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gQuandles
e A quandleis aset Q with <4: Q@ X Q — @ s.t.

(Ql) Va € Q, ada = a,
(Q2) Va,be Q, dlc e Q s.t. c<db = a,
(Q3) Va,b,c e Q, (adb)<xc=(a<c)<(bdc).

c in (Q2) is denoted by a<~1b

(Q1,<1), (Q2,<2): quandles

e f:Q1 — Q2 is a quandle homomorphism :(}gf

f(la<1b) = f(a) <2 f(b)
o f:(0Q1 — Qo is a quandle isom. :(g f: hom & Dbij.

X da : QQ = Q;x — xda is a quandle isom.



(Q,<): a quandle.

D: a diagram of an oriented knot K.

e p:{arcs of D} — Q is a Q-coloring of D :(g

Ve: crossing, p(x1) < p(x2) = p(x3).

{Q-colorings of D} &Hom(Q(K), Q)

= {representatins from Q(K) to Q}



. (
D = D' — {Q-colorings of D’} 2uL {Q-colorings of D}
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(X1,p1), (X2,p2): quandles with quandle representations
pi: Xi = Q

o (X1,p1) = (X2,p2) :(}:ef df : X7 — Xo: a quandle

isom. s.t. poo f = py

Pl\/;l/Pz
a<lb=2b—a

R, := (Zn,<) is called the dihedral quandle of order n.

_F
Xi = X,
EX. { Ly = Z./NZ is a quandle.

EX. G : a group is a quandle.
g<h =h"1gh
Gconj := (G, <) is called the conjugation quandle of G.



Ex. K: an oriented knot.

. —
Q(K)Z{ D

L (Dg,a) .homotopyclass}

(Q(K),<) is the knot quandle of K



gQuandle presentations
S: a finite set.

e [ he free quandle of S:

Fona(S) = S X Fgp(S)/(a;a*'w) ~ (a,w)

[(@,w)] <[(b,)] = [(a, wo™ bv)]
a <F1 ai &2 ao -« - LEn Ay 1= [(Cl, ai1a§2 e a,"szn)]
FQnd(S) — {a<]€1 al...<]€n an | ...}/aqila:a

(a<®laq -+ - <" am) < (b<151b1 cougOn by)
— a<flaq -+ - <M @y by, - - - 4701 by<ab<Olby - - - <O by,

Ex. (a<c)<(bde) = a<dce<d ledbde = a<db<dce = (a<db)dc
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R C Fqna(S) X FQuna(S)

44

r1 =12’ = (r1,12)
e [ he quandle presentation with gen. S and rel. R:

(8| R)Qnd = (1y-+++sTn | 11 = T125- -+ +sTm1 = Tm2)Qnd
— FQnd(S)/ ~R (Ti1 ~R Ti2, WLAT; ~R WLTi2, 0 )

(Q: a quandle.

e The presentation of Q: (S | R)qnd s.t. Q@ = (S| R)Qnd

Lem.

((S | R)Qndap) = (<S, | Rl)Qndapl)
< ({(S | R)gna»p) =" ((S" | R")quas P



D: a diagram of an oriented knot K.

T1,...4Lp. arcs of D, Cl,...4Cp . Crossings of D.

Q(K) = <3319-°°aa7’n rlv°°°7rn>Qnd

i1 Lin<]Lira=CTiq

N r
C; z/Eig

This presentation is called a Wirtinger presentation of Q(K).

% repr. p: Q(K) — Q satisfies p(x;,) < p(x;,) = p(x;,).

{Q-colorings of D} &Hom(Q(K), Q)
= {representatins from Q(K) to Q}
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1 i3]I = X1,

o i X1 ]x3 = T,
Ty : TodX xr

Q(K) = (x1,x2,x3 | x3<T2 = T1, T1<dx3 = T3, T2dT1 = T3)Qy

rdYy =z ~ y_la:yz_l

the knot quandle K ~- the knot group of K:
—1 —1 —1 —1 —1 —1
G(K) = (z1,T2,T3 | T T3T2T| 5, T3 T1T3Ly 5 T{ T2T1T3 )
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JAlexander pairs
(Q,<): a quandle, R: a ring.

fi1,f2: Q X Q — R: maps.

® (f1, f2) is an Alexander pair :(}éf

~Va € Q, fi(a,a) + fa(a,a) = 1.
— Va,b € Q, fi(a,b) is invertible.

— Va,b,c € Q,
fl(a'<] b, C)fl(aa b) — fl(a<]c,b<] C).fl(aa C)a

f1((1<]b, C)fZ(av b) — f2(a<]c,b<]c)f1(ba C)a and
f2(a’<]ba C)
= fi(a<c,b<dc)fa(a,c) + fa(a<c,b<c)fa2(b,c).
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Prop. |[cf. Andruskiewitsch-Grana] M: a left R-module.

x: (Q X M) X (Q X M)— Q X M;
(av ZIJ) * (bv y) — (a’<]b7 fl(aa b)aj + .f2(a7 b)y)

(f1, f2): an Alexander pair <= (Q X M, *): a quandle

((a,z) * (b,y)) * (¢, 2)
= (a<b, f1(a,b)x + f2(a,b)y) * (c, 2)
= ((a < b) < c,

fi(a<b,c)fi(a,b)x + fi(a <b,c)fa(a,b)y + f2(a<1b,c)z)
((a,x) * (¢, 2)) * ((b,y) * (¢, 2))
= (@<, fi(a, )z + fa(a, c)z) * (bac, f1(b, c)y + fa(b; c)2)
= ((a<c)<(b«c),

fila<c,b<c)fi(a,c)x + fa(a<c,b<c)fi(b,c)y

+ (fi(a<c,b<ce)fa(a,c) + fa(a<e,b<c)fa(b,c))z)

12



Ex. Q: a quandle, R[tT1]: the Laurent polynomial ring.
fi, f2 1 @ x Q — R[tTY];

fl(aab):ta f2(a9b):1_t

give an Alexander pair, which is related to the Alexander

polynomial.

Ex. Q := ConjG, where G := GL(k; R).
f1, f2: @ x Q — RtH[G];

fi(a,b) = tb_la f2(a,b) = b~ 'a — tb~!

give an Alexander pair, which is related to the twisted

Alexander polynomial.
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Ex. R3 = (Z3,a<1b=2b—a).
fi,/2:Q X Q — Z;

fi(a,b) = —1, fa(a,b) = 3, — 1

give an Alexander pair.

Prop. p: X — Q: a quandle representation.
(f1, f2): an Alexander pair of fi, f2 : Q> — R. Then

fop®:=(fio(pxp), fao(pxp))

IS an Alxander pair.

Hefxe) (2.4)= § [P, pL9))
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8 (f1, f2)-derivatives and quandle twisted Alex. inv.
Recall: Twisted Alexander invariant (Case 1)
G(K) = (T1yeeesTpn | T1yeeesTm)

p:G(K) — GLi(R): a group representation.

® Fox calculus:

aGrp
Z|F(x)] 2% Z|F (x)] 2, Z|G(K)] poe Z[til]

8Grp 8Grp 8Grp 8Grp
— | and ) — s
O, (pq) o, (p) +p o, (q) 833]' () 17

o : Wirtinger generator — ¢—1

o
A = <(p ® o) o pr (;rp(ri))) w Agq(K, p): twist. Alex. poly
£r
J
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Q= (T1,..-yTn |T1,...,Tm)Qnd: Quandle.
—5
f = (f1, f2): an Alexander pair of f1,f2:Q* - R

e The f-derivative w.r.t. x;:
a map % : Fond(S) — R satisfying
J

% ey — e o
5o (@90 = Fi(a:0)5 L (@) + fa(a,0) ;L 0),
OF (2:) = 6.
6—%(332) — 57,]
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of . .
h. %j is well-defined.

Indeed, (a<db)dc = (a<dc)<d(bdc) € Fgua(S).

88—;((& d4b)<c)

) 5]
= fila<b,0) T (a <) + fo(aab,e) T (0

j j
0 0 3]
= f1(a 4b,0)f1(a,b) 5 7(a) + fi(a <b,¢) f2(a; b) = (b) + fa(a 4b,0) 7 (c)
wj 8:nj 8.’Bj
0 3]
— fi(a<ec,b<c)fi(a, c)a—f(a,) + fo(a<de, bac)fi(b, c)——(b)
T ox;
03]
+ fi(a<e,b<c)fa(a, c)ﬁ(c) + fa(a<c,b<c)fa(b, c)—f(c)
(933]' 8wj
= fi(a<ec,b< c)ﬁ(a dc)+ fala<e,ba c)ﬁ(b dc)
8:13j awj
O

= a—wj((a, dc)d(bac)).
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Lem.

0
Bacj

— fi(a<a1b,b)" 100 (q)

— fila<™tb,b) tfa(aatd, b)ﬁ(b)-

Proof

a—f(a) = ﬁ((a a~1b)ab)

ox ox ;

J J

O o
= fi(a<7b,b) L (a <71 b) + fa(a < b,b) L (b).
Ox Iz
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(Q: a quandle, R: a ring.

f = (f1, f2): an Alexander pair of fi, f2: Q* — R.
X ={(x1y..cyn | r15...,7m): @ quandle,

p: X — @Q: a quandle representation.

e The f-Alexander matrix of (X, p):

Op 2
( 5;’; (r1)

%40 ()
A(X7p§f19f2) — '

9. 5 9,
\ gw/i (Tm) - f p (Tm))
fop (r;) = fop (i1 = 7i2) = fop (ri1) — 3 fop (72)

X fOP =(f1O(P><P)af20(P><P))
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1 i3]I = I,

EXx. o i X1 X3 — T,

To XC\BCBS r3 i x24I 3
X = (x1,x9,x3 | x3dx2 = T1, XT1<dT3 = T2, X24T] = X3)
_ai._,on(?Cgi)_ Qcopz(l)

fop? // ax,l fo
x4 (7“1) - .fl(a'37a2) 3 (333) + fz(a?,,az) (CU ) — z (331) = —1
Orop (r1) = f1(a3,a2) Tor (333) + fz(a3,a2) ( 2) — foP (1) = f2(as, as)

8%2 To

B fop? o )
() =f1(a3,az) 4 (w3)+fz(a3,az) ( ) — 210 (1 = F1(as, as)
s Ox T3

—1 f2(a3,a2) fi(as,a2)
A(X, p; f1, f2) = | f1(a1,a3) —1 f2(a1,as3)
fo(az,a1) fi(az,aq) —1
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Suppose that R is a GCD domain.

e The dth Alexander invariant Ag(A) of A € M(m,n; R):

y

1 itfn—d<1,
Ag4(A) =< ged{(n — d)-minors of A} ifl1<n—d<m,
0 ifm < n—d.

e T he dth quandle twisted Alexander invariant:

Ad()ca P; f1 f2) — Ad(A(X9 P; f1, f2))

When R is a matrix ring of consisting of kK X k matrices,

e T he dth quandle twisted Alexander invariant :

Aq(X, p; f1, f2) = gcd{detB | B : submatrix of order n — d},

B is the k(n — d) X k(n — d)-matrix. 21



(X1, p1) = (X2, p2) = Ag4(X1, p1; f1, f2)=A4(X2, p2; f1, f2)

X Agq(X, p; f1, f2) is determined up to unit multiple

When X = Q(K) for an ori. knot K,

Acl(I(va P; f1, .fZ) .= Ad()(a P; 11, fZ)

Cor. (1) A4(K, p; f1, f2) is an invariant of (K, p).

(2) The multiset {Aq4(K, p; f1, f2) | p € Hom(Q(K),Q)}
IS an invariant of K.
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3§ Quandle twisted Alexander invariants (ver2)

Recall: Twisted Alexander invariant (Case 2)
G(K) =(T1yeeesTn | T1yeeesTn—1)
p: G(K) — GLi(R): a group representation.

e Fox calculus:

aGrp
LIF(z)] =5 2[F (z)] 2> 2[G(K)] 225 2t

aGr
= ((p ® o) o pr (am;(m)»

~ A(K, p) = detA;/det(®(x; — 1)): twisted Alex. poly
' P(%5)-E
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(f1, f2): an Alexander pair of f1,f2: Q X Q — R.

: , def
® feol : @ — R is a column relation map &

feol(a <b) = f1(a,b) feo1(a) + f2(a, b) feo1(b)

Ex. Q := ConjG, where G := GL(k; R).
f1, f2 : Q@ X Q = R[tFY[G];

fi(a,b) =tb™t,  fa(a,b) =b"ta—tb .

Jeol : Q@ — R[til][G]; feol(T) = t—lr —1

is a column relation map. (~ the twisted Alex. poly.)

24



Prop. Ve € Q,

feol: Q = R;  feol(x) = fao(x ! c,c)

IS @ column relation map.

Proof

fool(a b)) = fa((a<b) <" ¢, c)
= f2((a< " e)a(b<at o), ¢)
= fi1(a,b)f2(a<" 1 ¢,c) + fa(a,b) f2(b< L ¢, ¢)
= fi1(a,b) feo1(a) + f2(a, b) fco1(b)-

Ex. Q= R3 = (Z3,a<b=2b— a).
J1,f2: Q X Q — Z; fl(aab):_lv fZ(a’?b):?’(sab_l-

fcol,c : Q — Z; fcol,c(w) = 30zc — 1

is a column relation map for ¢ € Q.
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Lem. p: X — (Q a quande representation.

fcol : @ — R: a column relation map.

Then feo0p: X — Ris a col. rel. map of (f10p?, fa0p?).

Proof

(f1 0 p%)(a,b)(feol © P)(a) + (f2 0 p*)(a,b)(feol © p) ()
= f1(p(a), p(b)) feo1(p(a)) + f2(p(a), p(b)) feor(p())
= feol(p(a) < p(b))

= (fco1 © p)(a <4 b)

26



(feol 0_0)(331))

(feol O.p) (zn)
Prop. A(X, p; f1, f2) Rcol(X, p; feol) = 0

R.o1(X, p; feol) = (

Proof

n

0 f6 2
>~ L) (feot © ) ()
j=1 J

n

n

0 f5 2
222 (rin) (feot © P) (@) = Y 2P~ (ria) (feot © ) (x5)
j=1 ~"J j=1 "7

= (feo1 © P)(T31) — (feo1 © p)(7i2) = 0.

Ofop?

n

0
X feol(w) = § 87]0-(10)&01(%) (fundamental fomula)
j=1"7
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For A = (ai,...,apn), Az := (a1y...,0g5+..,ap).
When A € M(m,n; R) and R is a GCD domain,

o . <
A(A) = {gcd{n minors of A} if n < m,

it m < n.

e The quandle twisted Alex, inv. ass. w/ (f1, f2), fcol:
A(X; p; f15 J25 feol) := A(A(X, p; f1, f2)5)/ det(feol0p) (25)

for g s.t. det(fco1 0 p)(x;) # 0.

Th.

(X1, 1) = (X2, p2)
—> A(X71, P15 f1, f25 feo) =A(X2, p2; f1, f25 feol) € Quot(R)

(up to unit multiple of R)
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Lem.

A(Az) det(feor © p(wt))iA(Af) det(fco1 © p(Ts))

A(Ag)/ det(feor0p(zs))=A(A;)/ det(feorop(xt)) € Quot(R)
Proof s=1,t = 2. Very rougthly!

det (%”;”: (ry) ... %‘;f (r,,)) det(feo1 0 p(x2))

|

= det (85;”: (r;) det(feor © p(x2)) ... %‘;‘f (75)
op2 13) op2
= det (Zﬁ& aaf—wj(ri) det(feor 0 p(x5)) .. F2=(13)

— det (%‘;”:(ri) det(feo1 © p(x1)) %c;f (r;) ... %”;’f (’m))
— det Oop2 . o2 (.. 0 t0p ) det
et | Ba (ri) T, (ri) «-. Fa-(ri) det(feor 0 p(21))

29



More generally, we can increase column relations:

Jeol,15 feol,2 1 @ — R: column relation maps.

We define

Ro1(X, p; fcol,la fcol,Z)
(.fcol,l o p)(x1) (fc01,2 o p)(x1)

B <(fcol,1 C; p)(xn) (fcol,2 C; p) (wn)) |
Prop. A(X, p; f1, f2) Reo1(X, p; Jeol, 1 fcol,Z) =0

R0l (X, p; fcol,la fcol,Z)(i,j)row
- ((.fcol,l o p)(x;) (fcol,2 o p) (wz)>
. (fcol,l o p) (:B]) (fcol,2 o p) (w])

A(Xa P fla f2)(,2,5')col

:(al o oo az o oo a] o oo an)

30



e The quandle twisted Alex, inv. ass. W/ (f1, f2), fcol,15 fcol,2

A(X, p; f1, fo; fcol 19 .fcol 2) =
A(A(X p; f1, fz)(A ~ )/ det Rcol(X P fcol 15 feol 2)(2,])row

where det Rcol(X? P fcol,lv fcol,2)(i,j)row 70

Th.

(Xla pl) = (X29p2) —
A(X1, P15 f15 f25 Feol 15 Jeol,2) =A (X2, p25 15 J25 feol, 15 Feol,2)

& QQuot (R)
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Ex. Q = R3 = (Z3,a*xb=2b— a).
f,f2: Q@ xXQ —Z; fi(a,b) =—1, fa(a,b) =3dqp — 1.
fcol,c 1 Q — Zs fcol,c(w) = 30gzc — 1 for c € Q.

( 11 \ Ty
€1 4 Ca Cs v [C7 10
e X3 - - e | A
C3 C11 4 Cy I C10 C3
V3 -
xl c 210 xﬁ 335 N K R
T 6| Lo c Co r T
2 1T 7 9 2
A= )
C2l | - Cs | L7 Ce'r Ci| 1 C11v
C—C/g s Cs5 1 ,C10 T |C2 TCR |
L5 IS
L9 [ )T
Kq: 11n38 Ko: 11n102

They have the same E4(K) and Ay(K).
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I
Co L7
L5
r, Joo
\
5314333:33117 CB1<]£L‘9:£132, m3<]a‘;1:352,
m4qw11:w3’ CL‘4<]£L‘7=£L'5, w5<w4:m6’
Ki)=(x1y...,@ )
Q( 1) < 1y s <~11 L7 AL19g = Tgy L7 15 — gy g T2 — L9,
. 10 4 T7 = g, 11 T4 = 10
ﬁ Qlkd) & @

p1(z1) = p1(z4) = p1(zs8) = a,

p1(z2) = p1(xs5) = p1(x11) = b,

p1(x3) = p1(xs) = p1(x7) = p1(x9) = p1(x10) = C,
where a # b, ¢ = 2a + 2b

< All nontrivial repr. can be obtained by setting a and b.
33



Then, A(Q(K1), p1; f1, f2) is

where f? = —1, f5 = 2 and f27é = —1.

(e o [fF 0 o
f£ -1 0 0 0
ff -1 f 0 0
0 0 —1 f* 0
0 0|0 f* —1
0 0 0 fI f®
0 0 0 0 o0
0 0 0 0 fI
0 fZ 0 0 o0
0o 0 0 0 0

L\ 0 0 0 ff o

0 0
0 0
0 0
0 0
0 f7

~1 0

—1 f°
0 f
0 0
0 fi
0 0

O O O O O O

—1
fl
0
0

0 0 —1|)
£ 0 0
0 0 0
£
0 0 f3
0 0 0
0 0 0
0 f5 0
0 0 0
~1 0 0
1 f 0
0 -1 £
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R.01(Q(K1), p1; fcol,Oa .fcol,l)

(fcol,O(a) fcol,l(a)\ (35a0 — 1 3041 — 1\
fcol,O(b) fcol,l(b) 30pg — 1 30p1 — 1
.fcol,O(c) fcol,l(c) 30c0 —1 30,1 —1
fcol,O(a) fcol,l(a’) 3000 — 1 3041 — 1
feo,0(0)  feo1,1(D) 30pp — 1 3dp1 — 1
fcol,O(C) fcol,l(c) 30c0 —1 301 — 1
fcol,O(c) fcol,l(c) 30c0 —1 3001 — 1
fcol,O(a) fcol,l(a) 30a0 —1 3041 —1
fcol,O(C) fcol,l(c) 30c0 =1 30c1 — 1
fcol,O(c) .fcol,l(c) 30c0 —1 301 — 1

\fcol,O(b) fcol,l(b)) \36130 —1 361’1 o 1)

Reol(Q(K1), P15 feol,00 feol, 1) (1,2)r0w 1
2 —1\ (-1 2 2 -1\ (-1 -1\ (-1
(A 3)G A) (G 5) G o) G
we have det R.q1(Q (K1), p1; fcol,Oa fcol,l)(l,z),i = 3.
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We have

A(Q(K1), p1; f1, fos fcol,Oa fcol,l)
— A(A(Q(Kl)a P15 J1, f2)(i,§)col)/ det RCOI(Q(K].)? P15 fcol,Oa fcol,l)(l,Z)row
= 2/3.

Similarly for any nontrivial repr. p2 : Q(K»9) — Z3,

A(Q(K2), p2; f1, f25 Feol,05 feol,1)
= A(A(Q(K2), p2; f1, f2) (4 3) )/ det Reol(Q(K2); P15 Feol,05 Feol, 1) (1,2)row
= 7/3.

Since

{A(Q(Kl)v P1; f1, J23 fcol,Oa fcol,l) | p1 : nontri. repr-}
# {A(Q(K2), p2; f1, f2; fcol,Oa fcol,l) | p2 : nontri. repr.},

K, 2 K.
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We can also define a quandle twisted Alexander invariant
by using

e an Alexander pair

e column relations

® row relations with - .-

e more informations obtained from knot diag.

A(Lv P f1, f2; (.frows y); fcol) —

The invariant is exactly determined #p-to—dniE—mtiple-
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Correction: For my answer of a question, I answered that
this stronger invariant A(L, p; f1, f2; (frows ¥); fcol) do€s not
distinguish K and —K?™* because their quandles are the
same. But we used more information which is coming
from oriented diagrams for this invariant, and hence, this
invariants might be able to distinqguish K, — K, K*, and
—K*.



Thank you for your attention!
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