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§Quandles

• A quandle is a set Q with " : Q×Q→ Q s.t.

(Q1) ∀a ∈ Q, a " a = a,

(Q2) ∀a, b ∈ Q, ∃1c ∈ Q s.t. c " b = a,

(Q3) ∀a, b, c ∈ Q, (a " b) " c = (a " c) " (b " c).

c in (Q2) is denoted by a "−1 b

(Q1, "1), (Q2, "2): quandles

• f : Q1→ Q2 is a quandle homomorphism :
def⇔

f(a "1 b) = f(a) "2 f(b)

• f : Q1→ Q2 is a quandle isom. :
def⇔ f : hom & bij.

※ "a : Q→ Q;x *→ x " a is a quandle isom.
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(Q, "): a quandle.

D: a diagram of an oriented knot K.

• ρ : {arcs of D}→ Q is a Q-coloring of D :
def⇔

∀c: crossing, ρ(x1) " ρ(x2) = ρ(x3).

a a

a=a$a
c

x x

x

c

{Q-colorings of D} ∃1:1←→Hom(Q(K), Q)

= {representatins from Q(K) to Q}
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D ∼= D′ =⇒ {Q-colorings of D′} ∃1:1←→ {Q-colorings of D}

RI RII

RIII

a a

a

ab

a!a=a

a!a
∃1c

a

a b

c!b=a

a b c a b c

a!c

b!cb!c

a!b

(a!b)!c (a!c)!(b!c)

(a!b)!c=(a!c)!(b!c)

(D,ρ) (D',ρ')
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(X1, ρ1), (X2, ρ2): quandles with quandle representations

ρi : Xi→ Q

• (X1, ρ1) ∼= (X2, ρ2) :
def⇔ ∃f : X1 → X2: a quandle

isom. s.t. ρ2 ◦ f = ρ1

Ex.
{

Zn = Z/nZ
a " b = 2b− a

is a quandle.

Rn := (Zn, ") is called the dihedral quandle of order n.

Ex.
{

G : a group
g " h = h−1gh

is a quandle.

Gconj := (G, ") is called the conjugation quandle of G.
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Ex. K: an oriented knot.

Q(K) =

{[                   ](Da,a) homotopy class

a

Da

}

[(Db,b)][(Da,a)]! = [(Da,ab
-1∂Dbb)]

(Q(K), ") is the knot quandle of K

6
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§Quandle presentations

S: a finite set.

• The free quandle of S:

FQnd(S) = S × FGrp(S)/(a, a±1w) ∼ (a,w)

[(a,w)] " [(b, v)] = [(a,wv−1bv)]

a "ε1 a1 "ε2 a2 · · · "εn an := [(a, aε11 aε22 · · · aεnn )]

FQnd(S) =
{
a "ε1 a1 · · · "εn an

∣∣∣ · · ·
}
/a "±1 a = a

(a"ε1a1 · · · "εm am) " (b"δ1b1 · · · "δn bn)

= a"ε1a1 · · · "εm am"−δnbn · · · "−δ1 b1"b"δ1b1 · · · "δn bn

Ex. (a"c)" (b"c) = a"c"−1 c"b"c = a"b"c = (a"b)"c
7



R ⊂ FQnd(S)× FQnd(S)

“r1 = r2” := (r1, r2)

• The quandle presentation with gen. S and rel. R:

〈S | R〉Qnd = 〈x1, . . . , xn | r11 = r12, . . . , rm1 = rm2〉Qnd

:= FQnd(S)/ ∼R (ri1 ∼R ri2, w " ri1 ∼R w " ri2, · · · )

Q: a quandle.

• The presentation of Q: 〈S | R〉Qnd s.t. Q ∼= 〈S | R〉Qnd

Lem.

(〈S | R〉Qnd, ρ)
∼= (〈S′ | R′〉Qnd, ρ

′)

⇐⇒ (〈S | R〉Qnd, ρ)
Teize Trans.←→ (〈S′ | R′〉Qnd, ρ

′)
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D: a diagram of an oriented knot K.

x1, . . . , xn: arcs of D, c1, . . . , cn : crossings of D.

Q(K) ∼= 〈x1, . . . , xn | r1, . . . , rn〉Qnd

xi
xi

xi
ci

ri：xi$xi=xi

This presentation is called a Wirtinger presentation of Q(K).

※ repr. ρ : Q(K)→ Q satisfies ρ(xi1) " ρ(xi2) = ρ(xi3).

{Q-colorings of D} ∃1:1←→Hom(Q(K), Q)

= {representatins from Q(K) to Q}

9
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Ex.

x

c

xx
c

c

r1 : x3 " x2 = x1,

r2 : x1 " x3 = x2,

r3 : x2 " x1 = x3

Q(K) = 〈x1, x2, x3 | x3"x2 = x1, x1"x3 = x2, x2"x1 = x3〉Qnd

x " y = z ! y−1xyz−1

the knot quandle K ! the knot group of K:

G(K) = 〈x1, x2, x3 | x−12 x3x2x
−1
1 , x−13 x1x3x

−1
2 , x−11 x2x1x

−1
3 〉
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§Alexander pairs

(Q, "): a quandle, R: a ring.

f1, f2 : Q×Q→ R: maps.

• (f1, f2) is an Alexander pair :
def⇔

– ∀a ∈ Q, f1(a, a) + f2(a, a) = 1.

– ∀a, b ∈ Q, f1(a, b) is invertible.

– ∀a, b, c ∈ Q,
f1(a " b, c)f1(a, b) = f1(a " c, b " c)f1(a, c),

f1(a " b, c)f2(a, b) = f2(a " c, b " c)f1(b, c), and

f2(a " b, c)

= f1(a " c, b " c)f2(a, c) + f2(a " c, b " c)f2(b, c).
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Prop. [cf. Andruskiewitsch-Graña] M : a left R-module.

∗ : (Q×M)× (Q×M)→ Q×M ;

(a, x) ∗ (b, y) = (a " b, f1(a, b)x + f2(a, b)y).

(f1, f2): an Alexander pair ⇐⇒ (Q×M, ∗): a quandle

((a, x) ∗ (b, y)) ∗ (c, z)
= (a " b, f1(a, b)x + f2(a, b)y) ∗ (c, z)
= ((a " b) " c,

f1(a " b, c)f1(a, b)x + f1(a " b, c)f2(a, b)y + f2(a " b, c)z)

((a, x) ∗ (c, z)) ∗ ((b, y) ∗ (c, z))
= (a " c, f1(a, c)x + f2(a, c)z) ∗ (b " c, f1(b, c)y + f2(b, c)z)

= ((a " c) " (b " c),

f1(a " c, b " c)f1(a, c)x + f2(a " c, b " c)f1(b, c)y

+ (f1(a " c, b " c)f2(a, c) + f2(a " c, b " c)f2(b, c))z)
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Ex. Q: a quandle, R[t±1]: the Laurent polynomial ring.

f1, f2 : Q×Q→ R[t±1];

f1(a, b) = t, f2(a, b) = 1− t

give an Alexander pair, which is related to the Alexander

polynomial.

Ex. Q := ConjG, where G := GL(k;R).

f1, f2 : Q×Q→ R[t±1][G];

f1(a, b) = tb−1, f2(a, b) = b−1a− tb−1

give an Alexander pair, which is related to the twisted

Alexander polynomial.
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Ex. R3 = (Z3, a " b = 2b− a).

f1, f2 : Q×Q→ Z;

f1(a, b) = −1, f2(a, b) = 3δab − 1

give an Alexander pair.

Prop. ρ : X → Q: a quandle representation.

(f1, f2): an Alexander pair of f1, f2 : Q2→ R. Then

f ◦ ρ2 := (f1 ◦ (ρ× ρ), f2 ◦ (ρ× ρ))

is an Alxander pair.

14
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§ (f1, f2)-derivatives and quandle twisted Alex. inv.

Recall: Twisted Alexander invariant (Case 1)

G(K) = 〈x1, . . . , xn | r1, . . . , rm〉
ρ : G(K)→ GLk(R): a group representation.

• Fox calculus:

Z[F (x)]

∂Grp
∂xi−→ Z[F (x)]

pr−→ Z[G(K)]
ρ⊗α−→ Z[t±1]

∂Grp
∂xi

(pq) =
∂Grp
∂xi

(p) + p
∂Grp
∂xi

(q) and
∂Grp
∂xj

(xi) = δij.

α : Wirtinger generator *→ t−1

A =

(

(ρ⊗ α) ◦ pr
(
∂Grp
∂xj

(ri)

))

! ∆d(K, ρ): twist. Alex. poly
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Q = 〈x1, . . . , xn︸ ︷︷ ︸
=S

| r1, . . . , rm〉Qnd: quandle.

f = (f1, f2): an Alexander pair of f1, f2 : Q2→ R

• The f-derivative w.r.t. xj:

a map
∂f
∂xj

: FQnd(S)→ R satisfying

∂f
∂xj

(a " b) = f1(a, b)
∂f
∂xj

(a) + f2(a, b)
∂f
∂xj

(b),

∂f
∂xj

(xi) = δij

16



Th.
∂f
∂xj

is well-defined.

Indeed, (a " b) " c = (a " c) " (b " c) ∈ FQnd(S).

∂f

∂xj
((a " b) " c)

= f1(a " b, c)
∂f

∂xj
(a " b) + f2(a " b, c)

∂f

∂xj
(c)

= f1(a " b, c)f1(a, b)
∂f

∂xj
(a) + f1(a " b, c)f2(a, b)

∂f

∂xj
(b) + f2(a " b, c)

∂f

∂xj
(c)

= f1(a " c, b " c)f1(a, c)
∂f

∂xj
(a) + f2(a " c, b " c)f1(b, c)

∂f

∂xj
(b)

+ f1(a " c, b " c)f2(a, c)
∂f

∂xj
(c) + f2(a " c, b " c)f2(b, c)

∂f

∂xj
(c)

= f1(a " c, b " c)
∂f

∂xj
(a " c) + f2(a " c, b " c)

∂f

∂xj
(b " c)

=
∂f

∂xj
((a " c) " (b " c)).
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Lem.

∂f
∂xj

(a "−1 b)

= f1(a "−1 b, b)−1
∂f
∂xj

(a)

− f1(a "−1 b, b)−1f2(a "−1 b, b)
∂f
∂xj

(b).

Proof

∂f
∂xj

(a) =
∂f
∂xj

((a "−1 b) " b)

= f1(a "−1 b, b)
∂f
∂xj

(a "−1 b) + f2(a "−1 b, b)
∂f
∂xj

(b).
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Q: a quandle, R: a ring.

f = (f1, f2): an Alexander pair of f1, f2 : Q2→ R.

X = 〈x1, . . . , xn | r1, . . . , rm〉: a quandle,

ρ : X → Q: a quandle representation.

• The f-Alexander matrix of (X, ρ):

A(X, ρ; f1, f2) =





∂f◦ρ2
∂x1

(r1) · · ·
∂f◦ρ2
∂xn

(r1)
... . . . ...

∂f◦ρ2
∂x1

(rm) · · ·
∂f◦ρ2
∂xn

(rm)





※ ∂f◦ρ2
∂xj

(ri) =
∂f◦ρ2
∂xj

(ri1 = ri2) =
∂f◦ρ2
∂xj

(ri1)−
∂f◦ρ2
∂xj

(ri2)

※ f ◦ ρ2 = (f1 ◦ (ρ× ρ), f2 ◦ (ρ× ρ))
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Ex.

x

c

xx
c

c

r1 : x3 " x2 = x1,

r2 : x1 " x3 = x2,

r3 : x2 " x1 = x3

X = 〈x1, x2, x3 | x3"x2 = x1, x1"x3 = x2, x2"x1 = x3〉

∂f◦ρ2

∂x1
(r1) = f1(a3, a2)

∂f◦ρ2

∂x1
(x3) + f2(a3, a2)

∂f◦ρ2

∂x1
(x2)−

∂f◦ρ2

∂x1
(x1) = −1

∂f◦ρ2

∂x2
(r1) = f1(a3, a2)

∂f◦ρ2

∂x2
(x3) + f2(a3, a2)

∂f◦ρ2

∂x2
(x2)−

∂f◦ρ2

∂x2
(x1) = f2(a3, a2)

∂f◦ρ2

∂x3
(r1) = f1(a3, a2)

∂f◦ρ2

∂x3
(x3) + f2(a3, a2)

∂f◦ρ2

∂x3
(x2)−

∂f◦ρ2

∂x3
(x1) = f1(a3, a2)

A(X, ρ; f1, f2) =




−1 f2(a3, a2) f1(a3, a2)

f1(a1, a3) −1 f2(a1, a3)
f2(a2, a1) f1(a2, a1) −1




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Suppose that R is a GCD domain.

• The dth Alexander invariant ∆d(A) of A ∈M(m,n;R):

∆d(A) =






1 if n− d < 1,

gcd{(n− d)-minors of A} if 1 ≤ n− d ≤ m,

0 if m < n− d.

• The dth quandle twisted Alexander invariant:

∆d(X, ρ; f1, f2) = ∆d(A(X, ρ; f1, f2))

When R is a matrix ring of consisting of k × k matrices,

• The dth quandle twisted Alexander invariant :

∆d(X, ρ; f1, f2) = gcd{detB | B : submatrix of order n− d},

B is the k(n− d)× k(n− d)-matrix. 21



Th.

(X1, ρ1) ∼= (X2, ρ2) =⇒ ∆d(X1, ρ1; f1, f2)=̇∆d(X2, ρ2; f1, f2)

※ ∆d(X, ρ; f1, f2) is determined up to unit multiple

When X = Q(K) for an ori. knot K,

∆d(K, ρ; f1, f2) := ∆d(X, ρ; f1, f2).

Cor. (1) ∆d(K, ρ; f1, f2) is an invariant of (K, ρ).

(2) The multiset {∆d(K, ρ; f1, f2) | ρ ∈ Hom(Q(K), Q)}
is an invariant of K.
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§ Quandle twisted Alexander invariants (ver2)

Recall: Twisted Alexander invariant (Case 2)

G(K) = 〈x1, . . . , xn | r1, . . . , rn−1〉
ρ : G(K)→ GLk(R): a group representation.

• Fox calculus:

Z[F (x)]

∂Grp
∂xi−→ Z[F (x)]

pr−→ Z[G(K)]
ρ⊗α−→ Z[t±1]

A =

(

(ρ⊗ α) ◦ pr
(
∂Grp
∂xj

(ri)

))

! ∆(K, ρ) = detĀj/det(Φ(xj − 1)): twisted Alex. poly

23
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(f1, f2): an Alexander pair of f1, f2 : Q×Q→ R.

• fcol : Q→ R is a column relation map :
def⇔

fcol(a " b) = f1(a, b)fcol(a) + f2(a, b)fcol(b)

Ex. Q := ConjG, where G := GL(k;R).

f1, f2 : Q×Q→ R[t±1][G];

f1(a, b) = tb−1, f2(a, b) = b−1a− tb−1.

fcol : Q→ R[t±1][G]; fcol(x) = t−1x− 1

is a column relation map. (! the twisted Alex. poly.)
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Prop. ∀c ∈ Q,

fcol : Q→ R; fcol(x) = f2(x "−1 c, c)

is a column relation map.

Proof

fcol(a " b) = f2((a " b) "−1 c, c)

= f2((a "−1 c) " (b "−1 c), c)

= f1(a, b)f2(a "−1 c, c) + f2(a, b)f2(b "−1 c, c)

= f1(a, b)fcol(a) + f2(a, b)fcol(b).

Ex. Q = R3 = (Z3, a " b = 2b− a).

f1, f2 : Q×Q→ Z; f1(a, b) = −1, f2(a, b) = 3δab − 1.

fcol,c : Q→ Z; fcol,c(x) = 3δxc − 1

is a column relation map for c ∈ Q.
25



Lem. ρ : X → Q a quande representation.

fcol : Q→ R: a column relation map.

Then fcol◦ρ : X → R is a col. rel. map of (f1◦ρ2, f2◦ρ2).

Proof

(f1 ◦ ρ2)(a, b)(fcol ◦ ρ)(a) + (f2 ◦ ρ2)(a, b)(fcol ◦ ρ)(b)
= f1(ρ(a), ρ(b))fcol(ρ(a)) + f2(ρ(a), ρ(b))fcol(ρ(b))

= fcol(ρ(a) " ρ(b))

= (fcol ◦ ρ)(a " b)

26



Rcol(X, ρ; fcol) :=




(fcol ◦ ρ)(x1)

...
(fcol ◦ ρ)(xn)



 .

Prop. A(X, ρ; f1, f2)Rcol(X, ρ; fcol) = 0

Proof

n∑

j=1

∂f◦ρ2

∂xj
(ri)(fcol ◦ ρ)(xj)

=
n∑

j=1

∂f◦ρ2

∂xj
(ri1)(fcol ◦ ρ)(xj)−

n∑

j=1

∂f◦ρ2

∂xj
(ri2)(fcol ◦ ρ)(xj)

= (fcol ◦ ρ)(ri1)− (fcol ◦ ρ)(ri2) = 0.

※ fcol(w) =
n∑

j=1

∂f
∂xj

(w)fcol(xj) (fundamental fomula)
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For A = (a1, . . . , an), Aŝ := (a1, . . . , âs, . . . , an).

When A ∈M(m,n;R) and R is a GCD domain,

∆(A) =

{
gcd{n-minors of A} if n ≤ m,

0 if m < n.

• The quandle twisted Alex, inv. ass. w/ (f1, f2), fcol:

∆(X, ρ; f1, f2; fcol) := ∆(A(X, ρ; f1, f2)ĵ)/ det(fcol◦ρ)(xj)

for j s.t. det(fcol ◦ ρ)(xj) 5= 0.

Th.

(X1, ρ1) ∼= (X2, ρ2)

=⇒ ∆(X1, ρ1; f1, f2; fcol)=̇∆(X2, ρ2; f1, f2; fcol) ∈ Quot(R)

(up to unit multiple of R)
28



Lem.

∆(Aŝ) det(fcol ◦ ρ(xt))=̇∆(At̂) det(fcol ◦ ρ(xs))

∆(Aŝ)/ det(fcol◦ρ(xs))=̇∆(At̂)/ det(fcol◦ρ(xt)) ∈ Quot(R)

Proof s = 1, t = 2. Very rougthly!

det



∂f◦ρ2

∂x2
(ri) . . . ∂f◦ρ2

∂xn
(ri)



 det(fcol ◦ ρ(x2))

= det



∂f◦ρ2

∂x2
(ri) det(fcol ◦ ρ(x2)) . . . ∂f◦ρ2

∂xn
(ri)





= det




∑

j 5=2
∂f◦ρ2

∂xj
(ri) det(fcol ◦ ρ(xj)) . . . ∂f◦ρ2

∂xn
(ri)





= det



∂f◦ρ2

∂x1
(ri) det(fcol ◦ ρ(x1))

∂f◦ρ2

∂x3
(ri) . . . ∂f◦ρ2

∂xn
(ri)





= det



∂f◦ρ2

∂x1
(ri)

∂f◦ρ2

∂x3
(ri) . . . ∂f◦ρ2

∂xn
(ri) det(fcol ◦ ρ(x1))




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More generally, we can increase column relations:

fcol,1, fcol,2 : Q→ R: column relation maps.

We define

Rcol(X, ρ; fcol,1, fcol,2)

:=




(fcol,1 ◦ ρ)(x1) (fcol,2 ◦ ρ)(x1)

... ...
(fcol,1 ◦ ρ)(xn) (fcol,2 ◦ ρ)(xn)



 .

Prop. A(X, ρ; f1, f2)Rcol(X, ρ; fcol,1, fcol,2) = 0

Rcol(X, ρ; fcol,1, fcol,2)(i,j)row

:=

(
(fcol,1 ◦ ρ)(xi) (fcol,2 ◦ ρ)(xi)
(fcol,1 ◦ ρ)(xj) (fcol,2 ◦ ρ)(xj)

)

A(X, ρ; f1, f2)(̂i,ĵ)col
=
(
a1 · · · âi · · · âj · · · an

)

30



• The quandle twisted Alex, inv. ass. w/ (f1, f2), fcol,1, fcol,2:

∆(X, ρ; f1, f2; fcol,1, fcol,2) :=

∆(A(X, ρ; f1, f2)(̂i,ĵ)col
)/ detRcol(X, ρ; fcol,1, fcol,2)(i,j)row,

where detRcol(X, ρ; fcol,1, fcol,2)(i,j)row 5= 0.

Th.

(X1, ρ1) ∼= (X2, ρ2) =⇒
∆(X1, ρ1; f1, f2; fcol,1, fcol,2)=̇∆(X2, ρ2; f1, f2; fcol,1, fcol,2)
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Ex. Q = R3 = (Z3, a ∗ b = 2b− a).

f1, f2 : Q×Q→ Z; f1(a, b) = −1, f2(a, b) = 3δab − 1.

fcol,c : Q→ Z; fcol,c(x) = 3δxc − 1 for c ∈ Q.
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K1: 11n38 K2: 11n102

They have the same Ed(K) and ∆d(K).
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Q(K1) =

〈

x1, . . . , x11

∣∣∣∣∣∣∣∣

x1 " x3 = x11, x1 " x9 = x2, x3 " x1 = x2,
x4 " x11 = x3, x4 " x7 = x5, x5 " x4 = x6,
x7 " x10 = x6, x7 " x5 = x8, x8 " x2 = x9,
x10 " x7 = x9, x11 " x4 = x10

〉

.

ρ1(x1) = ρ1(x4) = ρ1(x8) = a,

ρ1(x2) = ρ1(x5) = ρ1(x11) = b,

ρ1(x3) = ρ1(x6) = ρ1(x7) = ρ1(x9) = ρ1(x10) = c,

where a 5= b, c = 2a + 2b

※ All nontrivial repr. can be obtained by setting a and b.
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Then, A(Q(K1), ρ1; f1, f2) is




f•
1 0 f 5=2 0 0 0 0 0 0 0 −1

f•
1 −1 0 0 0 0 0 0 f 5=2 0 0

f 5=2 −1 f•
1 0 0 0 0 0 0 0 0

0 0 −1 f•
1 0 0 0 0 0 0 f 5=2

0 0 0 f•
1 −1 0 f 5=2 0 0 0 0

0 0 0 f 5=2 f•
1 −1 0 0 0 0 0

0 0 0 0 0 −1 f•
1 0 0 f=

2 0

0 0 0 0 f 5=2 0 f•
1 −1 0 0 0

0 f 5=2 0 0 0 0 0 f•
1 −1 0 0

0 0 0 0 0 0 f=
2 0 −1 f•

1 0

0 0 0 f 5=2 0 0 0 0 0 −1 f•
1





,

where f•
1 = −1, f=

2 = 2 and f 5=2 = −1.
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Rcol(Q(K1), ρ1; fcol,0, fcol,1)

=





fcol,0(a) fcol,1(a)
fcol,0(b) fcol,1(b)
fcol,0(c) fcol,1(c)
fcol,0(a) fcol,1(a)
fcol,0(b) fcol,1(b)
fcol,0(c) fcol,1(c)
fcol,0(c) fcol,1(c)
fcol,0(a) fcol,1(a)
fcol,0(c) fcol,1(c)
fcol,0(c) fcol,1(c)
fcol,0(b) fcol,1(b)





=





3δa0 − 1 3δa1 − 1
3δb0 − 1 3δb1 − 1
3δc0 − 1 3δc1 − 1
3δa0 − 1 3δa1 − 1
3δb0 − 1 3δb1 − 1
3δc0 − 1 3δc1 − 1
3δc0 − 1 3δc1 − 1
3δa0 − 1 3δa1 − 1
3δc0 − 1 3δc1 − 1
3δc0 − 1 3δc1 − 1
3δb0 − 1 3δb1 − 1





.

Rcol(Q(K1), ρ1; fcol,0, fcol,1)(1,2)row is
(

2 −1
−1 2

)
,

(
−1 2
2 −1

)
,

(
2 −1
−1 −1

)
,

(
−1 −1
2 −1

)
,

(
−1 2
−1 −1

)
or

(
−1 −1
−1 2

)
,

we have detRcol(Q(K1), ρ1; fcol,0, fcol,1)(1,2),2̄
.
= 3.
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We have

∆(Q(K1), ρ1; f1, f2; fcol,0, fcol,1)

= ∆(A(Q(K1), ρ1; f1, f2)(1̂,2̂)col
)/ detRcol(Q(K1), ρ1; fcol,0, fcol,1)(1,2)row

.
= 2/3.

Similarly for any nontrivial repr. ρ2 : Q(K2)→ Z3,

∆(Q(K2), ρ2; f1, f2; fcol,0, fcol,1)

= ∆(A(Q(K2), ρ2; f1, f2)(1̂,2̂)col
)/ detRcol(Q(K2), ρ1; fcol,0, fcol,1)(1,2)row

.
= 7/3.

Since

{∆(Q(K1), ρ1; f1, f2; fcol,0, fcol,1) | ρ1 : nontri. repr.}
5= {∆(Q(K2), ρ2; f1, f2; fcol,0, fcol,1) | ρ2 : nontri. repr.},

K1 5∼= K2.
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We can also define a quandle twisted Alexander invariant

by using

• an Alexander pair

• column relations

• row relations with · · ·

• more informations obtained from knot diag.

∆(L, ρ; f1, f2; (frow, y); fcol) = · · ·

The invariant is exactly determined up to unit multiple
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Correction: For my answer of a question, I answered that

this stronger invariant ∆(L, ρ; f1, f2; (frow, y); fcol) does not

distinguish K and −K∗ because their quandles are the

same. But we used more information which is coming

from oriented diagrams for this invariant, and hence, this

invariants might be able to distinguish K, −K, K∗, and

−K∗.



Thank you for your attention!
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