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General settings

Let g ≥ 1.

Σg : a closed oriented surface of genus g , H := H1(Σg ;Q) ∼= Q2g .

H ↶ Sp(2g ;Q) : the canonical action,

µ : H ⊗ H → Q : the intersection form,

a1, . . . , ag , b1, . . . , bg : a symplectic basis w.r.t. µ.

1 2 g

a1 a2 ag

b1 b2 bg
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What is the symplectic derivation Lie algebra?

The symplectic derivation Lie algebra gg is defined as

gg := {D ∈ Der(A) | D trivially acts on ω0}

for an algebra A and an element ω0 below:

world Associative Lie Commutative

gg ag lg cg

A
(free tensor algebra) (free Lie algebra) (free commutative algebra)⊕

i≥1H
⊗i

⊕
i≥1 Li (H)

⊕
i≥1 S

iH (⊂ C∞(H))

ω0
∑

i (ai ⊗ bi − bi ⊗ ai )
∑

i [ai , bi ]
∑

i dai ∧ dbi (∈ Ω2(H))

(i.e. D(ω0) = 0) (i.e. D(ω0) = 0) (i.e. LDω0 = 0)

Every gg has an ideal g+g called the positive weight part.
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Geometric correspondence

The homology group H•(gg ) becomes a Hopf algebra when g → ∞.

⇝ We can take “the primitive part” of the homology group.

Kontsevich(’93) has shown the following correspondence:

the primitive homology of

Associative Lie Commutative

ag lg cg

↕ ↕ ↕

the cohomology / homology of

the moduli spaces

of graphs

the moduli spaces

of Riemann surfaces
commutative graphs
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Relation to graph homology

Approaches from the commutative graph homology (≈ H•(c
+
g )

Sp)

(Bar-Natan, McKay) Various graph homologies

(Conant-Gerlits-Vogtmann, 2005) Computation up to degree 12

(Willwacher-Živković, 2015)

The generating function of Euler characteristic

Displaying it up to weight 60

ag

ribbon graphs

lg

Root

tree Jacobi diagrams

cg

commutative graphs
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Another description of cg

Definition

For w ≥ 0, cg (w) := Sw+2H : the (w + 2)-nd symmetric power,

cg and c+g are identified as follows.

cg =
⊕
w≥0

cg (w) ⊃
⊕
w≥1

cg (w) = c+g .

We regard cg and c+g as sets of polynomial functions on H.

[, ] : the classical Poisson bracket on H, i.e.

[f , h] =

g∑
i=1

(
∂f

∂ai

∂h

∂bi
− ∂f

∂bi

∂h

∂ai

)
(f , h ∈ cg ).

c+g ⊂ cg becomes a Lie subalgebra.
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Lie algebra homology

∧•cg =
⊕

k≥0 ∧kcg : the Chevalley-Eilenberg chain space

∂ : ∧k+1cg → ∧kcg : the differential of the CE chain complex,

i.e.

∂(f1 ∧ · · · ∧ fk+1) :=
∑

1≤i<j≤k+1

(−1)i+j+1[fi , fj ] ∧ f1 ∧ · · · ∧ f̂i ∧ · · ·

· · · ∧ f̂j ∧ · · · ∧ fk+1.

∧•c+g ⊂ ∧•cg becomes a chain subcomplex.

Definition

H•(cg ) := H•((∧•cg , ∂)), H•(c
+
g ) := H•((∧•c+g , ∂)).
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Weight

∧•cg has another Z≥0-grading than the homological degree.

Definition

For f1 ∈ cg (w1), . . . , fk ∈ cg (wk), we say that

f1 ∧ · · · ∧ fk ∈ ∧kcg is of weight w1 + · · ·+ wk .(
∧kc+g

)
w
:= Span

{
ω ∈ ∧kc+g

∣∣ ω is of weight w
}

The differential ∂, weights, and the Sp-action are compatible.

Definition

H•(c
+
g )w := H•(((∧•c+g )w , ∂))

Hence, Hn(c
+
g ) =

⊕
w≥1

Hn(c
+
g )w .
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Homology group of c+g

Proposition

H1(c
+
g ) = (∧1c+g )1 = cg (1) = S3H.

Proof. ∂2 = [, ] is surjective on the weight w ≥ 2 part.

Theorem (H., 2020)

If g ,w ≥ 4, then H2(c
+
g )w = 0.

Sketch of the proof. • weight

• Sp(2g ;Q)-irreducible

 decomposition for the chain space ∧2c+g

⇝ Enough to consider each generator of such irreducible components.
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Representation theory of Sp(2g ;Q)

Theorem Finite dim. poly.

irred. Sp(2g ;Q) rep.

/
∼=

 Young diag. with

at most g rows

1:1

e.g.
〈

(a1 ∧ a2 ∧ a3)

⊗(a1 ∧ a2)⊗ a1 ⊗ a1

〉
Sp-module

⊂ (∧3H)⊗ (∧2H)⊗ H ⊗ H


λ = [421] = t [3211]

a1 a1 a1 a1
a2 a2
a3
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Sketch of the proof

Let V (∼= Vλ = V[λ1λ2]) be an irreducible component of ∧2c+g .

We want ω3 ∈ ∧3c+g satisfying the following diagram.

ω3 ∂ω3

ω3|λ (∂ω3)|V

Construct
(generator of Vλ)

: generator of V ⊂ ∧2c+g
∴ V ⊂ Im ∂

∧3c+g ∧2c+g
(H ∧ H)⊗λ2

⊗H⊗(λ1−λ2)

∂

∃Sp-equiv.
map

(“Detecting”)

proj. proj.

∂

Sp-equiv.

Sp-equiv.

∈ ∈ ∈

i.e. we reduce our argument to the generators.
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Corollary

Theorem (Recall)

If g ,w ≥ 4, then H2(c
+
g )w = 0.

Corollary

If g ≥ 4, then H2(c
+
g ) = [51] + [33] + [22] + [11] + [1] + [0] as an

Sp(2g ;Q)-module.

Corollary

If g ≥ 4, then

H3(c
+
g )3 = [711]+[63]+[531]+[333]+[52]+[421]+[322]+[41]+2[311]+2[3]

as an Sp(2g ;Q)-module.
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