

SOME HIGH-DIMENSIONAL COMPACT HYPERBOLIC COXETER POLYTOPES

FANGTING ZHENG¹ (JOINT WORK WITH JIMING MA)²

¹ Xi'an-Jiaotong Liverpool University, Suzhou, China

² Fudan University, Shanghai, China

THE 17TH EAST ASIAN CONFERENCE ON GEOMETRIC TOPOLOGY
18TH-21TH JANUARY 2022

<https://eacgt2022.cayley.kr/>

PRESENTATION OUTLINE

1 Results

2 What are the hyperbolic Coxeter polytopes

3 Why we are interested in hyperbolic Coxeter polytopes

4 How are the hyperbolic Coxeter polytopes

MAIN RESULT

Theorem (Ma-Zheng, arxiv:2201.00154)

There are 348 4-dimensional compact Coxeter hyperbolic polytopes with eight facets.

Theorem (Ma-Zheng, appear soon)

There are 51 5-dimensional compact Coxeter hyperbolic polytopes with nine facets.

A. Burcroff (2022) also obtained the same results independently via different approaches (arxiv:2201.03437)

PRESENTATION OUTLINE

1 Results

2 What are the hyperbolic Coxeter polytopes

3 Why we are interested in hyperbolic Coxeter polytopes

4 How are the hyperbolic Coxeter polytopes

Definition

A *hyperbolic (spherical, Euclidean) Coxeter polytope* $P \subset \mathbb{H}^n (\mathbb{S}^n, \mathbb{E}^n)$ is a finite-volume convex polytope whose dihedral angles are of the form $\frac{\pi}{k}$, for some $k \in \{2, \dots, \infty\}$

Definition

A *hyperbolic (spherical, Euclidean) Coxeter polytope* $P \subset \mathbb{H}^n (\mathbb{S}^n, \mathbb{E}^n)$ is a finite-volume convex polytope whose dihedral angles are of the form $\frac{\pi}{k}$, for some $k \in \{2, \dots, \infty\}$

co-finite volume, discrete isometry subgroup $\Gamma \subset \text{Isom} (\mathbb{H}^n)$ generated
by finite many reflections

hyperbolic Coxeter polytope $P^n \subset \mathbb{H}^n$

- The **Gram matrix** $G(P) = (g_{ij})_{m \times m}$ of a n -dimensional Coxeter polytope P with m facets $F_1, F_2 \cdots F_m$ defined as follows:

$$g_{ij} = \begin{cases} 1 & \text{if } j = i, \\ -\cos \frac{\pi}{m_{ij}} & \text{if } \angle(F_i, F_j) = \frac{\pi}{m_{ij}}, \\ -1 & \text{if } F_i \text{ is asymptotic to } F_j, \\ -\cosh(d(F_i, F_j)) & \text{if } F_i \text{ and } F_j \text{ diverge by distance } d(F_i, F_j). \end{cases}$$

GRAM MATRIX AND COXETER DIAGRAM

- The **Gram matrix** $G(P) = (g_{ij})_{m \times m}$ of a n -dimensional Coxeter polytope P with m facets $F_1, F_2 \cdots F_m$ defined as follows:

$$g_{ij} = \begin{cases} 1 & \text{if } j = i, \\ -\cos \frac{\pi}{m_{ij}} & \text{if } \angle(F_i, F_j) = \frac{\pi}{m_{ij}}, \\ -1 & \text{if } F_i \text{ is asymptotic to } F_j, \\ -\cosh(d(F_i, F_j)) & \text{if } F_i \text{ and } F_j \text{ diverge by distance } d(F_i, F_j). \end{cases}$$

- ✓ The **signature** of G $sgn(G)$ when the n -dimensional polytope P is spherical, Euclidean, or hyperbolic is $(n+1, 0)$, $(n, 0)$, or $(n, 1)$.

GRAM MATRIX AND COXETER DIAGRAM

Coxeter diagram $\Gamma(P)$ of a Coxeter polytope P :

Coxeter diagram $\Gamma(P)$ of a Coxeter polytope P :

★ **vertices:** v_i correspond to facets F_i of P .

★ **edges:**

- v_i is joined to v_j by an edge labelled k if

$$\angle F_i F_j = \frac{\pi}{k}, \quad 3 \leq k < \infty$$

- v_i is joined to v_j by a bold edge if

F_i is asymptotic to F_j

- v_i is joined to v_j by dotted edge labelled $h = \cosh d(F_i, F_j)$ if F_i and F_j diverge at a hyperbolic distance $d(F_i, F_j)$.

EXAMPLE

- ✓ P is a hyperbolic quadrilateral with angles and distances

$$(\angle F_1 F_2, \angle F_1 F_4, \angle F_2 F_3, \angle F_3 F_4, d(F_1, F_3), d(F_2, F_4)) = (0, \frac{\pi}{7}, \frac{\pi}{2}, \frac{\pi}{6}, d_1, d_2)$$

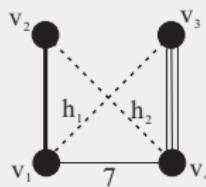
EXAMPLE

✓ P is a hyperbolic quadrilateral with angles and distances

$$(\angle F_1 F_2, \angle F_1 F_4, \angle F_2 F_3, \angle F_3 F_4, d(F_1, F_3), d(F_2, F_4)) = (0, \frac{\pi}{7}, \frac{\pi}{2}, \frac{\pi}{6}, d_1, d_2)$$

■ $G(P) := \begin{pmatrix} 1 & -1 & -\cosh d_1 & -\cos \frac{\pi}{7} \\ -1 & 1 & 0 & -\cosh d_2 \\ -\cosh d_1 & 0 & 1 & -\frac{\sqrt{3}}{2} \\ -\cos \frac{\pi}{7} & -\cosh d_2 & -\frac{\sqrt{3}}{2} & 1 \end{pmatrix}$

■ $\Gamma(P) :=$



SPHERICAL AND EUCLIDEAN COXETER POLYTOPES

- A Coxeter diagram $\Gamma(P)$ is called **elliptic** if $G(P)$ is positive definite.

- A Coxeter diagram $\Gamma(P)$ is called **elliptic** if $G(P)$ is positive definite.
- A Coxeter diagram $\Gamma(P)$ is **parabolic** if $G(P)$ is degenerated and any subdiagram of $\Gamma(P)$ is elliptic.

- A Coxeter diagram $\Gamma(P)$ is called **elliptic** if $G(P)$ is positive definite.
- A Coxeter diagram $\Gamma(P)$ is **parabolic** if $G(P)$ is degenerated and any subdiagram of $\Gamma(P)$ is elliptic.
- ✓ Elliptic and connected parabolic diagrams are exactly Coxeter diagrams of spherical and Euclidean Coxeter simplices, respectively.

SPHERICAL AND EUCLIDEAN COXETER POLYTOPES

- A Coxeter diagram $\Gamma(P)$ is called **elliptic** if $G(P)$ is positive definite.
- A Coxeter diagram $\Gamma(P)$ is **parabolic** if $G(P)$ is degenerated and any subdiagram of $\Gamma(P)$ is elliptic.
- ✓ Elliptic and connected parabolic diagrams are exactly Coxeter diagrams of spherical and Euclidean Coxeter simplices, respectively.

Theorem (Coxeter 1934')

There are complete classifications of spherical and Euclidean Coxeter polytopes, respectively.

COMPLETE CLASSIFICATION

Connected elliptic diagrams	Connected parabolic diagrams
A_n ($n \geq 1$)	\tilde{A}_1 \tilde{A}_n ($n \geq 2$)
$B_n = C_n$ ($n \geq 2$)	\tilde{B}_n ($n \geq 3$)
D_n ($n \geq 4$)	\tilde{D}_n ($n \geq 4$)
$G_2^{(m)}$	\tilde{G}_2
F_4	\tilde{F}_4
E_6	\tilde{E}_6
E_7	\tilde{E}_7
E_8	\tilde{E}_8
H_3	
H_4	

COMPARISON

- In **spherical** space: Coxeter polytopes are simplices;

- In **spherical** space: Coxeter polytopes are simplices;
- In **Euclidean** space: Coxeter polytopes are product of simplices;

- In **spherical** space: Coxeter polytopes are simplices;
- In **Euclidean** space: Coxeter polytopes are product of simplices;
- In **hyperbolic** space: compact polytopes are simple, that is, every vertex link of a compact Coxeter n -polytope is an $(n - 1)$ -simplex.

- In **spherical** space: Coxeter polytopes are simplices;
- In **Euclidean** space: Coxeter polytopes are product of simplices;
- In **hyperbolic** space: compact polytopes are simple, that is, every vertex link of a compact Coxeter n -polytope is an $(n - 1)$ -simplex.

✓ In spherical and Euclidean settings, we only have finite many polytopes (exclude the dihedral G_2^m -type) up to isometry, whereas in hyperbolic case, the situation varies substantially.

- If P is compact $\Rightarrow P$ is simple
- k -faces \leftrightarrow elliptic subdiagrams of rank $n - k$
ideal-vertices \leftrightarrow parabolic subdiagrams of rank $n - 1$
- Indecomposable, symmetric matrix G with signature $(n, 1)$ with natural geometric condition $\Rightarrow \exists! P^n \subset \mathbb{H}^n, G = G(P)$.
- signature obstructions
- local determinants
- Iannér diagrams / Esselmann list
- admissible sections
- lifting techniques
- configuration of missing faces
-

PRESENTATION OUTLINE

1 Results

2 What are the hyperbolic Coxeter polytopes

3 Why we are interested in hyperbolic Coxeter polytopes

4 How are the hyperbolic Coxeter polytopes

Construction of higher-dim small (minimal) volume hyperbolic manifolds. There is **NO** Jorgensen-Thurston Theory, like hyperbolic Dehn filling, in dimensions larger than or equal to 4.

Construction of higher-dim small (minimal) volume hyperbolic manifolds. There is **NO** Jorgensen-Thurston Theory, like hyperbolic Dehn filling, in dimensions larger than or equal to 4.

- orbifold (Hyperbolic Coxeter polytopes) + Selberg Lemma

Construction of higher-dim small (minimal) volume hyperbolic manifolds. There is **NO** Jorgensen-Thurston Theory, like hyperbolic Dehn filling, in dimensions larger than or equal to 4.

- orbifold (Hyperbolic Coxeter polytopes) + Selberg Lemma
 - Ratcliffe-Tschantz's census (2000): 1171 minimal-volume cusped hyperbolic 4-manifolds with 5 or 6 cusps. (via the ideal 24-cell)

Construction of higher-dim small (minimal) volume hyperbolic manifolds. There is **NO** Jorgensen-Thurston Theory, like hyperbolic Dehn filling, in dimensions larger than or equal to 4.

- orbifold (Hyperbolic Coxeter polytopes) + Selberg Lemma
 - Ratcliffe-Tschantz's census (2000): 1171 minimal-volume cusped hyperbolic 4-manifolds with 5 or 6 cusps. (via the ideal 24-cell)
 - Kolpakov-Martelli (2013): one cusped hyperbolic 4-manifolds (via the ideal 24-cell)

Construction of higher-dim small (minimal) volume hyperbolic manifolds. There is **NO** Jorgensen-Thurston Theory, like hyperbolic Dehn filling, in dimensions larger than or equal to 4.

- orbifold (Hyperbolic Coxeter polytopes) + Selberg Lemma
 - Ratcliffe-Tschantz's census (2000): 1171 minimal-volume cusped hyperbolic 4-manifolds with 5 or 6 cusps. (via the ideal 24-cell)
 - Kolpakov-Martelli (2013): one cusped hyperbolic 4-manifolds (via the ideal 24-cell)
 - Ma-Zheng (2018): small minimal orientable hyperbolic manifolds that cover the right-angled 120-cell)

Construction of higher-dim small (minimal) volume hyperbolic manifolds. There is **NO** Jorgensen-Thurston Theory, like hyperbolic Dehn filling, in dimensions larger than or equal to 4.

- orbifold (Hyperbolic Coxeter polytopes) + Selberg Lemma
 - Ratcliffe-Tschantz's census (2000): 1171 minimal-volume cusped hyperbolic 4-manifolds with 5 or 6 cusps. (via the ideal 24-cell)
 - Kolpakov-Martelli (2013): one cusped hyperbolic 4-manifolds (via the ideal 24-cell)
 - Ma-Zheng (2018): small minimal orientable hyperbolic manifolds that cover the right-angled 120-cell) ...
- Martelli-Riolo-Slavich (2019): nontrivial plane bundle over surface covering a finite volume hyp 4-manifold via right-angled 120-cell. (Gromov-Lawson-Thurston Conjecture 1988)

✓ Siegel's minimal covolume problem :

- ✓ Siegel's minimal covolume problem :
- 2-dimension orbifold: Siegel, 1945. (Hurwitz triangle)

- ✓ Siegel's minimal covolume problem :
- 2-dimension orbifold: Siegel, 1945. (Hurwitz triangle)
- 3-dimension manifold: Gabai-Miller-Meyerhoff, 2011.

- ✓ Siegel's minimal covolume problem :
- 2-dimension orbifold: Siegel, 1945. (Hurwitz triangle)
- 3-dimension manifold: Gabai-Miller-Meyerhoff, 2011.

- ✓ Siegel's minimal covolume problem :
- 2-dimension orbifold: Siegel, 1945. (Hurwitz triangle)
- 3-dimension manifold: Gabai-Miller-Meyerhoff, 2011.
- Minimal arithmetic orbifold (Tumarkin, 2003, Emery, 2012)

- For a hyperbolic 4-manifold closed M , by Gauss-Bonnet formula, $vol(M) = \frac{4\pi^2}{3}\chi(M)$, it is not known whether there is a hyperbolic closed 4-manifold with $\chi(M) = 2$

- For a hyperbolic 4-manifold closed M , by Gauss-Bonnet formula, $vol(M) = \frac{4\pi^2}{3}\chi(M)$, it is not known whether there is a hyperbolic closed 4-manifold with $\chi(M) = 2$
- Ratcliffe-Tschantz (2000): minimal volume cusped hyperbolic 4-manifolds via right-angled 24-cell.

- For a hyperbolic 4-manifold closed M , by Gauss-Bonnet formula, $\text{vol}(M) = \frac{4\pi^2}{3}\chi(M)$, it is not known whether there is a hyperbolic closed 4-manifold with $\chi(M) = 2$
- Ratcliffe-Tschantz (2000): minimal volume cusped hyperbolic 4-manifolds via right-angled 24-cell.
- Everitt-Ratcliffe-Tschantz (2012): minimal volume cusped hyperbolic 6-manifolds via a right-angled polytope P^6 .

...

PRESENTATION OUTLINE

1 Results

2 **What** are the hyperbolic Coxeter polytopes

3 **Why** we are interested in hyperbolic Coxeter polytopes

4 **How** are the hyperbolic Coxeter polytopes

1. Infinitely many Hyperbolic Coxeter Polytopes

- $P \subset \mathbb{S}^n$ or \mathbb{E}^n , finitely many and classified [Coxeter,34']

1. Infinitely many Hyperbolic Coxeter Polytopes

- $P \subset \mathbb{S}^n$ or \mathbb{E}^n , finitely many and classified [Coxeter,34']
- $P \subset \mathbb{H}^n$, infinitely many and far from classification.

1. Infinitely many Hyperbolic Coxeter Polytopes

- $P \subset \mathbb{S}^n$ or \mathbb{E}^n , finitely many and classified [Coxeter,34']
- $P \subset \mathbb{H}^n$, infinitely many and far from classification.

Question [Vinberg 1967]: "... find all the discrete groups of motions of Lobacevskii space generated by finitely many reflections and having finite fundamental regions...".

1. Infinitely many Hyperbolic Coxeter Polytopes

- $P \subset \mathbb{S}^n$ or \mathbb{E}^n , finitely many and classified [Coxeter,34']
- $P \subset \mathbb{H}^n$, infinitely many and far from classification.

Question [Vinberg 1967]: "... find all the discrete groups of motions of Lobacevskii space generated by finitely many reflections and having finite fundamental regions...".

Theorem (Allcock, 2005')

Compact Coxeter polytope: infinitely many in \mathbb{H}^n for all $4 \leq n \leq 6$

Finite volume Coxeter polytope: infinitely many in \mathbb{H}^n for all $4 \leq n \leq 19$.

2. Absence in large dimensions

Theorem (Vinberg' 84)

If $P \subset \mathbb{H}^n$ is compact Coxeter polytope, then $n \leq 29$

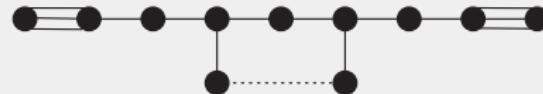
2. Absence in large dimensions

Theorem (Vinberg' 84)

If $P \subset \mathbb{H}^n$ is compact Coxeter polytope, then $n \leq 29$

Examples only known for $n \leq 8$.

Unique example for $n = 8$ [Bugaenko'92]:



■ Vinberg's Absence Theorem:

Theorem (Vinberg' 84)

*There are **No** arithmetic hyperbolic reflection group in $\dim \geq 30$.*

- Vinberg's Absence Theorem:

Theorem (Vinberg' 84)

*There are **No** arithmetic hyperbolic reflection group in $\dim \geq 30$.*

- *Conj*: Theorem above is true without the arithmeticity restriction

■ Vinberg's Absence Theorem:

Theorem (Vinberg' 84)

*There are **No** arithmetic hyperbolic reflection group in $\dim \geq 30$.*

- *Conj*: Theorem above is true without the arithmeticity restriction
- *Q*: If $P \subset \mathbb{H}^n$ is compact, arithmetic then $n \leq 8$??

Theorem (Prokhorov' 85)

If $P \subset \mathbb{H}^n$ is finite volume Coxeter polytope, then $n \leq 995$

Theorem (Prokhorov' 85)

If $P \subset \mathbb{H}^n$ is finite volume Coxeter polytope, then $n \leq 995$

- Example known for $n \leq 19$ [Vinberg, Kapliskaya '78],

Theorem (Prokhorov' 85)

If $P \subset \mathbb{H}^n$ is finite volume Coxeter polytope, then $n \leq 995$

- Example known for $n \leq 19$ [Vinberg, Kapliskaya '78], and $n = 21$ [Borcherds '87]

Theorem (Prokhorov' 85)

If $P \subset \mathbb{H}^n$ is finite volume Coxeter polytope, then $n \leq 995$

- Example known for $n \leq 19$ [Vinberg, Kapliskaya '78], and $n = 21$ [Borcherds '87]
- If $P \subset \mathbb{H}^n$ is finite volume, arithmetic Coxeter polytope, then $n \leq 21, n \neq 20$ [Esselmann' 97].

3. Known Classifications

- ✓ By dimension
- dim=2 [Poincare, 1882]: $\sum \alpha_i \leq \pi(n - 2)$;

3. Known Classifications

- ✓ By dimension
- dim=2 [Poincare, 1882]: $\sum \alpha_i \leq \pi(n - 2)$;
- dim=3 [Andreev, '70]: necessary and sufficient condition for dihedral angles.

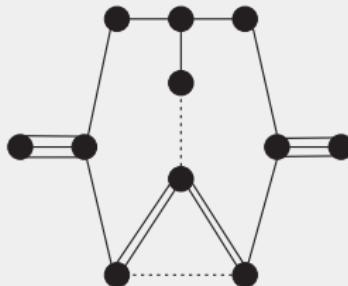
3. Known Classifications

- ✓ **By dimension**
- $\text{dim}=2$ [Poincare, 1882]: $\sum \alpha_i \leq \pi(n - 2)$;
- $\text{dim}=3$ [Andreev, '70]: necessary and sufficient condition for dihedral angles.
- $\text{dim} \geq 4$: Widely open

COMPACT HYPERBOLIC COXETER POLYTOPES

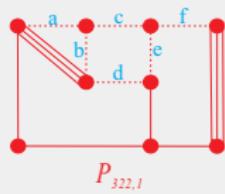
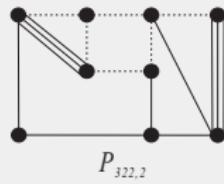
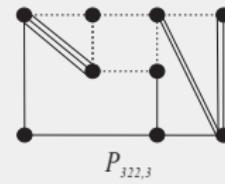
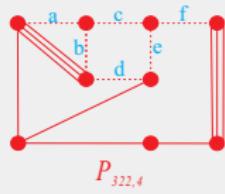
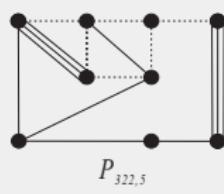
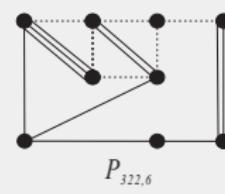
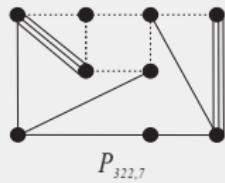
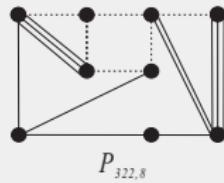
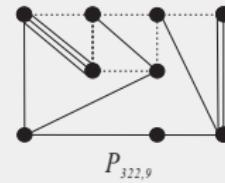
- Lanner (1950): n -simplex
(3, 4-dims, finite, $D(1) = 4$)
- Kaplinskaja (1974) Esselmann (1996), n -polytope with $n + 2$ -facets
(4, 5-dims, $D(2) = 5$)
- Esselmann (1996) Tumarkin 2007, n -polytope with $n + 3$ -facets
(4, 5, 6, 8-dims, $D(3) = 8$)
- Jacquemet-Tschantz (2018): n -cube
(4-dim, 5-dim)
- Burcroff (2022): Some upper bounds for $D(5), D(6), \dots, D(10)$.

✓ Tumarkin-Flikson (2008), (7-dim $D(4) = 7$ [Bugaenko'92])

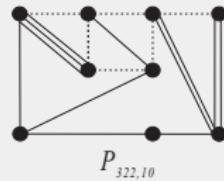
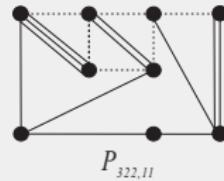
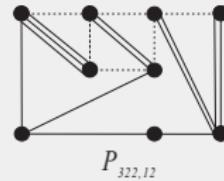
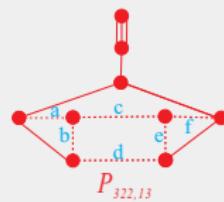
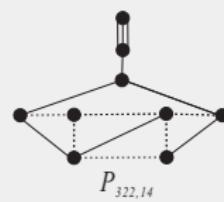
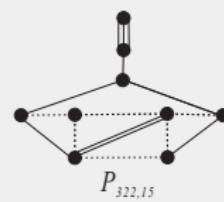
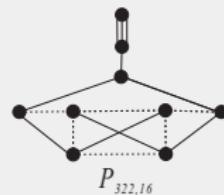
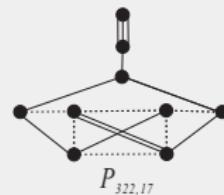
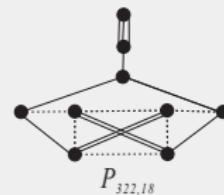


Ma-Zheng(2022), Burcroff(2022) (4-dim, 5-dim)

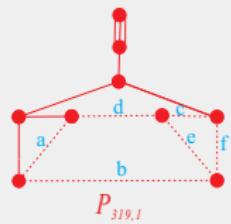
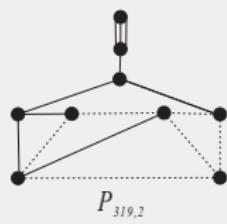
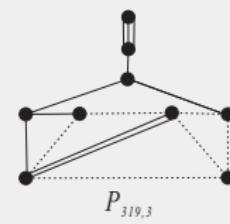
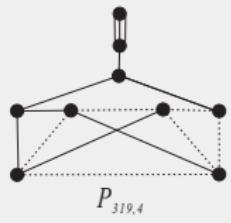
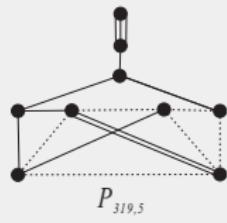
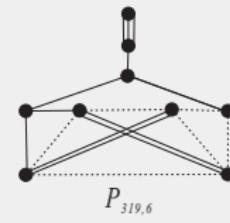
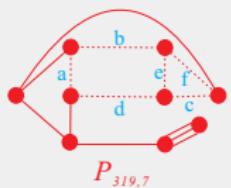
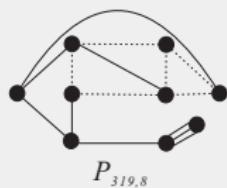
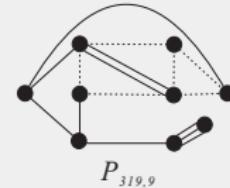
RESULTS



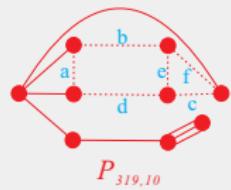
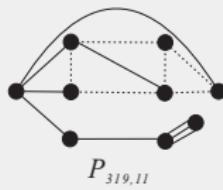
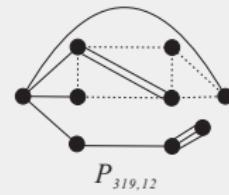
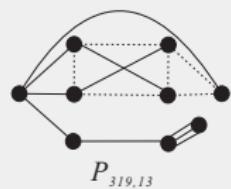
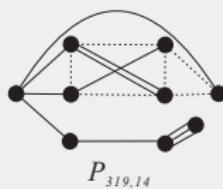
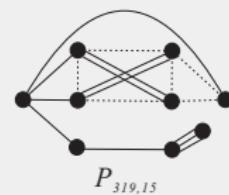
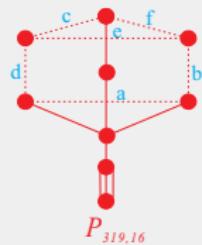
RESULTS



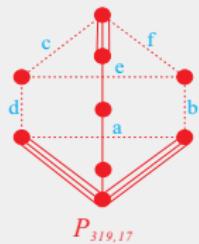
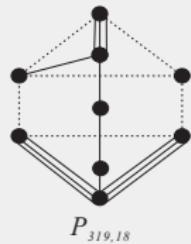
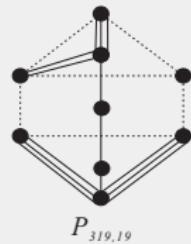
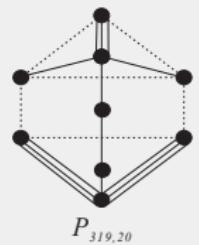
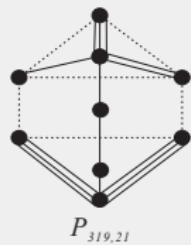
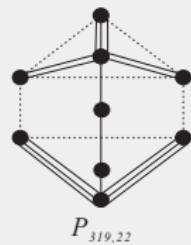
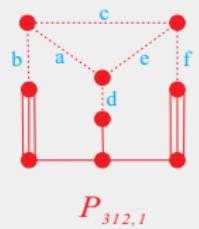
RESULTS



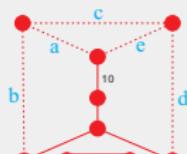
RESULTS



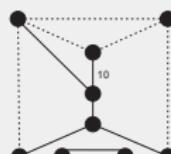
RESULTS



RESULTS

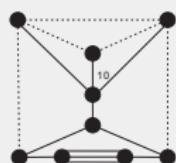


$P_{302,1}$

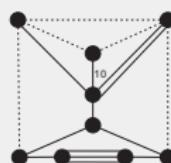


$P_{302,2}$

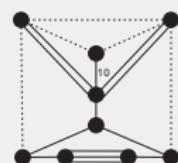
$P_{302,3}$



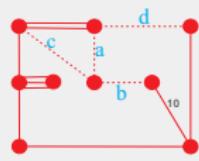
$P_{302,4}$



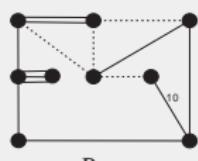
$P_{302,5}$



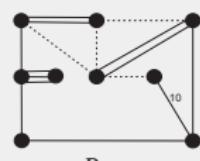
$P_{302,6}$



$P_{313,1}$

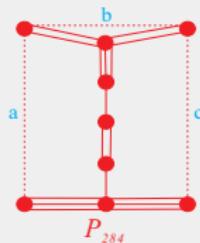


$P_{313,2}$



$P_{313,3}$

RESULTS



	a	b	c	d	e
$P_{302,1}$	$\frac{1}{2}\sqrt{4 + \sqrt{5}}$	$\frac{1}{2}\sqrt{30 + 13\sqrt{5}}$	$\frac{1}{4}(31 + 15\sqrt{5})$	$\frac{1}{2}\sqrt{30 + 13\sqrt{5}}$	$\frac{1}{2}\sqrt{4 + \sqrt{5}}$
$P_{313,1}$	$\frac{1}{2}\sqrt{3 + \sqrt{5}}$	$\frac{1}{2}\sqrt{5 + \sqrt{5}}$	$\frac{1}{2}(3 + \sqrt{5})$	$\sqrt{5 + 2\sqrt{5}}$	
P_{284}	$\frac{1}{2}(1 + \sqrt{5})$	$\frac{1}{2}(1 + \sqrt{5})$	$\frac{1}{2}(1 + \sqrt{5})$		

RESULTS

	a	b	c
	d	e	f
$P_{322,1}$	$\frac{1}{2}\sqrt{\frac{1}{2}(6 + \sqrt{5})}$	$\frac{1}{4}\sqrt{23 + 8\sqrt{5} + \sqrt{5(63 + 26\sqrt{5})}}$	$\frac{1}{4}\sqrt{946 + 423\sqrt{5} + \sqrt{1749835 + 782550\sqrt{5}}}$
	$\frac{1}{4}(5 + 2\sqrt{5} + \sqrt{63 + 26\sqrt{5}})$	$\frac{1}{2}\sqrt{\frac{1}{2}(1257 + 562\sqrt{5} + 3\sqrt{349967 + 156510\sqrt{5}})}$	$\frac{1}{2}\sqrt{\frac{1}{2}(9 + \sqrt{5})}$
$P_{322,4}$	$\frac{1}{2}(1 + \sqrt{5})$	$\frac{1}{4}(1 + \sqrt{5} + 2\sqrt{8 + 3\sqrt{5}})$	$\frac{9}{2} + 2\sqrt{5} + \frac{1}{4}\sqrt{1382 + 618\sqrt{5}}$
	$\frac{1}{4}(3 + \sqrt{5} + 2\sqrt{8 + 3\sqrt{5}})$	$\frac{1}{2}(9 + 4\sqrt{5} + \sqrt{132 + 59\sqrt{5}})$	$\frac{1}{2}\sqrt{\frac{1}{2}(9 + \sqrt{5})}$
$P_{322,13}$	$\sqrt{\frac{23}{8} + \frac{9\sqrt{5}}{8}}$	$\frac{1}{2}\sqrt{6 + \sqrt{5}}$	$\frac{1}{4}(15 + 7\sqrt{5})$
	$\frac{1}{4}(3 + \sqrt{5})$	$\frac{1}{2}\sqrt{6 + \sqrt{5}}$	$\sqrt{\frac{23}{8} + \frac{9\sqrt{5}}{8}}$
$P_{319,1}$	$\frac{1}{4}(2 + \sqrt{5})$	$\frac{1}{4}\sqrt{\frac{5}{2}(23 + 9\sqrt{5})}$	$\sqrt{\frac{23}{8} + \frac{9\sqrt{5}}{8}}$
	$\frac{1}{4}\sqrt{\frac{5}{2}(23 + 9\sqrt{5})}$	$\frac{1}{8}(7 + 5\sqrt{5})$	$\sqrt{\frac{23}{8} + \frac{9\sqrt{5}}{8}}$

RESULTS

$P_{319,7}$	$\frac{1}{4}(5 + 3\sqrt{5} + 2\sqrt{\frac{57}{2} + \frac{25\sqrt{5}}{2}})$	$\frac{5+3\sqrt{5}+\sqrt{46+18\sqrt{5}}}{4\sqrt{2}}$	$\frac{1}{2}(1 + \sqrt{5})$
	$\frac{5}{2} + \sqrt{5} + \frac{1}{4}\sqrt{114 + 50\sqrt{5}}$	$\frac{1}{4}\sqrt{47 + 17\sqrt{5} + 2\sqrt{570 + 250\sqrt{5}}}$	$\frac{1}{2}\sqrt{\frac{1}{2}(6 + \sqrt{5})}$
$P_{319,10}$	$2 + \sqrt{5}$	$3 + \sqrt{5}$	$\frac{1}{2}(1 + \sqrt{5})$
	$3 + \sqrt{5}$	$2 + \sqrt{5}$	$\frac{1}{2}(1 + \sqrt{5})$
$P_{319,16}$	$\frac{1}{4}(19 + 9\sqrt{5})$	$\frac{1}{4}\sqrt{5(57 + 25\sqrt{5})}$	$\frac{1}{2}\sqrt{\frac{1}{2}(6 + \sqrt{5})}$
	$\frac{1}{4}\sqrt{5(57 + 25\sqrt{5})}$	$\frac{1}{8}(7 + 5\sqrt{5})$	$\frac{1}{2}\sqrt{\frac{1}{2}(6 + \sqrt{5})}$
$P_{319,17}$	$\frac{1}{4}(5 + \sqrt{5})$	$\sqrt{\frac{691}{8} + \frac{309\sqrt{5}}{8}}$	$\frac{1}{2}\sqrt{\frac{1}{2}(9 + \sqrt{5})}$
	$\sqrt{\frac{691}{8} + \frac{309\sqrt{5}}{8}}$	$\frac{1}{4}(119 + 55\sqrt{5})$	$\frac{1}{2}\sqrt{\frac{1}{2}(9 + \sqrt{5})}$
$P_{312,1}$	$\frac{1}{2}\sqrt{\frac{5}{2} + \sqrt{5}}$	$\frac{1}{4}\sqrt{15 + \sqrt{5}}$	$1 + \frac{\sqrt{5}}{2}$
	$\frac{1}{2}\sqrt{4 + \sqrt{5}}$	$\frac{1}{2}\sqrt{\frac{5}{2} + \sqrt{5}}$	$\frac{1}{4}\sqrt{15 + \sqrt{5}}$

THANK YOU FOR YOUR LISTENING!