

Unperturbed weakly reducible non-minimal bridge positions

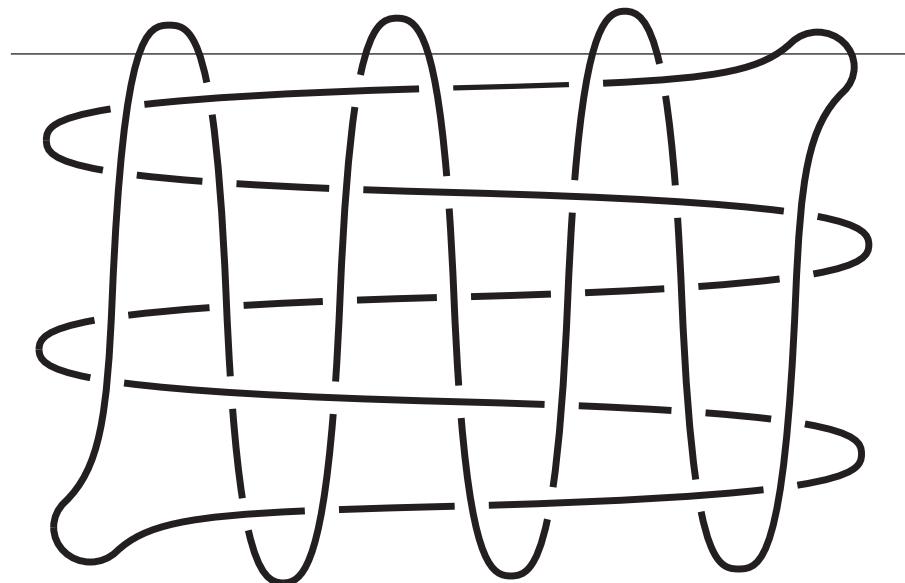
**Jung Hoon Lee
(Jeonbuk National University)**

January 20, 2022

**The 17th East Asian Conference on
Geometric Topology**

- **Motivation**

unperturbed strongly irreducible
4-bridge position of a 3-bridge knot [Ozawa-Takao]



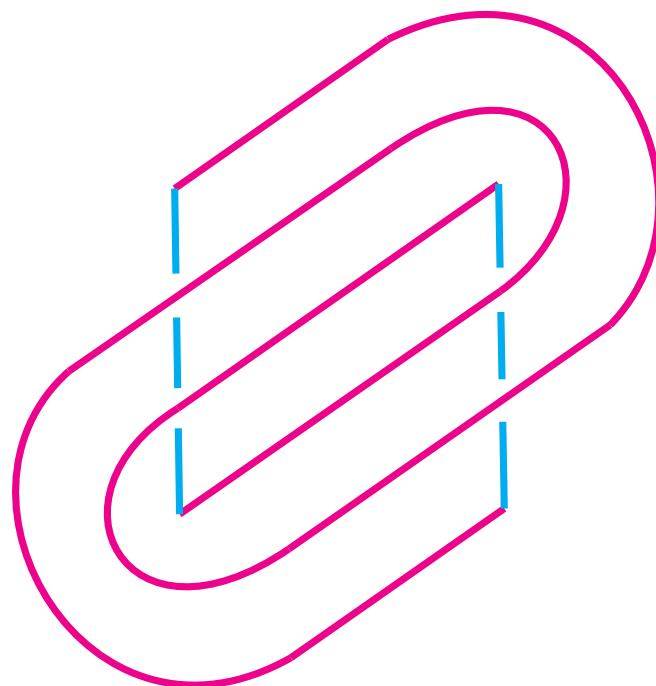
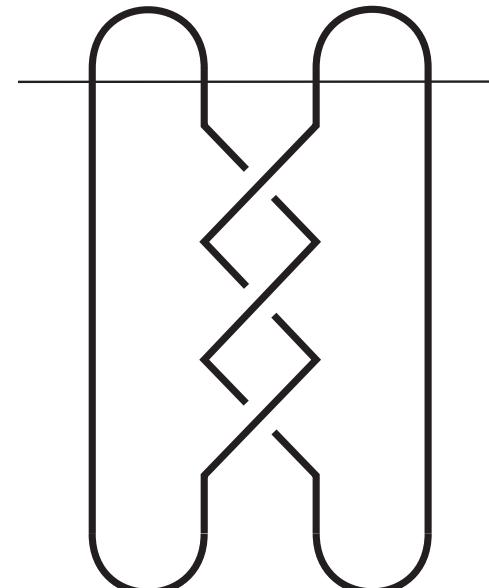
Question 1.

\exists unperturbed weakly reducible non-minimal bridge position ?

- **Bridge number**

[Schubert, 1954]

$b(K)$



[Schubert], [Schultens]

$$b(K_1 \# K_2) = b(K_1) + b(K_2) - 1$$

$K = (p, q)$ -torus knot ($p, q > 0$)

$$b(K) = \min \{p, q\}$$

K = a (p, q) -cable of a non-trivial knot J (longitudinally p times)

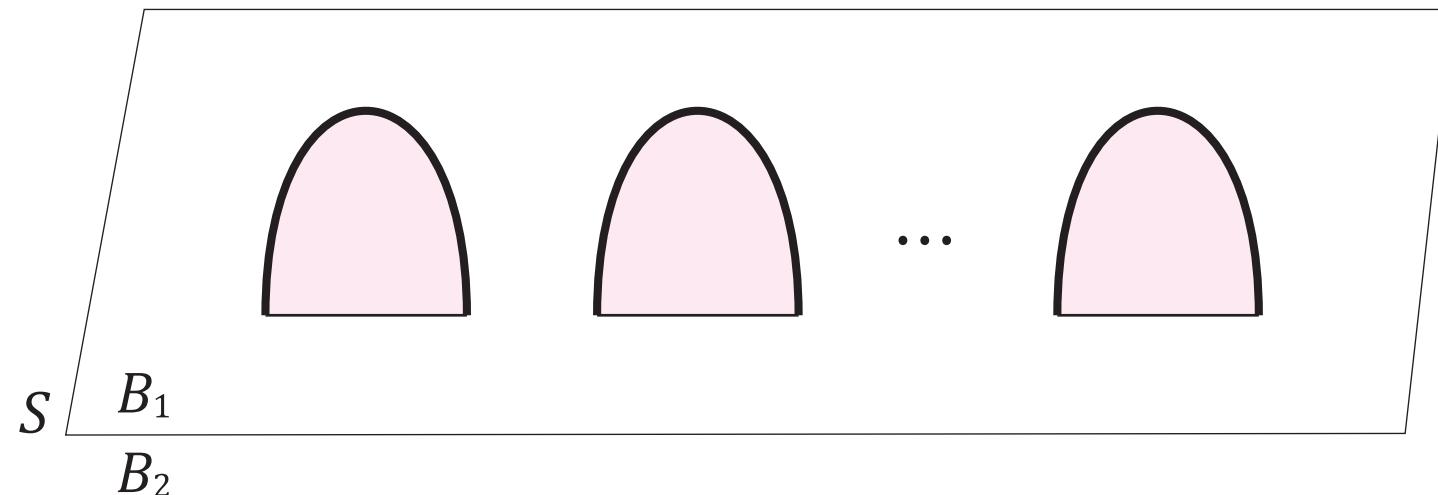
$$b(K) = p \cdot b(J)$$

- **Bridge position**

$$S^3 = B_1 \cup_S B_2, \quad B_1, B_2 : 3\text{-balls}$$

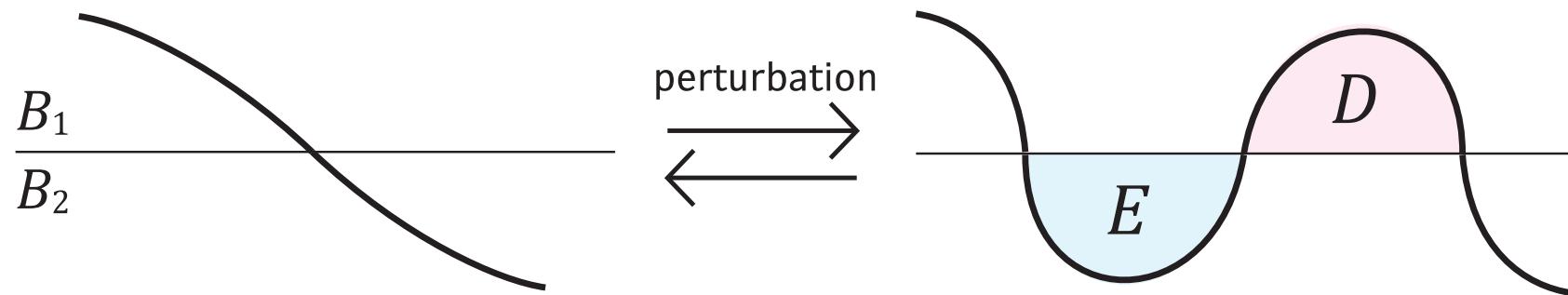
$K \cap B_i$ = a collection of n ∂ -parallel arcs

We say that K is in *n-bridge position* with respect to S .



a complete bridge disk system

- Perturbed bridge position



A bridge position of a knot K is *perturbed* if

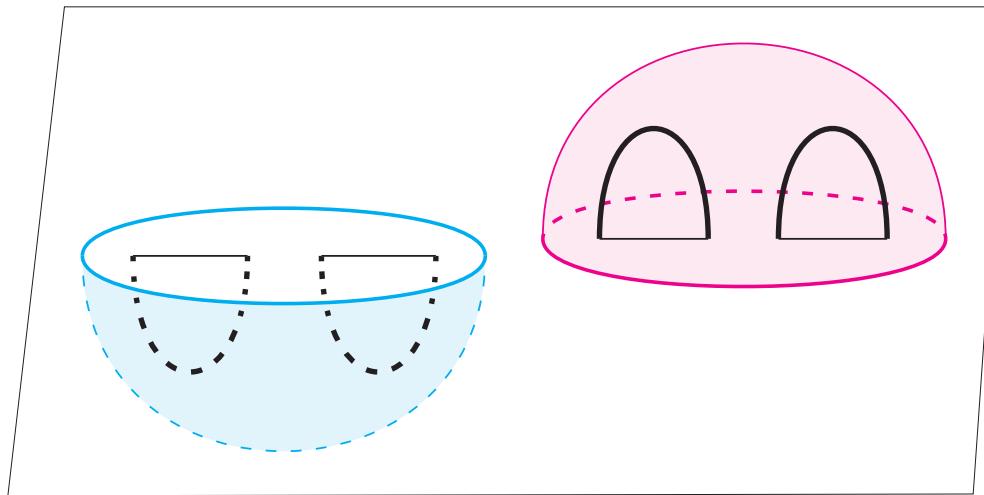
\exists bridge disks $D \subset B_1, E \subset B_2$ such that $D \cap E =$ a point of K .

D, E : *cancelling disks*

(D, E) : a *cancelling pair*

Otherwise, it is *unperturbed*.

- **Strong irreducibility**



weakly reducible

Otherwise, *strongly irreducible*

n -bridge position ($n \geq 3$)

perturbed \implies weakly reducible

\therefore strongly irreducible \implies unperturbed

- Heegaard splitting

$V \cup_F W$: a Heegaard splitting of a closed 3-manifold M

It is *stabilized* if $\exists D \subset V$ and $E \subset W$ such that $|D \cap E| = 1$.

(D, E) : a *cancelling pair*

Otherwise, *unstabilized*.

If \exists essential disks $D \subset V$ and $E \subset W$ such that $\partial D = \partial E$,
then *reducible*.

Otherwise, *irreducible*.

If \exists essential disks $D \subset V$ and $E \subset W$ such that $D \cap E = \emptyset$,
then *weakly reducible*.

Otherwise, *strongly irreducible*.

genus g Heegaard splitting ($g \geq 2$)

stabilized \implies reducible \implies weakly reducible

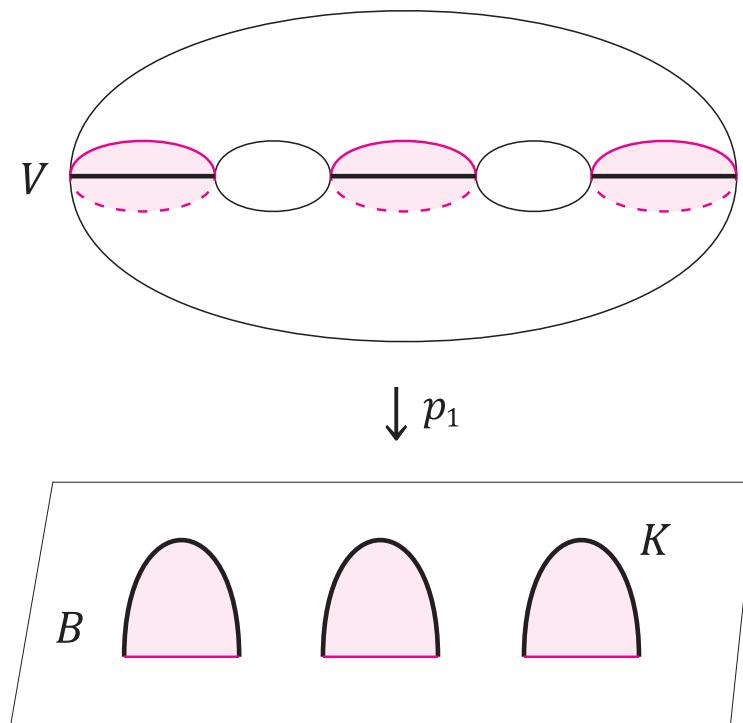
\therefore strongly irreducible \implies unstabilized

- **2-Fold branched covering**

K : a knot in n -bridge position with respect to $S^3 = B \cup_S C$

V : a genus $n - 1$ handlebody

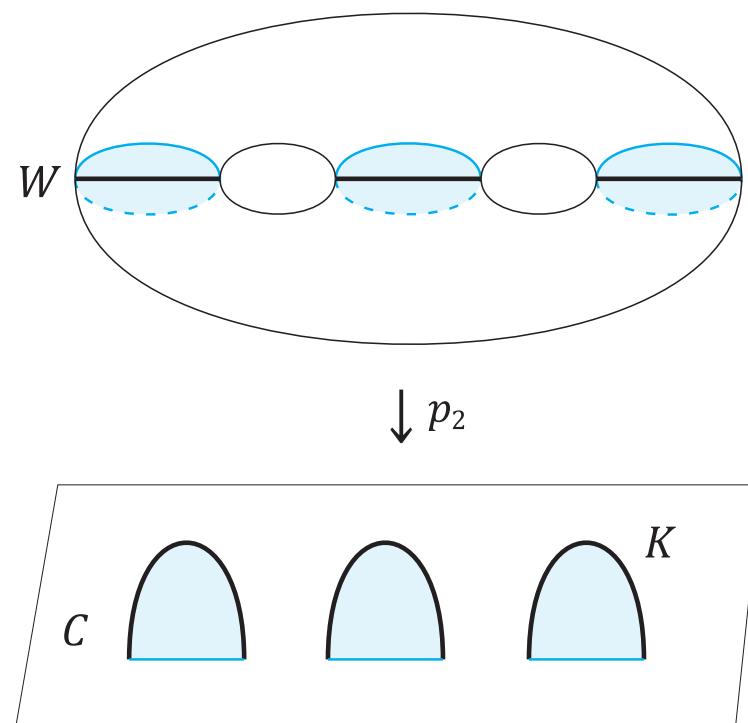
2-fold covering $p_1 : V \rightarrow B$ branched along $B \cap K$



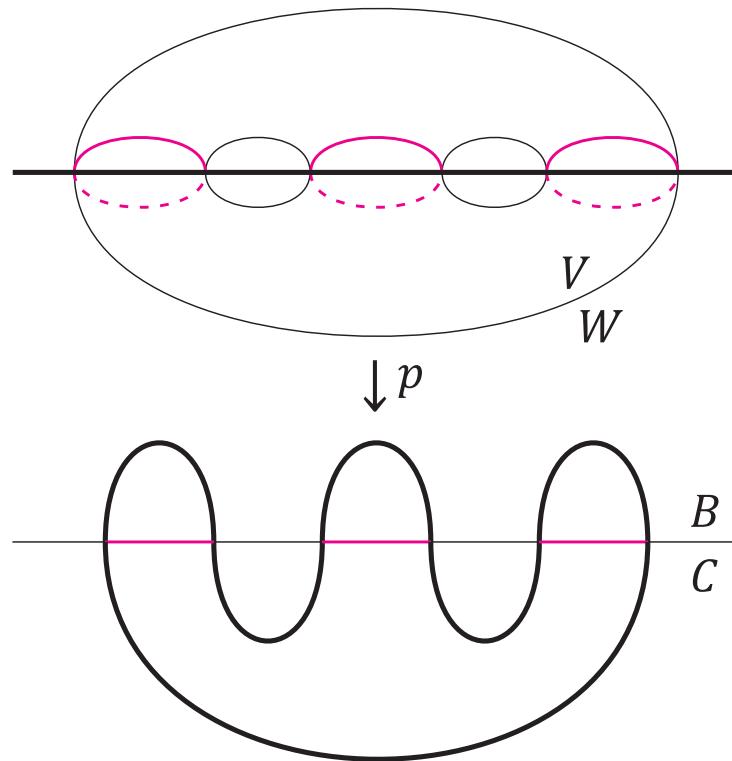
Similarly,

W : a genus $n - 1$ handlebody

2-fold covering $p_2 : W \rightarrow C$ branched along $C \cap K$



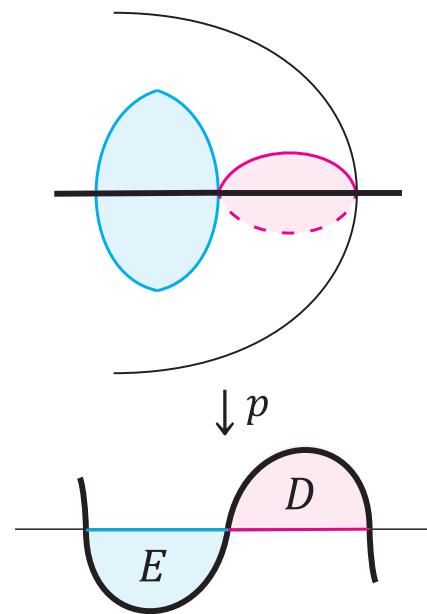
2-fold covering $p : V \cup_F W \rightarrow B \cup_S C$ branched along K



(D, E) : a cancelling pair for $B \cup_S C$

$(p^{-1}(D), p^{-1}(E))$: a cancelling pair for $V \cup_F W$

$B \cup_S C$: perturbed $\implies V \cup_F W$: stabilized



Proposition.

$V \cup_F W$: unstabilized $\implies B \cup_S C$: unperturbed

* The converse of the proposition does not hold.

$K = (p, q)$ -torus knot ($p < q$), $b(K) = p$

The p -bridge position $B \cup_S C$ is unperturbed.

$M = 2$ -fold covering branched along K is a small Seifert fibered manifold.

An irreducible Heegaard splitting is either vertical or horizontal.

vertical: genus ≤ 2

horizontal: genus is even.

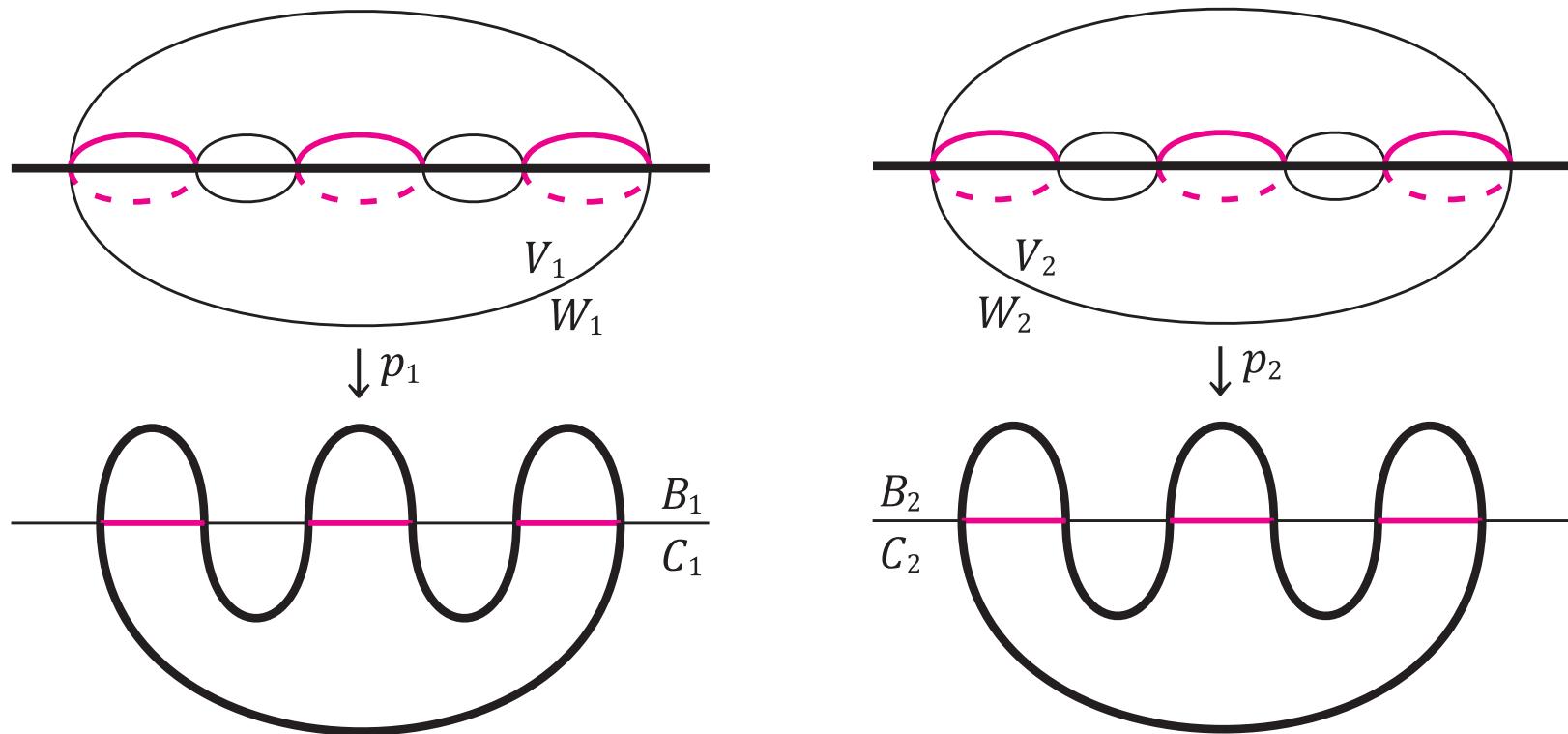
The 2-fold covering $V \cup_F W$ is of genus $p - 1$.

\therefore For example, if $(p, q) = (4, 5)$,

then $V \cup_F W$ is reducible, hence stabilized.

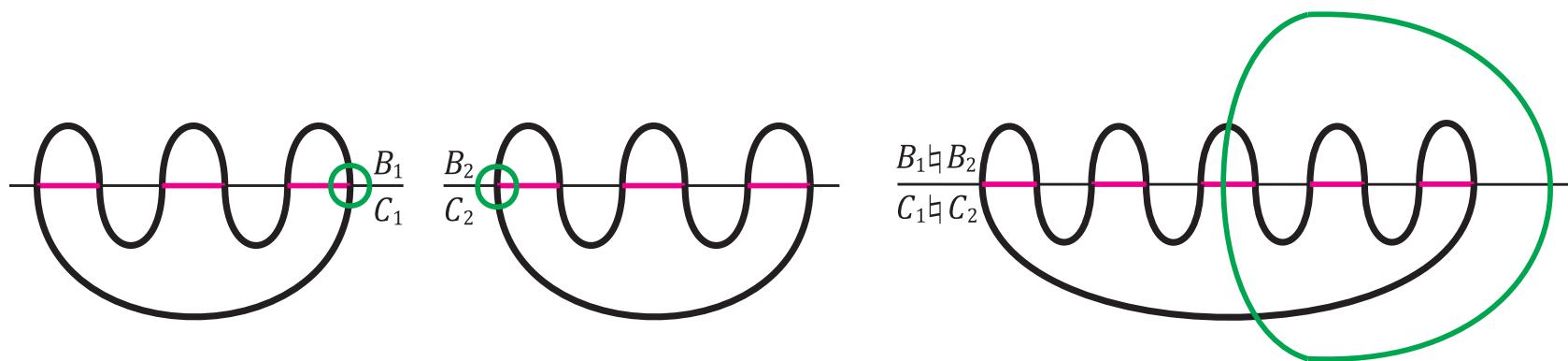
2-fold branched coverings

$$p_1 : V_1 \cup_{F_1} W_1 \rightarrow B_1 \cup_{S_1} C_1, \quad p_2 : V_2 \cup_{F_2} W_2 \rightarrow B_2 \cup_{S_2} C_2$$



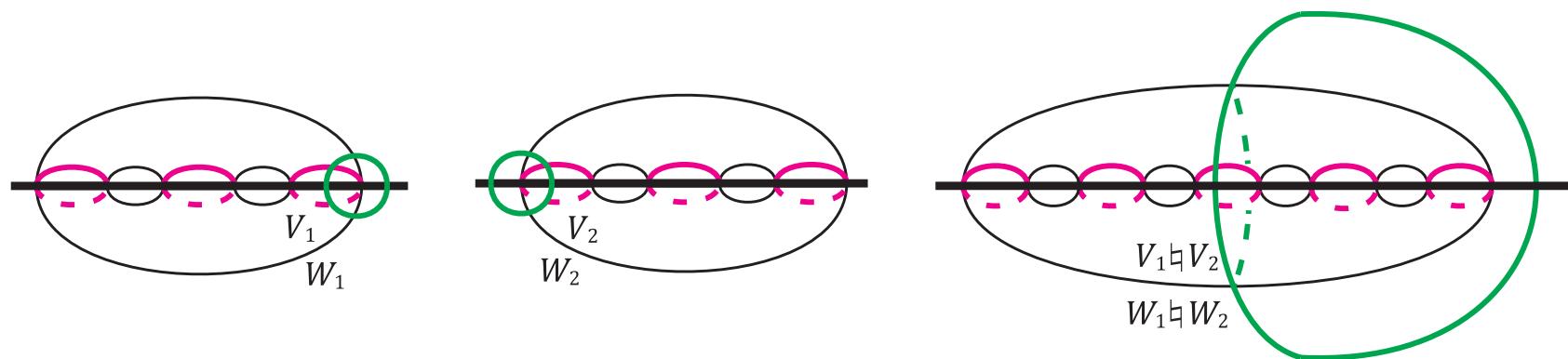
- **Connected sum**

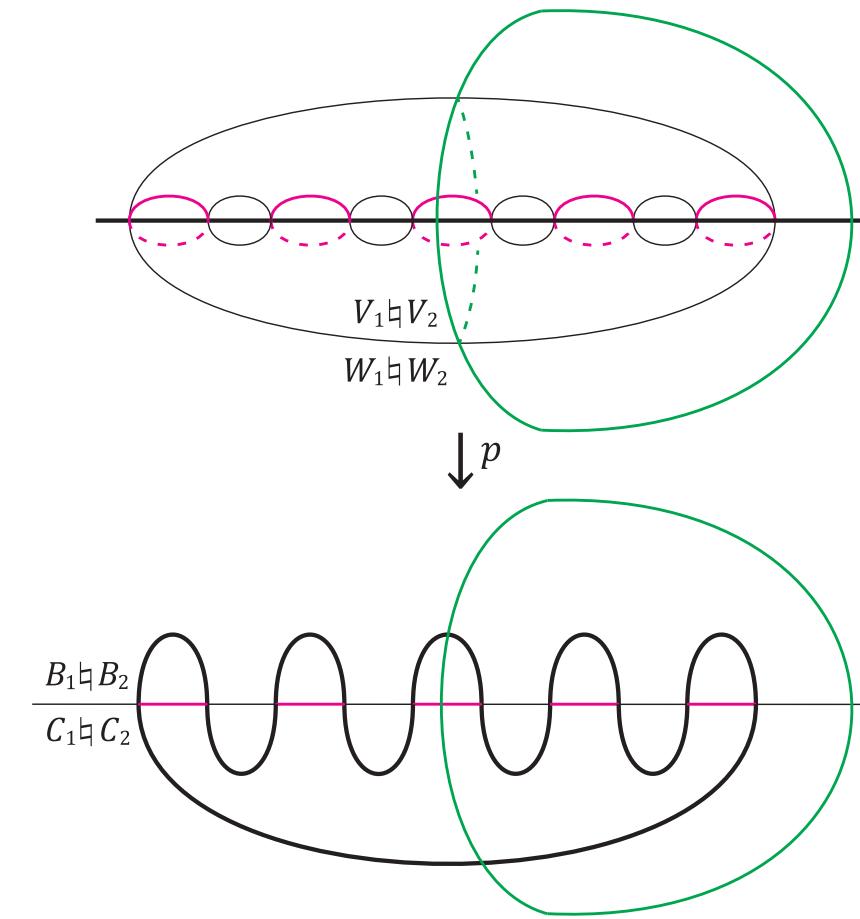
$$(B_1 \cup_{S_1} C_1) \# (B_2 \cup_{S_2} C_2) = (B_1 \natural B_2) \cup_{S_1 \# S_2} (C_1 \natural C_2)$$



- **Connected sum**

$$(V_1 \cup_{F_1} W_1) \# (V_2 \cup_{F_2} W_2) = (V_1 \natural V_2) \cup_{F_1 \# F_2} (W_1 \natural W_2)$$





$p : (V_1 \cup_{F_1} W_1) \# (V_2 \cup_{F_2} W_2) \rightarrow (B_1 \cup_{S_1} C_1) \# (B_2 \cup_{S_2} C_2)$ is a 2-fold branched covering.

- **Gordon's Conjecture**

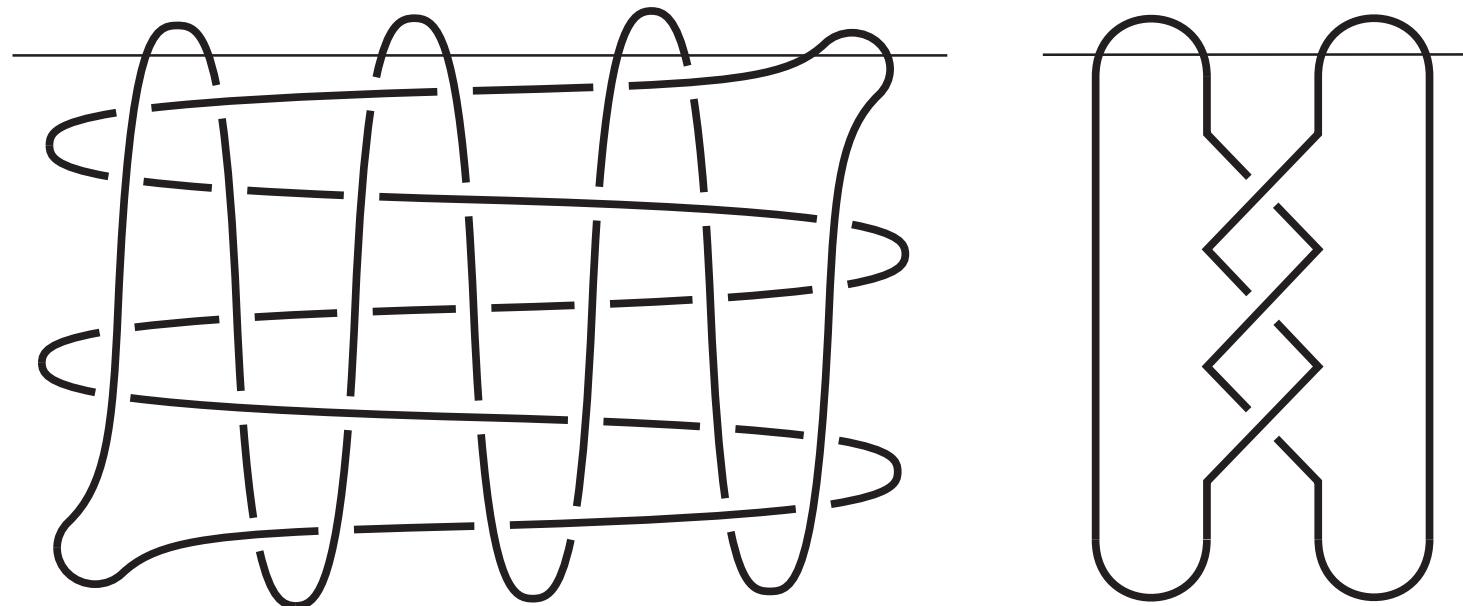
[Bachman], [Qiu-Scharlemann]

The connected sum of two unstabilized Heegaard splittings is unstabilized.

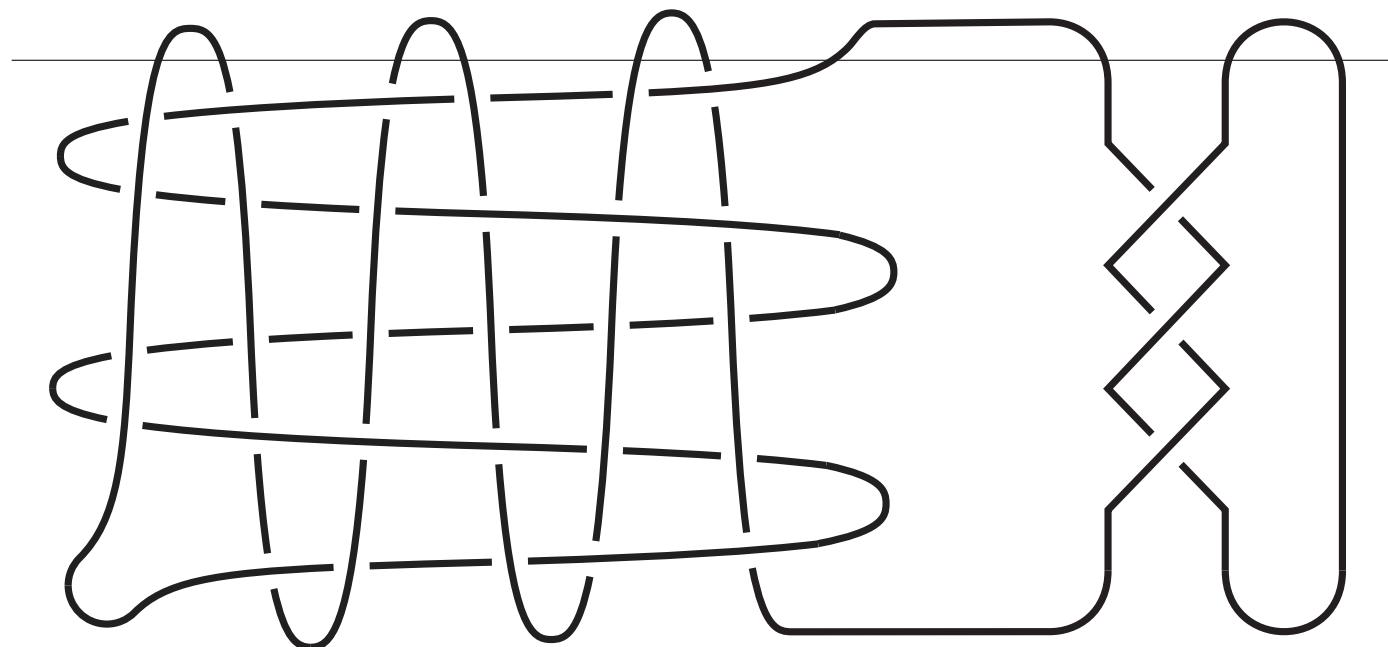
- unperturbed. (\because strongly irreducible.)

Moreover,

- admits a 2-fold branched covering whose Heegaard splitting is strongly irreducible, hence unstabilized.



unperturbed weakly reducible
5-bridge position of a (composite) 4-bridge knot



- **A bridge version of Gordon's Conjecture**

The connected sum of two unperturbed bridge positions is unperturbed.

Question 1.

\exists unperturbed weakly reducible non-minimal bridge position ?

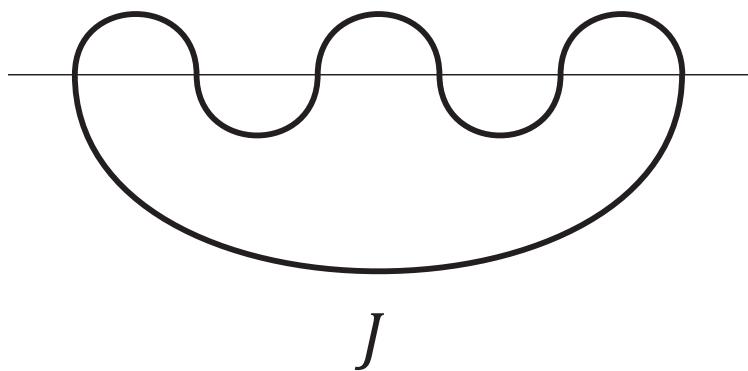
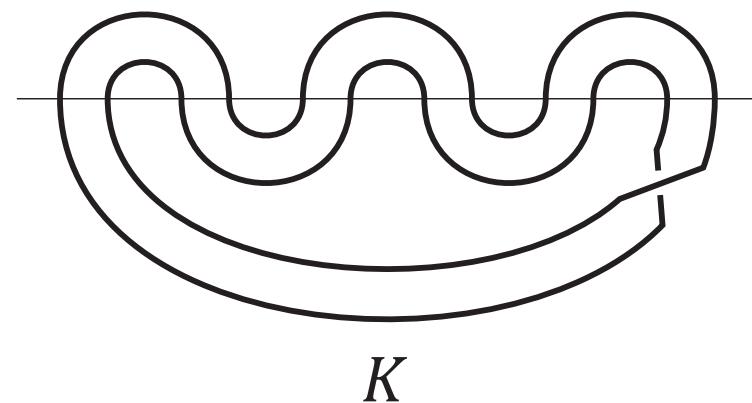
Yes. (composite knots)

Question 1'. What about prime knots?

- **2-Cable position**

J : a non-trivial knot in n -bridge position

K : a $(2, q)$ -cable knot of J for some odd q , where
 K is in $2n$ -bridge position, called a *2-cable position*.



Question 2.

Suppose that a bridge position of J is unperturbed.

Then a 2-cable position of K is unperturbed.

$(K = \text{a } (2, q)\text{-cable knot of } J)$

Thank you for your attention.