
Some High-dimensional Compact
Hyperbolic Coxeter Polytopes

Fangting ZHENG1 ( joint work with Jiming MA )2

1 Xi’an-Jiaotong Liverpool University, Suzhou, China
2 Fudan University, Shanghai, China

The 17th East Asian Conference on Geometric Topology
18th-21th January 2022

https://eacgt2022.cayley.kr/

https://eacgt2022.cayley.kr/


Presentation Outline

1 Results

2 What are the hyperbolic Coxeter polytopes

3 Why we are interested in hyperbolic Coxeter polytopes

4 How are the hyperbolic Coxeter polytopes

1 32



Main Result

Theorem (Ma-Zheng, arxiv:2201.00154)

There are 348 4-dimensional compact Coxeter hyperbolic polytopes with
eight facets.

Theorem (Ma-Zheng, appear soon)

There are 51 5-dimensional compact Coxeter hyperbolic polytopes with
nine facets.

A. Burcro� (2022) also obtained the same results independently via
di�erent approaches (arxiv:2201.03437)
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Hyperbolic Coxeter polytopes

Definition
A hyperbolic (spherical, Euclidean) Coxeter polytope P ⊂ Hn (Sn,En) is a
finite-volume convex polytope whose dihedral angles are of the form π

k ,
for some k ∈ {2, ...,∞}

co-finite volume, discrete isometry subgroup Γ ⊂ Isom (Hn) generated
by finite many reflections

m
hyperbolic Coxeter polytope Pn ⊂ Hn
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Gram matrix and Coxeter diagram

The Gram matrix G(P ) = (gij)m×m of a n-dimensional Coxeter
polytope P with m facets F1, F2 · · ·Fm defined as follows:

gij =


1 if j = i,

− cos π
mij

if ∠(Fi, Fj) = π
mij

,

−1 if Fi is asymptotic to Fj ,
− cosh(d(Fi, Fj)) if Fi and Fj diverge by distance d(Fi, Fj).

X The signature of G sgn(G) when the n-dimensional polytope P is
spherical, Euclidean, or hyperbolic is (n+ 1, 0), (n, 0), or (n, 1).
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Gram matrix and Coxeter diagram

Coxeter diagram Γ(P ) of a Coxeter polytope P :

? vertices: vi correspond to facets Fi of P .
? edges:

vi is joined to vj by an edge labelled k if

∠FiFj =
π

k
, 3 ≤ k <∞

vi is joined to vj by a bold edge if

Fi is asymptotic toFj

vi is joined to vj by do�ed edge labelled h = cosh d(Fi, Fj) if
Fi and Fj diverge at a hyperblic distance d(Fi, Fj).
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Example

X P is a hyperbolic quadrilateral with angles and distances

(∠F1F2,∠F1F4,∠F2F3,∠F3F4, d(F1, F3), d(F2, F4)) = (0,
π

7
,
π

2
,
π

6
, d1, d2)

G(P ):=


1 −1 −cosh d1 −cosπ

7

−1 1 0 −cosh d2
−cosh d1 0 1 −

√
3

2

−cosπ
7

−cosh d2 −
√

3
2

1


Γ(P ):=

7

h
1 h

2

v
1

v
2

v
3

v
4
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Spherical and Euclidean Coxeter Polytopes

A Coxeter diagram Γ(P ) is called elliptic if G(P ) is positive
definite.

A Coxeter diagram Γ(P ) is parabolic if G(P ) is degenerated and
any subdiagram of Γ(P ) is elliptic.

X Elliptic and connected parabolic diagrams are exactly Coxeter
diagrams of spherical and Euclidean Coxeter simplices, respectively.

Theorem (Coxeter 1934’)

There are complete classifications of spherical and Euclidean Coxeter
polytopes, respectively.
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Complete classification
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Connected elliptic
diagrams

Connected parabolic
diagrams
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Comparison

In spherical space: Coxeter polytopes are simplices;

In Euclidean space: Coxeter polytopes are product of simplices;

In hyperbolic space: compact polytopes are simple, that is, every
vertex link of a compact Coxeter n-polytope is an (n− 1)-simplex.

X In spherical and Euclidean se�ings, we only have finite many
polytopes (exclude the dihedral Gm2 -type) up to isometry, whereas
in hyperbolic case, the situation varies substantially.
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Some properties of hyperbolic Coxeter polytopes

If P is compact⇒ P is simple

k-faces↔ elliptic subdiagrams of rank n− k
ideal-vertices↔ parabolic subdiagrams of rank n− 1

Indecomposible,symmetric matrix G with signature (n, 1) with
natural geometric condition⇒ ∃! Pn ⊂ Hn, G = G(P ).

signature obstructions

local determinants

lannér diagrams / Esselmann list

admissible sections

li�ing techniques

configuration of missing faces
......
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Construction of higher-dim small (minimal) volume hyperbolic
manifolds. There is NO Jorgensen-Thurston Theory, like hyperbolic
Dehn filling, in dimensions larger than or equal to 4.

orbifold (Hyperbolic Coxeter polytopes) + Selberg Lemma

• Ratcli�e-Tschantz’s census (2000): 1171 minimal-volume cusped
hyperbolic 4-manifolds with 5 or 6 cusps. (via the ideal 24-cell)

• Kolpakov-Martelli (2013): one cusped hyperbolic 4-manifolds (via
the ideal 24-cell)

•Ma-Zheng (2018): small minimal orientable hyperbolic manifolds
that cover the right-angled 120-cell) ...

Martelli-Riolo-Slavich (2019): nontrivial plane bundle over surface
covering a finite volume hyp 4-manifold via right-angled 120-cell.
(Gromov-Lawson-Thurston Conjecture 1988 )
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X Siegel’s minimal covolume problem :

2-dimension orbifold: Siegel, 1945. (Hurwitz triangle)

3-dimension manifold: Gabai-Miller-Meyerho�, 2011.

Minimal arithmetic orbifold (Tumarkin, 2003, Emery, 2012)
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For a hyperbolic 4-manifold closed M , by Gauss-Bonnet formula,
vol(M) = 4π2

3 χ(M), it is not known whether there is a hyperbolic
closed 4-manifold with χ(M) = 2

Ratcli�e-Tschantz (2000): minimal volume cusped hyperbolic
4-manifolds via right-angled 24-cell.

Everi�-Ratcli�e-Tschantz (2012): minimal volume cusped hyperbolic
6-manifolds via a right-angled polytope P 6.
...
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1. Infinitely many Hyperbolic Coxeter Polytopes

P ⊂ Sn or En, finitely many and classified [Coxeter,34’]

P ⊂ Hn, infinitely many and far from classification.

�estion [Vinberg 1967]:“... find all the discrete groups of motions of Lobacevskii space

generated by finitely many reflections and having finite fundamental regions...".

Theorem (Allcock, 2005’)

Compact Coxeter polytope: infinitely many in Hn for all 4 ≤ n ≤ 6
Finite volume Coxeter polytope: infinitely many in Hn for all 4 ≤ n ≤ 19.
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2. Absence in large dimensions

Theorem (Vinberg’ 84)

If P ⊂ Hn is compact Coxeter polytope, then n ≤ 29

Examples only known for n ≤ 8.
Unique example for n = 8 [Bugaenko’92]:
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Vinberg’s Absence Theorem:

Theorem (Vinberg’ 84)

There are No arithmetic hyperbolic reflection group in dim ≥ 30.

Conj: Theorem above is true without the arithmeticity restrction

Q: If P ⊂ Hn is compact, arithmetic then n ≤ 8??
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Theorem (Prokhorov’ 85)

If P ⊂ Hn is finite volume Coxeter polytope, then n ≤ 995

Example known for n ≤ 19 [Vinberg, Kapliskaya ’78], and
n = 21 [Borcherds ’87]

If P ⊂ Hn is finite volume, arithmetic Coxeter polytope, then
n ≤ 21, n 6= 20 [Esselmann’ 97].
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3. Known Classifications

X By dimension
dim=2 [Poincare, 1882]:

∑
αi ≤ π(n− 2);

dim=3 [Andreev,’70]: necessary and su�icient condition for dihedral
angles.

dim≥ 4: Widely open
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Compact hyperbolic Coxeter polytopes

Lanner (1950): n-simplex
(3, 4-dims, finite, D(1) = 4)

Kaplinskaja (1974) Esselmann (1996), n-polytope with n+ 2-facets
(4, 5-dims, D(2) = 5)

Esselmann (1996) Tumarkin 2007, n-polytope with n+ 3-facets
(4, 5, 6, 8-dims, D(3) = 8)

Jacquemet-Tschantz (2018): n-cube
(4-dim, 5-dim)

Burcro� (2022): Some upper bounds for D(5), D(6), · · · , D(10).
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X Tumarkin-Flikson (2008), (7-dim D(4) = 7 [Bugaenko’92])

Ma-Zheng(2022), Burcro�(2022) (4-dim, 5-dim)
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Thank You for your listening!
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