

Index polynomial invariants for ordered twisted links

Hiroki Ito

Osaka University

January 20, 2022

Today's contents

- 1 Twisted links
- 2 Index polynomials for twisted link diagrams
- 3 Application

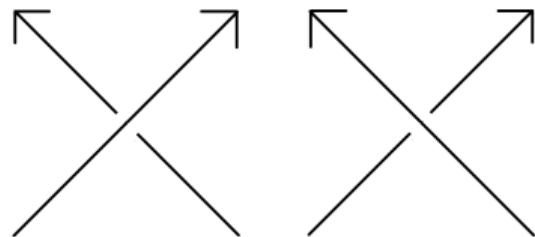
Today's contents

- 1 Twisted links
- 2 Index polynomials for twisted link diagrams
- 3 Application

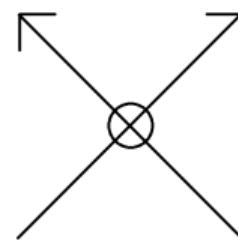
A definition of virtual link diagrams

Definition (Kauffman, 1999)

An m -component virtual link diagram is the image of an immersion of m ordered and oriented circles into \mathbb{R}^2 , whose singular points are only transverse double points. Such double points are divided into *classical crossings* and *virtual crossings*.



classical crossing



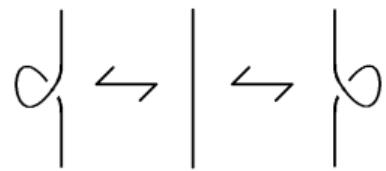
virtual crossing

Generalized Reidemeister moves

Definition (Kauffman, 1999)

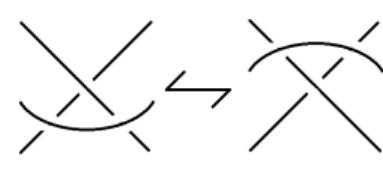
Generalized Reidemeister moves are local moves in the figure below.

$D \stackrel{v}{\sim} D' \Leftrightarrow D, D'$ are equivalent under generalized Reidemeister moves.

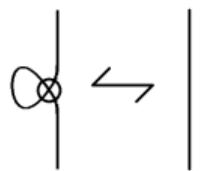


R1

R2

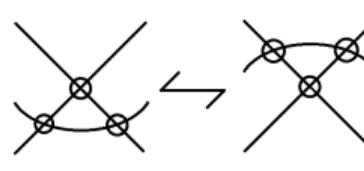


R3

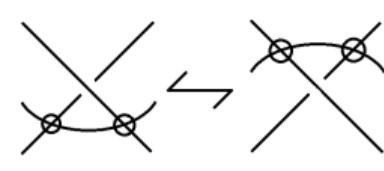


V1

V2



V3



V4

A definition of twisted link diagrams

Definition (Bourgoin, 2008)

An m -component twisted link diagram is an m -component virtual link diagram possibly bars on arcs.

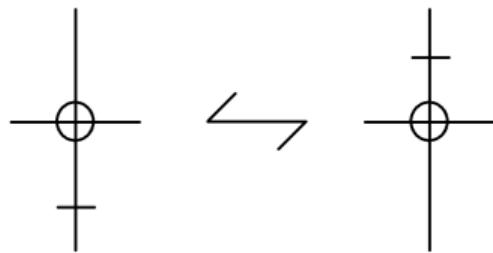
a bar on an arc

Extended Reidemeister moves

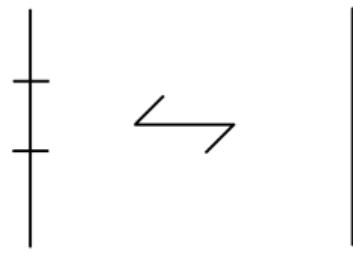
Definition (Bourgoin, 2008)

Extended Reidemeister moves are local moves together with generalized Reidemeister moves and the figure below.

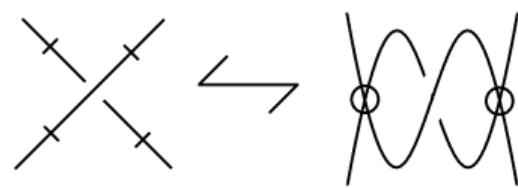
$D \xrightarrow{t} D' \Leftrightarrow D, D'$ are equivalent under extended Reidemeister moves.



T-1



T-2



T-3

An even type and odd type

Let $D = D_1 \cup \dots \cup D_m$ be an m -comp. twisted link diagram.

Definition

For $i \in \{1, \dots, m\}$,

- (1) D_i is an *even type* if a number of bars on arcs of D_i is even.
- (2) D_i is an *odd type* if a number of bars on arcs of D_i is odd.

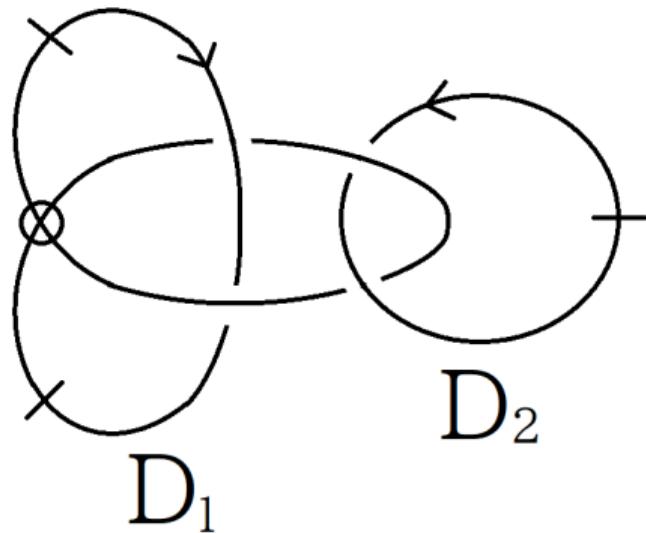
Remark

An even type, odd type is an invariant of twisted links.

An example of m -comp. twisted link diagrams

Example. Let $D = D_1 \cup D_2$ be a 2-comp. twisted link diagram in the figure below.

D_1 is an even type, and D_2 is an odd type.



Today's contents

- 1 Twisted links
- 2 Index polynomials for twisted link diagrams

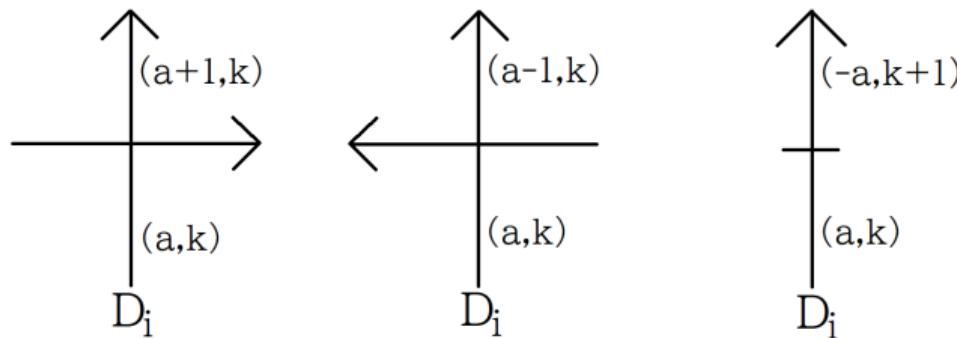
- 3 Application

n-colorings for an even type D_i

After that, $i \in \{1, \dots, m\}$ is fixed and we assume D_i is an even type. A *semi arc* of D_i is a segment along D which goes from a classical crossing or a bar to the next one, where virtual crossings are ignored. $\mathcal{A}(D_i) := \{ \text{semi arcs of } D_i \}$

Definition

Let n be an integer. Then, an *n-coloring* of D_i is a map $C_i : \mathcal{A}(D_i) \rightarrow \mathbb{Z}_n \times \mathbb{Z}_2$ satisfied the condition in the figure below, where double points in the figure are classical crossings.



$d_i(D)$ -colorings for D_i

Definition

Let $\mathbb{1}_i : \mathcal{A}(D_i) \rightarrow \mathbb{Z}_1 \times \mathbb{Z}_2$ be a 1-coloring of D_i .

Then, $d_i(D) := |\#\{ \text{figure (1)} \} - \#\{ \text{figure (2)} \} + \#\{ \text{figure (3)} \} - \#\{ \text{figure (4)} \}|$,
where double points in the figure are classical crossings.

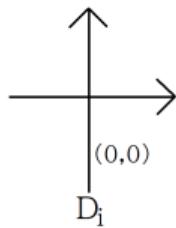


Figure (1)

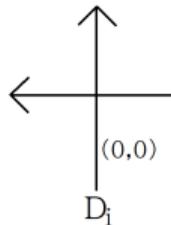


Figure (2)

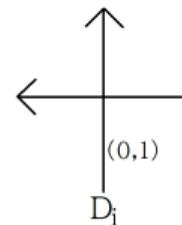


Figure (3)

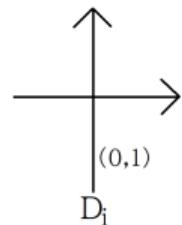


Figure (4)

Lemma

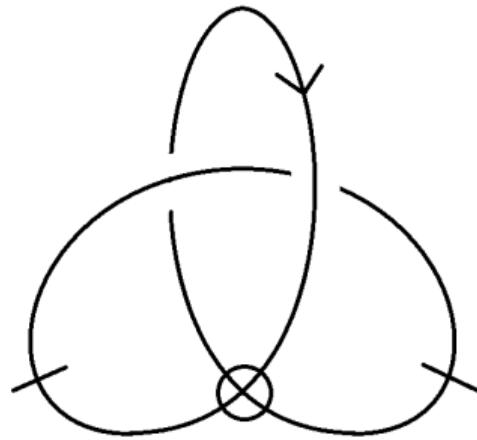
There exists a $d_i(D)$ -coloring of D_i .

An example of $d_i(D)$ -coloring of D_i

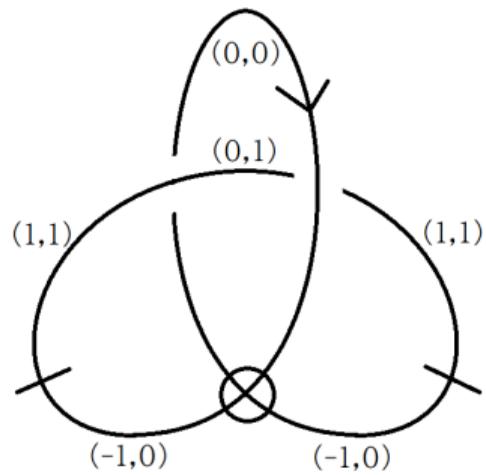
Let $D = D_1$ be a 1-comp. twisted link diagram shown below.

Then, $d_1(D) = 0$.

Let $C_1 : \mathcal{A}(D_1) \rightarrow \mathbb{Z} \times \mathbb{Z}_2$ be a map as shown in the figure, then C_1 is a 0-coloring of D_1 .



D



0-coloring

The weight for self crossings of D_i

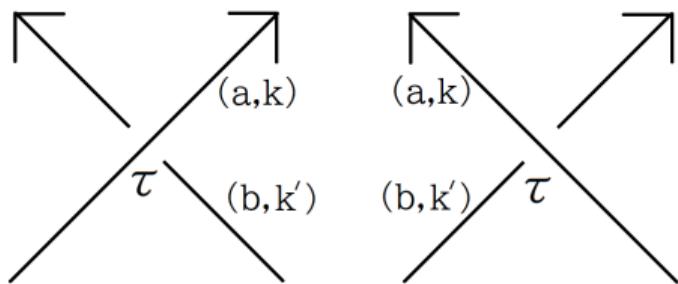
After that, C_i : $d_i(D)$ -coloring of D_i is fixed.

Definition

For each self crossing τ of D_i ,

$$W^{(C_i, D_i)}(\tau) := a - b \in \mathbb{Z}_{d_i(D)},$$

where a, b are values of semi arcs depicted in the figure below.



Classification of self crossings of D_i

We classify self crossings of D_i into three sets $T^{(C_i, D_i)}$, $T_0^{(C_i, D_i)}$ and $T_1^{(C_i, D_i)}$.

Definition

$T^{(C_i, D_i)} := \{\tau: \text{self crossing of } D_i \mid \text{the condition in the figure } (\alpha)\}$

$T_0^{(C_i, D_i)} := \{\tau: \text{self crossing of } D_i \mid \text{the condition in the figure } (0)\}$

$T_1^{(C_i, D_i)} := \{\tau: \text{self crossing of } D_i \mid \text{the condition in the figure } (1)\}$

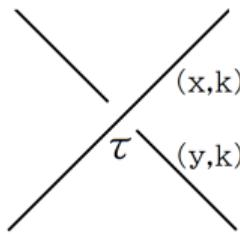


Figure (α)

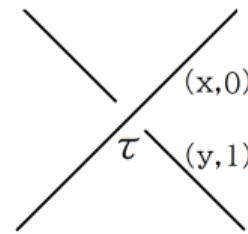


Figure (0)

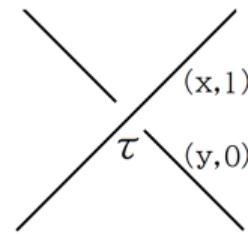


Figure (1)

A definition of index polynomials for D_i

Definition (I.)

We define index polynomials $\phi^{(C_i, D_i)}(t), \psi_0^{(C_i, D_i)}(t), \psi_1^{(C_i, D_i)}(t) \in \mathbb{Z}[t^{\pm 1}]/(t^{d_i(D)} - 1)$ as

$$\phi^{(C_i, D_i)}(t) := \sum_{\tau \in T^{(C_i, D_i)}} \text{sign}(\tau) (t^{W^{(C_i, D_i)}(\tau)} - 1),$$

$$\psi_0^{(C_i, D_i)}(t) := \sum_{\tau \in T_0^{(C_i, D_i)}} \text{sign}(\tau) t^{W^{(C_i, D_i)}(\tau)},$$

$$\psi_1^{(C_i, D_i)}(t) := \sum_{\tau \in T_1^{(C_i, D_i)}} \text{sign}(\tau) t^{W^{(C_i, D_i)}(\tau)}.$$

Main results

For $f_1, f_2, g_1, g_2 \in \mathbb{Z}[t^{\pm 1}]/(t^n - 1)$,

$(f_1, f_2) \stackrel{(p)}{\equiv} (g_1, g_2) \iff \begin{array}{l} \text{There exists an integer } k \text{ such that} \\ (f_1, f_2) = (g_1 \cdot t^{pk}, g_2 \cdot t^{-pk}) \text{ or } (f_1, f_2) = (g_2 \cdot t^{pk}, g_1 \cdot t^{-pk}). \end{array}$

Then, we have the following theorem.

Theorem (I.)

Let $D = D_1 \cup \dots \cup D_m$, $D' = D'_1 \cup \dots \cup D'_m$ be m -comp. twisted link diagrams that D_i is an even type. Then, $D \stackrel{t}{\sim} D' \Rightarrow$ the following is satisfied.

(1) $d_i(D) = d_i(D')$

For any C_i : $d_i(D)$ -coloring of D_i and C'_i : $d_i(D')$ -coloring of D'_i ,

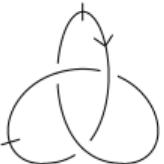
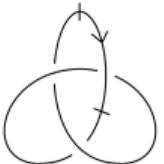
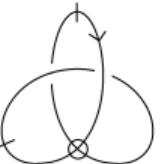
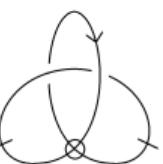
(2) $\phi^{(C_i, D_i)}(t) = \phi^{(C'_i, D'_i)}(t)$

(3) $(\psi_0^{(C_i, D_i)}(t), \psi_1^{(C_i, D_i)}(t)) \stackrel{(2)}{\equiv} (\psi_0^{(C'_i, D'_i)}(t), \psi_1^{(C'_i, D'_i)}(t))$

Therefore, $\phi^{(C_i, D_i)}(t)$ and $(\psi_0^{(C_i, D_i)}(t), \psi_1^{(C_i, D_i)}(t))$ are invariants of twisted links.

Main results

Example. Let K_1, \dots, K_4 be 1-comp. twisted link diagrams in the figure below.

				
$d_1(D)$	0	2	2	0
$\phi^{(C_1, D_1)}(t)$	0	0	$t - 1$	0
$(\psi_0^{(C_1, D_1)}(t), \psi_1^{(C_1, D_1)}(t))$	(1, 1)	(1, 0)	$(t, 0)$	(t, t^{-1})

By the table, $t - 1 \neq 0$, $(1, 1) \stackrel{(2)}{\not\equiv} (t, t^{-1})$. Therefore, K_1, \dots, K_4 are not equivalent.

Main results

Moreover, let $D = D_1$ be a 1-comp. virtual link diagram and let $P_{D_1}(t)$ be an affine index polynomial invariant defined by Kauffman in 2013. Then, we have the following proposition.

Proposition (I.)

If $D = D_1$ be a 1-comp. virtual link diagram, then the following is satisfied.

For any C_1 : $d_1(D)$ -coloring of D_1 ,

$$(1) \phi^{(C_1, D_1)}(t) = P_{D_1}(t)$$

$$(2) \psi_0^{(C_1, D_1)}(t) = \psi_1^{(C_1, D_1)}(t) = 0$$

Therefore, the restriction of our index polynomial invariants to virtual knots coincides with the affine index polynomial invariant.

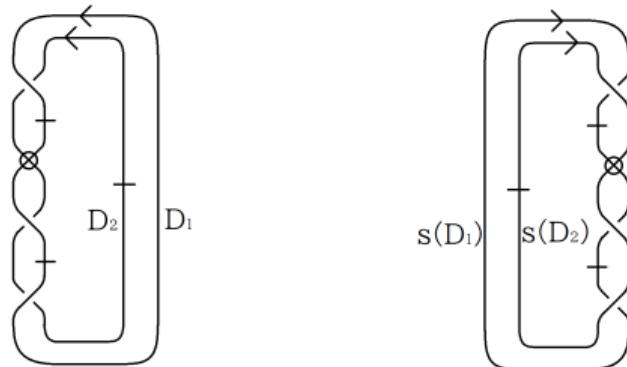
Today's contents

- 1 Twisted links
- 2 Index polynomials for twisted link diagrams
- 3 Application

A definition of double coverings

For an m -comp. twisted link diagram $D = D_1 \cup \dots \cup D_m$, we compose a double covering diagram of D denoted by $\tilde{D} = \tilde{D}_1 \cup \dots \cup \tilde{D}_m$ in the following steps.

(step 1) $s(D) = s(D_1) \cup \dots \cup s(D_m)$ is a m -comp. twisted link diagram that is horizontal mirror image of D and changed over-under information at every classical crossing. And we draw the diagram $s(D) = s(D_1) \cup \dots \cup s(D_m)$ on the right side of D .

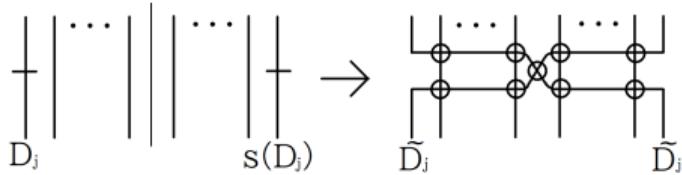
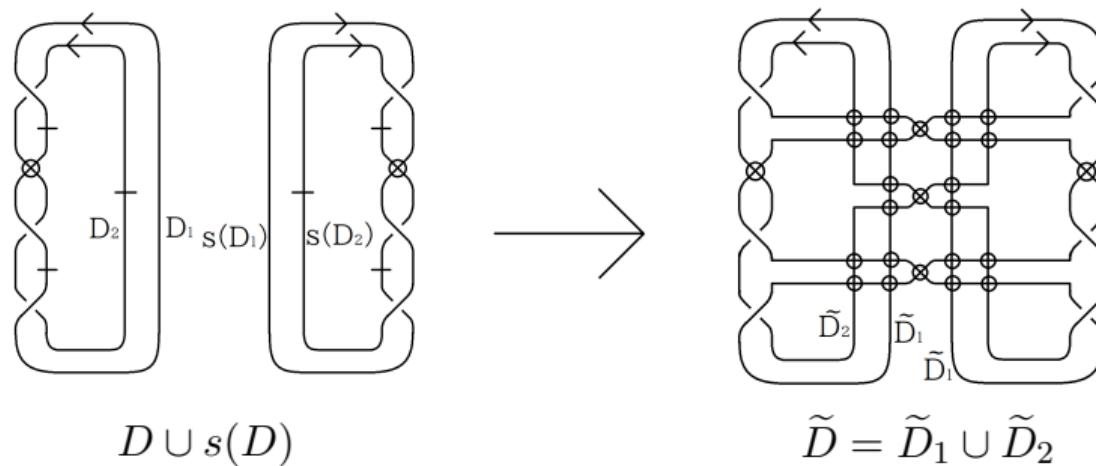


$$D = D_1 \cup D_2$$

$$s(D) = s(D_1) \cup s(D_2)$$

A definition of double coverings

(step 2) All bars of D_j and bars corresponding to them of $s(D_j)$ cut open as shown in the figure to the right, and we connected D_j and $s(D_j)$ denoted by \tilde{D}_j .



Then, double covering diagram of D denoted by $\tilde{D} = \tilde{D}_1 \cup \dots \cup \tilde{D}_m$ is a virtual link diagram composed in the step 1 and step 2.

A property of double coverings

Proposition (N.Kamada, S.Kamada, 2016)

$D = D_1 \cup \dots \cup D_m, D' = D'_1 \cup \dots \cup D'_m$: m -comp. twisted link diagram.

Then, $D \xsim{t} D' \Rightarrow \tilde{D} \xsim{v} \tilde{D}'$.

An application

Let $D = D_1 \cup \dots \cup D_m$, $D' = D'_1 \cup \dots \cup D'_m$ be m -comp. twisted link diagrams that D_i is an even type.

Theorem A (I.)

$\tilde{D} \stackrel{v}{\sim} \tilde{D}' \Rightarrow$ the following is satisfied.

(1) $d_i(D) = d_i(D')$.

For any C_i : $d_i(D)$ -coloring of D_i and C'_i : $d_i(D')$ -coloring of D'_i ,

(2) $\phi^{(C_i, D_i)}(t) = \phi^{(C'_i, D'_i)}(t)$.

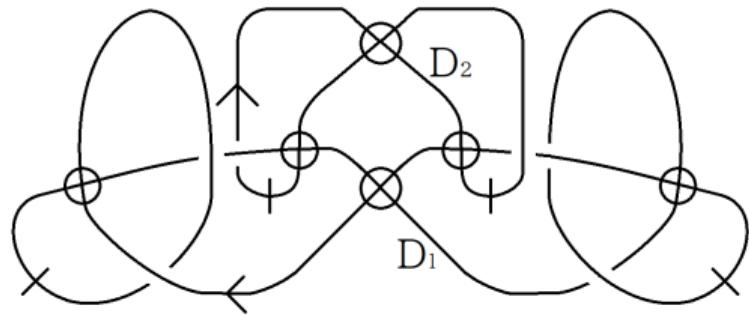
(3) $(\psi_0^{(C_i, D_i)}(t), \psi_1^{(C_i, D_i)}(t)) \stackrel{(1)}{\equiv} (\psi_0^{(C'_i, D'_i)}(t), \psi_1^{(C'_i, D'_i)}(t))$.

Theorem B (I.)

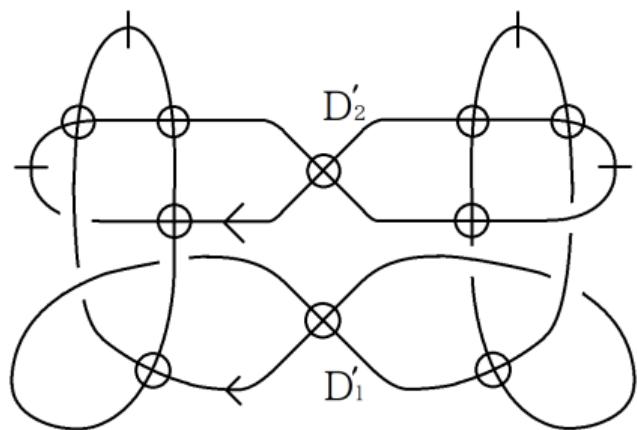
There exists D, D' such that $\tilde{D} \stackrel{v}{\sim} \tilde{D}'$ and $D \stackrel{t}{\not\sim} D'$.

Proof of theorem B

Proof of theorem B. Let $D = D_1 \cup D_2$, $D' = D'_1 \cup D'_2$ be 2-comp. twisted link diagrams in the figure below. Then, D_1 , D'_1 are even types.



$$D = D_1 \cup D_2$$



$$D' = D'_1 \cup D'_2$$

Proof of theorem B

Double covering diagrams of D, D' are equivalent to a virtual link diagram in the figure to the right. So, $\tilde{D} \stackrel{v}{\sim} \tilde{D}'$.

We give C_1 : $d_1(D)$ -coloring of D_1 and C'_1 : $d_1(D')$ -coloring of D'_1 .

$$d_1(D) = d_1(D') = 2,$$

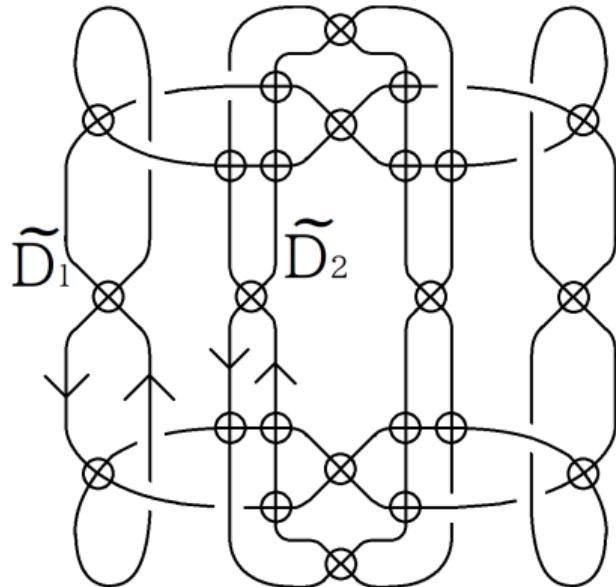
$$(\psi_0^{(C_1, D_1)}(t), \psi_1^{(C_1, D_1)}(t)) = (2t, 0),$$

$$(\psi_0^{(C'_1, D'_1)}(t), \psi_1^{(C'_1, D'_1)}(t)) = (2, 0).$$

So,

$$(\psi_0^{(C_1, D_1)}(t), \psi_1^{(C_1, D_1)}(t)) \stackrel{(2)}{\not\equiv} (\psi_0^{(C'_1, D'_1)}(t), \psi_1^{(C'_1, D'_1)}(t)).$$

Therefore, $D \stackrel{t}{\not\approx} D'$. \square



Thank you for your attention.