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PRESENTATION OUTLINE

Results




MAIN RESULT

Theorem (Ma-Zheng, arxiv:2201.00154)

There are 348 4-dimensional compact Coxeter hyperbolic polytopes with
eight facets.

Theorem (Ma-Zheng, appear soon)

There are 51 5-dimensional compact Coxeter hyperbolic polytopes with

nine facets.

A. Burcroff (2022) also obtained the same results independently via
different approaches (arxiv:2201.03437)




PRESENTATION OUTLINE

What are the hyperbolic Coxeter polytopes
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Definition

A hyperbolic (spherical, Euclidean) Coxeter polytope P C H" (S™,E") is a
finite-volume convex polytope whose dihedral angles are of the form 7,
for some k € {2,...,00}
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Definition

A hyperbolic (spherical, Euclidean) Coxeter polytope P C H" (S™,E") is a
finite-volume convex polytope whose dihedral angles are of the form 7,
for some k € {2,...,00}

co-finite volume, discrete isometry subgroup I' C I'som (H") generated
by finite many reflections

)

hyperbolic Coxeter polytope P" C H"




GRAM MATRIX AND COXETER DIAGRAM

m The Gram matrix G(P) = (gij)mxm of a n-dimensional Coxeter
polytope P with m facets F, F5 - - - I}, defined as follows:

1 if j=41,
—Cos i A(H ) = =
R ij ij
= —1 if Fj is asymptotic to Fj,

—cosh(d(F;, F;)) if F; and F; diverge by distance d(F;, F}).
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m The Gram matrix G(P) = (gij)mxm of a n-dimensional Coxeter
polytope P with m facets F, F5 - - - I}, defined as follows:

1 if j=41,
—Cos i A(H ) = =
R ij ij
= —1 if Fj is asymptotic to Fj,

—cosh(d(F;, F;)) if F; and F; diverge by distance d(F;, F}).

v' The signature of G sgn(G) when the n-dimensional polytope P is
spherical, Euclidean, or hyperbolic is (n + 1,0), (n,0), or (n, 1).
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GRAM MATRIX AND COXETER DIAGRAM

Coxeter diagram I'(P) of a Coxeter polytope P:

* vertices:  v; correspond to facets F; of P.
* edges:

m v; is joined to v; by an edge labelled k if

4FL'FJ‘: 3<k<o0

T

k"

m v; is joined to v; by a bold edge if
F; is asymptotic toF);

m v; is joined to v; by dotted edge labelled h = cosh d(F;, F}) if
F; and F}; diverge at a hyperblic distance d(Fj, F}).




ExAMPLE

v Pis a hyperbolic quadrilateral with angles and distances

(LF\Fy, LF\Fy, L FyFs, ZF5Fy, d(F1, Fs), d(Fa, F1)) = (0, % g %,dl,dz)




ExAMPLE

v Pis a hyperbolic quadrilateral with angles and distances

(LF\Fy, LF\Fy, L FyFs, ZF5Fy, d(F1, Fs), d(Fa, F1)) = (0, % g %,dl,dz)

1 —1 —cosh dy —cos%
—1 1 0 —cosh do
= G(P) —cosh di 0 1 —@
—cos% —cosh do —@ 1
m ['(P):=




SPHERICAL AND EucLIDEAN COXETER POLYTOPES
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definite.
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SPHERICAL AND EucLIDEAN COXETER POLYTOPES

m A Coxeter diagram I'( P) is called elliptic if G(P) is positive
definite.

m A Coxeter diagram I'(P) is parabolic if G(P) is degenerated and
any subdiagram of I'( P) is elliptic.

v' Elliptic and connected parabolic diagrams are exactly Coxeter
diagrams of spherical and Euclidean Coxeter simplices, respectively.

Theorem (Coxeter 1934°)

There are complete classifications of spherical and Euclidean Coxeter
polytopes, respectively.




COMPLETE CLASSIFICATION

Connected elliptic
diagrams

Connected parabolic
diagrams
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COMPARISON

m In spherical space: Coxeter polytopes are simplices;
m In Euclidean space: Coxeter polytopes are product of simplices;

m In hyperbolic space: compact polytopes are simple, that is, every
vertex link of a compact Coxeter n-polytope is an (n — 1)-simplex.

v" In spherical and Euclidean settings, we only have finite many
polytopes (exclude the dihedral G5'-type) up to isometry, whereas
in hyperbolic case, the situation varies substantially.




SOME PROPERTIES OF HYPERBOLIC COXETER POLYTOPES

m If P is compact = P is simple

m k-faces < elliptic subdiagrams of rank n — &
ideal-vertices <+ parabolic subdiagrams of rank n — 1

m Indecomposible,symmetric matrix G with signature (n, 1) with
natural geometric condition = 3! P* C H", G = G(P).

signature obstructions

local determinants

lannér diagrams / Esselmann list
admissible sections

lifting techniques

configuration of missing faces




PRESENTATION OUTLINE

Why we are interested in hyperbolic Coxeter polytopes




Construction of higher-dim small (minimal) volume hyperbolic
manifolds. There is NO Jorgensen-Thurston Theory, like hyperbolic
Dehn filling, in dimensions larger than or equal to 4.
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Construction of higher-dim small (minimal) volume hyperbolic
manifolds. There is NO Jorgensen-Thurston Theory, like hyperbolic
Dehn filling, in dimensions larger than or equal to 4.

m orbifold (Hyperbolic Coxeter polytopes) + Selberg Lemma

e Ratcliffe-Tschantz’s census (2000): 1171 minimal-volume cusped
hyperbolic 4-manifolds with 5 or 6 cusps. (via the ideal 24-cell)

e Kolpakov-Martelli (2013): one cusped hyperbolic 4-manifolds (via
the ideal 24-cell)

e Ma-Zheng (2018): small minimal orientable hyperbolic manifolds
that cover the right-angled 120-cell) ...

m Martelli-Riolo-Slavich (2019): nontrivial plane bundle over surface
covering a finite volume hyp 4-manifold via right-angled 120-cell.
(Gromov-Lawson-Thurston Conjecture 1988 )
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v’ Siegel’s minimal covolume problem :

m 2-dimension orbifold: Siegel, 1945. (Hurwitz triangle)

m 3-dimension manifold: Gabai-Miller-Meyerhoff, 2011.

m Minimal arithmetic orbifold (Tumarkin, 2003, Emery, 2012)




m For a hyperbolic 4-manifold closed M, by Gauss-Bonnet formula,
_ 4n?

vol(M) = =5-x (M), it is not known whether there is a hyperbolic
closed 4-manifold with (M) = 2
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m For a hyperbolic 4-manifold closed M, by Gauss-Bonnet formula,
2
vol(M) = 4%){(M), it is not known whether there is a hyperbolic
closed 4-manifold with (M) = 2

m Ratcliffe-Tschantz (2000): minimal volume cusped hyperbolic
4-manifolds via right-angled 24-cell.

m Everitt-Ratcliffe-Tschantz (2012): minimal volume cusped hyperbolic
6-manifolds via a right-angled polytope P°.




PRESENTATION OUTLINE

HOW are the hyperbolic Coxeter polytopes
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1. Infinitely many Hyperbolic Coxeter Polytopes

m P C S" or E", finitely many and classified [Coxeter,34’]

m P C H", infinitely many and far from classification.

Question [Vinberg 1967]:"... find all the discrete groups of motions of Lobacevskii space

generated by finitely many reflections and having finite fundamental regions...".

Theorem (Allcock, 2005’)

Compact Coxeter polytope: infinitely many in H" forall4 < mn < 6
Finite volume Coxeter polytope: infinitely many in H" for all4 < n < 19.
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2. Absence in large dimensions

Theorem (Vinberg’ 84)

If P C H" is compact Coxeter polytope, then n < 29

Examples only known for n < 8.
Unique example for n = 8 [Bugaenko’92]:




m Vinberg’s Absence Theorem:

Theorem (Vinberg’ 84)

There are No arithmetic hyperbolic reflection group in dim > 30.




m Vinberg’s Absence Theorem:

Theorem (Vinberg’ 84)

There are No arithmetic hyperbolic reflection group in dim > 30.

m Conj: Theorem above is true without the arithmeticity restrction



m Vinberg’s Absence Theorem:

Theorem (Vinberg’ 84)

There are No arithmetic hyperbolic reflection group in dim > 30.

m Conj: Theorem above is true without the arithmeticity restrction

m Q: If P C H" is compact, arithmetic then n < 87?2
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Theorem (Prokhorov’ 85)

If P C H" is finite volume Coxeter polytope, then n < 995

m Example known for n < 19 [Vinberg, Kapliskaya ’78], and
n = 21 [Borcherds ’87]

m If P C H" is finite volume, arithmetic Coxeter polytope, then

n < 21, n # 20 [Esselmann’ 97].
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3. Known Classifications

v' By dimension

m dim=2 [Poincare, 1882]: > a; < m(n — 2);

m dim=3 [Andreev,70]: necessary and sufficient condition for dihedral
angles.

m dim> 4: Widely open




COMPACT HYPERBOLIC COXETER POLYTOPES

m Lanner (1950): n-simplex
(3, 4-dims, finite, D(1) = 4)

m Kaplinskaja (1974) Esselmann (1996), n-polytope with n + 2-facets
(4, 5-dims, D(2) = 5)

B Esselmann (1996) Tumarkin 2007, n-polytope with n + 3-facets
(4, 5, 6, 8-dims, D(3) = 8)

m Jacquemet-Tschantz (2018): n-cube
(4-dim, 5-dim)

m Burcroff (2022): Some upper bounds for D(5), D(6), - - - , D(10).



v' Tumarkin-Flikson (2008), (7-dim D(4) = 7 [Bugaenko’92])

Ma-Zheng(2022), Burcroff(2022) (4-dim, 5-dim)
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THANK YOU FOR YOUR LISTENING!
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