

Computation of the Knot group and the Symmetric fundamental quandle of Surface-links using a Plat form

Jumpei Yasuda

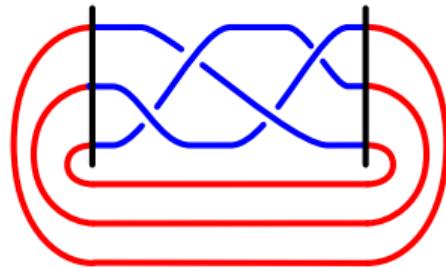
Osaka university, Japan

The 17th East Asian Conference on Geometric Topology
January 18, 2022

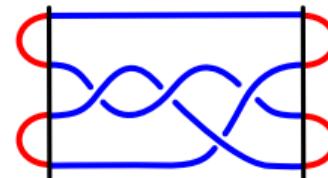
Contents

- 1 A plat form for surface-links
- 2 Computation of the knot group of surface-links
- 3 Computation of the symmetric fundamental quandle of surface-links

A plat form presentation for Links



The closure of braids



The plat closure of braids

Remark

The plat closure of braids is defined for braids of even degree.

Surface-links and Surface-knots

Definition

F : a *surface-knot* : \Leftrightarrow F : a connected closed surface embedded in \mathbb{R}^4 .

F : a *surface-link* : \Leftrightarrow F : a disjoint union of surface-knots in \mathbb{R}^4 .

Definition

F, F' : two surface-links.

F and F' are *equivalent* : \Leftrightarrow F is ambient isotopic to F' in \mathbb{R}^4 .

Remark

In this talk, we discuss in PL category (or smooth category).

Braided surfaces and 2-dimensional braids

$D_1, D_2 \subset \mathbb{R}^2$: 2-dim disks, $y_0 \in \partial D_2$: a fixed based point of D_2 .

$\text{pr}_i : D_1 \times D_2 \rightarrow D_i$: the i -th factor projection ($i = 1, 2$).

$n \in \mathbb{Z}_{>0}$: a positive integer, $Q_n \subset D_1$: the n points subset of D_1 .

Definition (Rudolph, 1983; Viro, 1990)

$S \subset D_1 \times D_2$: a *braided surface* of degree n .

\Leftrightarrow a surface S satisfies the following conditions.

- ① $\pi_S := \text{pr}_2|_S : S \rightarrow D_2$: a simple branched covering of degree n ,
- ② $\partial S \subset D_1 \times \partial D_2$: a closed braid of degree n ,
- ③ $\text{pr}_1(\pi_S^{-1}(y_0)) = Q_n$.

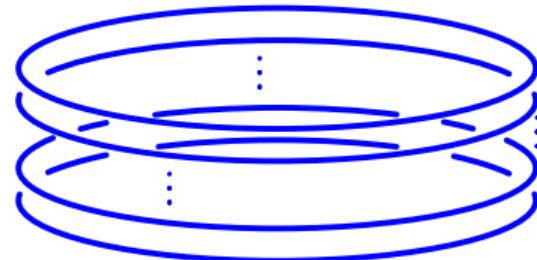
In particular, S : a *2-dimensional braid* $\Leftrightarrow \partial S = Q_n \times \partial D_2$.

A plat form presentation for Surface-links

S : a 2-dim braid of degree $2m$ (i.e. $\partial S = Q_{2m} \times \partial D_2$).

$A \subset \mathbb{R}^4$: a disjoint union of m annuli.

$\widetilde{S} := S \cup A$: a surface-link.



Definition

$\widetilde{S} = S \cup A$: the *plat closure* of a 2-dim braid S .

Theorem

Every orientable surface-link is equivalent to the plat closure of some 2-dim braid.

A plat form presentation for Surface-links

$K_{2m} := \langle \sigma_1, \sigma_2\sigma_1\sigma_3\sigma_2, \sigma_{2i}\sigma_{2i-1}\sigma_{2i+1}^{-1}\sigma_{2i}^{-1} \ (i = 1, 2, \dots, m-1) \rangle \subset B_{2m}$
: Hilden's subgroup of degree $2m$.

S : a braided surface of degree $2m$.

β_S : a braid obtained from ∂S by cutting along $\pi_S^{-1}(y_0)$.

Definition

A braided surface S is *adequate* : $\Leftrightarrow \beta_S \in K_{2m}$.

A plat form presentation for Surface-links

S : an adequate braided surface.

$A \subset \mathbb{R}^4$: a disjoint union of annuli and Möbius bands s.t. $\partial A = \partial S$ (A : of *wicket type*.)

$\widetilde{S} := S \cup A$: a surface-link.

Definition

$\widetilde{S} = S \cup A$: the *plat closure* of a braided surface S .

Definition

$F = \widetilde{S}$: a *plat form* of a surface-link F .

Theorem

Every surface-link is equivalent to the plat closure of some braided surface.

Computation of the Knot group of Surface-links

F : a surface-link, $G(F) = \pi_1(\mathbb{R}^4 \setminus F)$: the knot group of F .

S : a braided surface of degree n .

$G(S) := \pi_1(D_1 \times D_2 \setminus S)$: the knot group of S .

$x_1, \dots, x_n \subset D_1 \setminus Q_n$: meridional loops of $D_1 \setminus Q_n = (D_1 \times \{y_0\}) \setminus S$.

Proposition (cf. Kamada, 2002)

The knot group $G(S)$ has a following group presentation:

$$G(S) = \langle x_1, \dots, x_n \mid r_1, \dots, r_k \rangle.$$

Theorem

For an adequate braided surface S of degree $2m$, the knot group $G(\widetilde{S})$ has a following group presentation:

$$G(\widetilde{S}) = \langle x_1, \dots, x_{2m} \mid r_1, \dots, r_k, x_{2i-1} = x_{2i}^{-1} \ (i = 1, \dots, m) \rangle.$$

Computation of the Knot group of Surface-links

S : an adequate braided surface of degree $2m$, $\widetilde{S} = S \cup A$: the plat closure of S .

Theorem

The knot group $G(\widetilde{S})$ has a following group presentation:

$$G(\widetilde{S}) = \langle x_1, \dots, x_{2m} \mid r_1, \dots, r_k, x_{2i-1} = x_{2i}^{-1} \ (i = 1, \dots, m) \rangle.$$

A sketch of an algebraic proof

- ① By proposition, we have $G(S) = \langle x_1, \dots, x_{2m} \mid r_1, \dots, r_k \rangle$.
- ② Compute a group presentation of $G(A) := \pi_1((\mathbb{R}^4 \setminus D_1 \times D_2) \setminus A)$ that contains the generators x_1, \dots, x_{2m} .
- ③ Since $\widetilde{S} = S \cup A$, the claim follows by Van Kampen's theorem.

Computation of the Knot group of Surface-links

S : an adequate braided surface of degree $2m$, $\widetilde{S} = S \cup A$: the plat closure of S .

Theorem

The knot group $G(\widetilde{S})$ has a following group presentation:

$$G(\widetilde{S}) = \langle x_1, \dots, x_{2m} \mid r_1, \dots, r_k, x_{2i-1} = x_{2i}^{-1} \ (i = 1, \dots, m) \rangle.$$

A sketch of a geometric proof

- ① Construct a diagram D of \widetilde{S} by gluing a diagram of S and of A .
- ② Consider meridional loops x_1, \dots, x_{2m} of S in D .
- ③ Then, they are naturally extended to meridional loops of A with relations $x_{2i-1} = x_{2i}^{-1}$ ($i = 1, \dots, m$).

Quandles and Symmetric quandles

Definition (Joyce, Matveev, 1982)

X : a set, $* : X \times X \rightarrow X$: a binary operation

$X = (X, *)$: a *quandle* : \Leftrightarrow $*$ satisfies the following conditions:

- ① $\forall x \in X, x * x = x$,
- ② $\forall x, y \in X, \exists ! z \in X$ s.t. $x * z = y$,
- ③ $\forall x, y, z \in X, (x * y) * z = (x * z) * (y * z)$.

Definition (Kamada, 2006)

X : a quandle, $\rho : X \rightarrow X$: an involution map (i.e. $\rho \circ \rho = \text{id}_X$).

$X = (X, \rho)$: a *symmetric quandle* : \Leftrightarrow ρ satisfies the following conditions:

- ① $\forall x, y \in X, \rho(x * y) = \rho(x) * y$,
- ② $\forall x, y \in X, x * \rho(y) = x \bar{*} y$.

the Symmetric fundamental quandle of Surface-links

$F \subset \mathbb{R}^4$: a surface-link, $q \in \mathbb{R}^4 \setminus F$: a fixed based point.

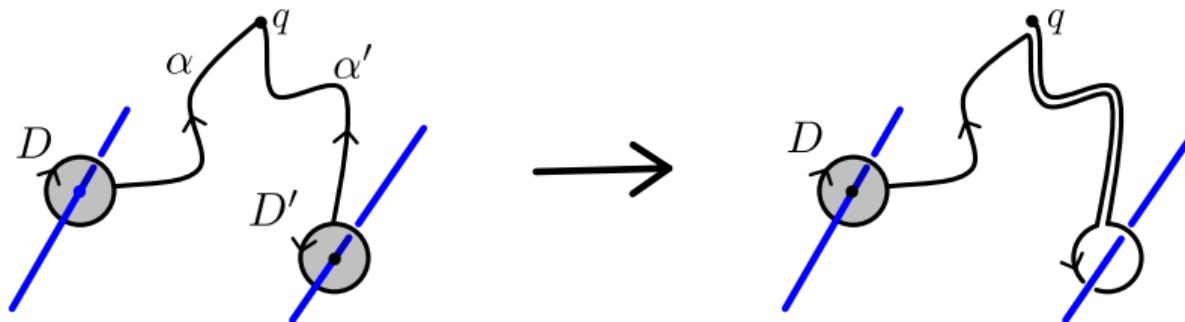
$X(F) := \{(D, \alpha) \mid D: \text{a meridional disk of } F, \alpha: \text{a path from } \partial D \text{ to } q\}/\text{homotopy}$.

$[(D, \alpha)] * [(D', \alpha')] := [(D, \alpha \cdot \alpha'^{-1} \cdot \partial D' \cdot \alpha')]$: a binary operation of $X(F)$.

Then, $X(F) := (X(F), *)$ is a quandle (the *full knot quandle* of F).

$\rho : X(F) \rightarrow X(F)$; $\rho([(D, \alpha)]) := [(-D, \alpha)]$: an involution map.

$X(F) := (X(F), \rho)$: the *symmetric fundamental quandle* of F .



Main Theorem

F : a surface-link, $X(F)$: the symmetric fundamental quandle of F .

Theorem

S : an adequate braided surface of degree $2m$.

Then, $X(\widetilde{S})$ has a following symmetric quandle presentation:

$$X(\widetilde{S}) = \langle x_1, \dots, x_{2m} \mid r_1, \dots, r_k, x_{2i-1} = \rho(x_{2i}) \text{ } (i = 1, \dots, m) \rangle_{\text{sq}}.$$