S 1, then G contains an element g such that Fix g is nonempty,
finite, and consists entirely of hyperbolic fixed points.

Remark 2.7. For a group G ď Homeo`pS 1q that does not admit a finite
orbit, there uniquely exists a smallest, nonempty, closed G–invariant set ΛG,
called the limit set of G; see Theorem 2.1.1 in [20], for instance. The limit
set is either S 1 or a Cantor set, the latter of which is called the exceptional
minimal set of G. In Theorem 2.6, we can find a point x P ΛGzFix g, since
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the limit set ΛG is necessarily infinite. Consider now the component J of
supp g containing x. The G–invariance of ΛG implies that

BJ “ g˘8pxq Ď Fix gX ΛG.

In other words, we can always find a hyperbolic fixed point of g in ΛG.

3. Establishing the main result

A group G is said to be solvable of degree at most k if the subgroup Gpkq,
the k–th term in the derived series, is trivial. As noted in the introduction
Theorem 1.1 will follow from Proposition 1.8, which in turn is an immedi-
ate consequence of the stronger result given below.

Theorem 3.1. Let k ě 3 be an integer, and let τ ą 0 be a real number
satisfying τp1 ` τqk´2 ě 1. If G1 and G2 are groups that are not solvable
of degree at most pk ` 1q, then every faithful C1,τ–action of G1 ˆG2 on S 1

admits a disjointly supported pair. In particular, we have that

CritReg ppG1 ˆG2q ˚ Zq ď 1` τ.

Note that the second part of the theorem follows from the first along with
the abt–Lemma (Proposition 1.7). The lemma below is a key step in the
proof of the first part.

Lemma 3.2. Let k and τ be as in Theorem 3.1. If a group H ď Diff1,τ
` pS

1q

can be written as a direct product H “ H1ˆH2, and if H1 does not preserve
a probability measure on S 1, then H2 is solvable of degree at most pk ` 1q.

Proof. From Theorem 2.6 and Remark 2.7, we can find some c P H1 and
a P ΛH1 X Fix c such that c1paq ‰ 1. For all h P H2, the point hpaq is also a
hyperbolic fixed point of c with the derivative c1paq since

c1 ˝ hpaq “ pc ˝ hq1paq{h1paq “ h1pcpaqq ¨ c1paq{h1paq “ c1paq.

It follows that H2paq does not have an accumulation point, and in particular
is finite. As H2 admits an invariant probability measure (with atoms at
points of H2paq), we see from Proposition 2.1 that K :“ rH2,H2s fixes the
point a.

Let U1 and U2 be the two components of supp c containing a on their
boundaries. The group K preserves each Ui, since K permutes the compo-
nents of supp c and fixes the point a. Applying Lemma 2.5 to the restriction

pxcy ˆ Kq æUi
,

we see that Kpkq acts trivially on Ui for i “ 1, 2.
Suppose V is a component of the support of K, not intersecting U1 YU2.

Since a lies in the limit set of H1, we can find some h1 P H1 such that

h1pVq Ď U1 Y U2.
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Let g P Kpkq and v P V be arbitrary. Since g acts trivially on h1pvq, we have
that

gpvq “ h´1
1 ˝ g ˝ h1pvq “ h´1

1 ˝ h1pvq “ v.
Combined with the preceding paragraph, this proves that

Hpk`1q
2 “ Kpkq “ 1. �

We also note the following general observation regarding topological ac-
tions.

Lemma 3.3. Let H “ H1 ˆ H2 be a subgroup of Homeo`pS 1q.
(1) If each Hi admits a global fixed point, then so does H.
(2) If each Hi preserves a Borel probability measure on S 1, then so does

H.

Proof. (1) Suppose not. Since Fix H1 X Fix H2 “ ∅, we can find some
b P Fix H1 X supp H2. Let J be the component of supp H2 containing b.
There exists a sequence thnu in H2 such that

b1 :“ lim
nÑ8

hnpbq P BJ.

Then b1 P Fix H1 X Fix H2, which is a contradiction.
(2) Let µi be a probability measure preserved by Hi. By Proposition 2.1,

the restriction of rot to each Hi is a homomorphism.
Suppose first that rotpH1q Y rotpH2q is a discrete subset of R{Z. This

means that Ki, the kernel of the map rot : Hi ÝÑ Q{Z, has finite index in Hi

(i “ 1, 2). Since each Ki admits a global fixed point, so does K1 ˆ K2. This
latter group has finite index in H, and so H has a finite orbit and preserves
a probability measure.

We now assume that rotpH1qY rotpH2q is indiscrete in R{Z. Without loss
of generality, rotpH1q is a dense subgroup of R{Z. By a result of Plante
(See Proposition 2.2 of [24]), it follows that H1 preserves a unique Borel
probability measure µ1. Finally, if h2 P H2 and h1 P H1, then

h˚1 h˚2µ1 “ h˚2 h˚1µ1 “ h˚2µ1.

The uniqueness of µ1 implies that h˚2µ1 “ µ1. In other words we have shown
that µ1 is also H2–invariant, and so also H–invariant. �

Proof of Theorem 3.1. We may assume that the given group G :“ G1ˆG2 is
a subgroup of Diff1,τ

` pS
1q. If some Gi does not admit an invariant probability

measure, we apply Lemma 3.2 to obtain a contradiction. So, we will assume
that each Gi preserves a probability measure. Lemma 3.3 implies that G also
preserves a probability measure µ.

By Proposition 2.1 the rotation number is trivial on the group

H :“ rG,Gs “ rG1,G1s ˆ rG2,G2s.
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Moreover, the support of µ is contained in the global fixed point set of H,
which is therefore nonempty. So, the inclusion H ãÑ Diff1,τ

` pS
1q factors

through an injection H ãÑ Diff1,τ
` pr0, 1sq. By Theorem 1.6, it follows that

H admits a disjointly supported pair. Along with the abt–Lemma (Proposi-
tion 1.7), this completes the proof. �
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Dpto. deMatemáticas y C.C., Universidad de Santiago de Chile, Alameda 3363, San-
tiago, Chile

Email address: cristobal.rivas@usach.cl
URL: http://mat.usach.cl/index.php/2012-12-19-12-50-19/academicos

/183-cristobal-rivas

http://www.ams.org/mathscinet-getitem?mr=3989437
http://www.ams.org/mathscinet-getitem?mr=4121156
http://www.ams.org/mathscinet-getitem?mr=3000498
http://www.ams.org/mathscinet-getitem?mr=4157553
http://www.ams.org/mathscinet-getitem?mr=2439001
http://www.ams.org/mathscinet-getitem?mr=2809110
http://www.ams.org/mathscinet-getitem?mr=2551663
http://www.ams.org/mathscinet-getitem?mr=1555256
http://www.ams.org/mathscinet-getitem?mr=2443102 (2010c:37061)
http://www.ams.org/mathscinet-getitem?mr=697084

	1. Introduction
	2. Preliminaries
	3. Establishing the main result
	Acknowledgements
	References

