

Coloring links by Symmetric group of order 3

Kazuhiro Ichihara (Nihon Univ.)

The 17th East Asian Conference on Geometric Topology

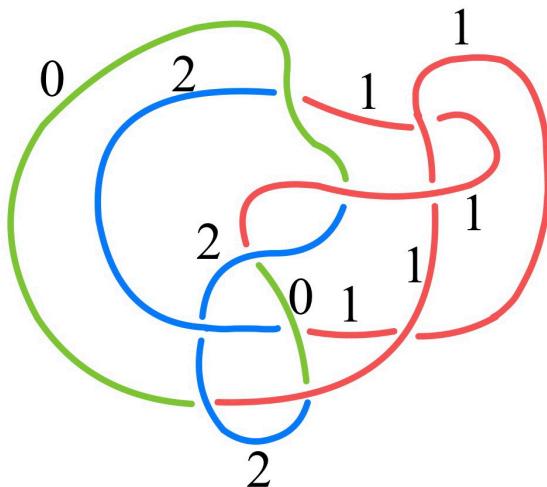
Jan. 18, 2022, Online meeting

(Joint work with Eri Matsudo, Nihon Univ.)

Introduction

One of the most well-known invariants of knots and links would be the **Fox 3-coloring**, originally introduced by R. Fox.

6. Let us say that a knot diagram has property l if it is possible to color the projected overpasses in three colors, assigning a color to each edge in such a way that (a) the three overpasses that meet at a crossing are either all colored the same or are all colored differently; (b) all three colors are actually used.



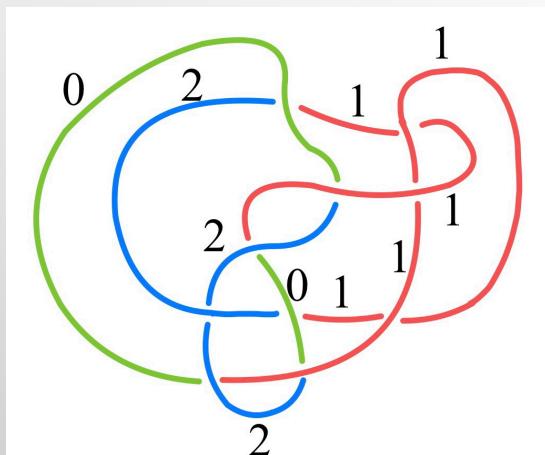
Chap.2 Presentation of a knot group,
Exercise 6, p.92

Crowell, Richard H.; Fox, Ralph H. Introduction to knot theory.
Based upon lectures given at Haverford College under the Philips
Lecture Program *Ginn and Co., Boston, Mass.* 1963 {rm x}+182
pp. [MR0146828](#)

Introduction

EXERCISES 93

Show that a diagram of a knot K has property l if and only if the group of K can be mapped homomorphically *onto* the symmetric group of degree 3.



Chap.2 Presentation of a knot group,
Exercise 6, p.92

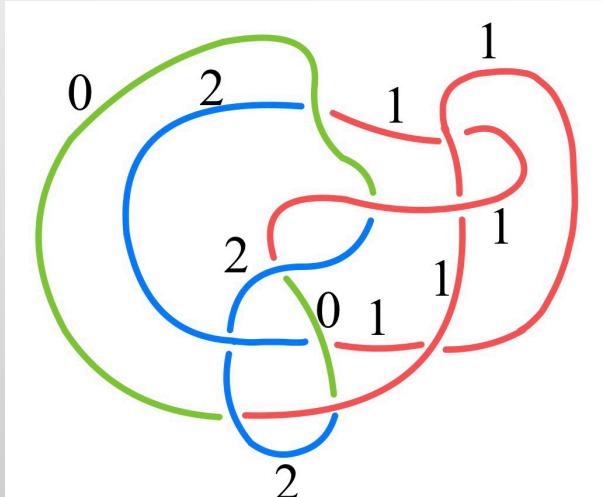
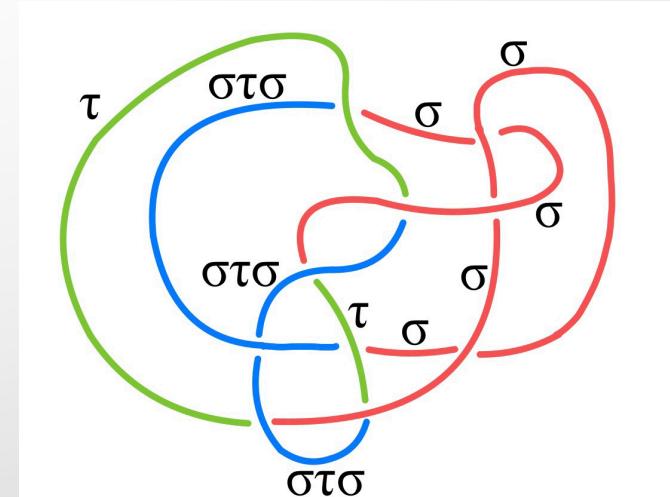
Crowell, Richard H.; Fox, Ralph H. Introduction to knot theory.
Based upon lectures given at Haverford College under the Philips
Lecture Program *Ginn and Co., Boston, Mass.* 1963 {rm x}+182
pp. [MR0146828](#)

As an exercise, we see that a **3-coloring** on a diagram of a knot K corresponds to a representation of the knot group $\pi_1(S^3 - K)$ onto the symmetric group of degree 3.

Introduction

We set; $S_3 = \langle \sigma, \tau \mid \sigma^2 = \tau^2 = e, \sigma\tau\sigma = \tau\sigma\tau \rangle$ (e : the identity element)

Note that $S_3 = \{e, \sigma, \tau, \sigma\tau\sigma, \sigma\tau, \tau\sigma\}$ as a set.



Introduction

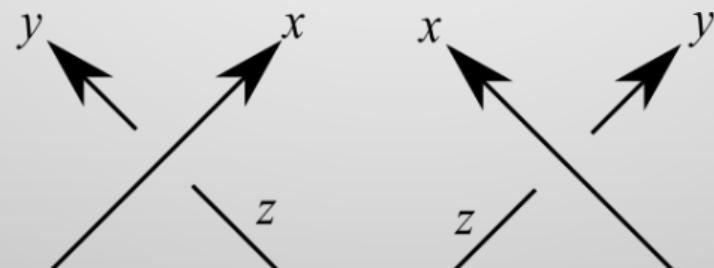
We consider colorings on links by the symmetric group S_3 of order 3.

Definition 1

Let D be an oriented diagram of a link L .

A map $C: \{\text{arcs of } D\} \rightarrow \{S_3 - e\}$ is called an **S_3 -coloring** on D if it satisfies the following conditions at each crossings.

- ① On a positive crossing; $C(x)C(y) = C(z)C(x)$
- ② On a negative crossing; $C(y)C(x) = C(x)C(z)$

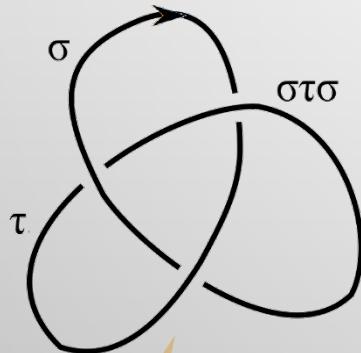


$$C(x)C(y) = C(z)C(x) \quad C(y)C(x) = C(x)C(z)$$

Introduction

Definition 2

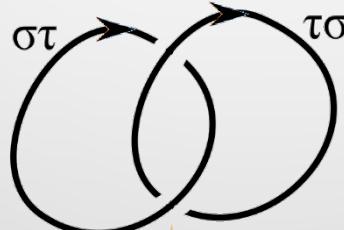
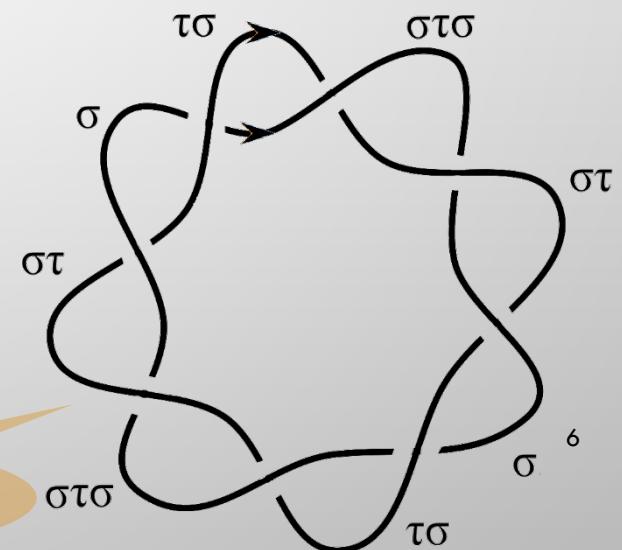
- ① A link L is **S_3 -colorable** if \exists diagram of L admits a non-trivial S_3 -coloring, i.e., an S_3 -coloring with at least two colors.
- ② A link L is **(S_3, n) -colorable** if \exists diagram of L admits an S_3 -coloring with just n colors.



$(S_3, 3)$ -colorable

$(S_3, 2)$ -colorable

$(S_3, 4)$ -colorable



Introduction

Remark

For a knot, \exists one-to-one correspondence between

a non-trivial Fox 3-coloring & an $(S_3, 3)$ -coloring.

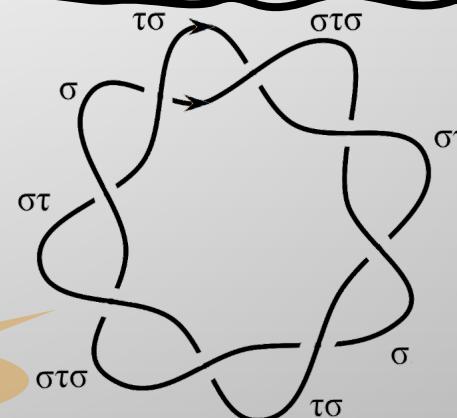
\Rightarrow a knot K is S_3 -colorable if and only if K is Fox 3-colorable.

In particular, if a knot is (S_3, n) -colorable, then $n = 1$ or 3 .

On the other hand, if a link L has at least 2 components, then L can be (S_3, n) -colorable with $n \geq 4$.

Q. Is this $(S_3, 5)$ -colorable ?

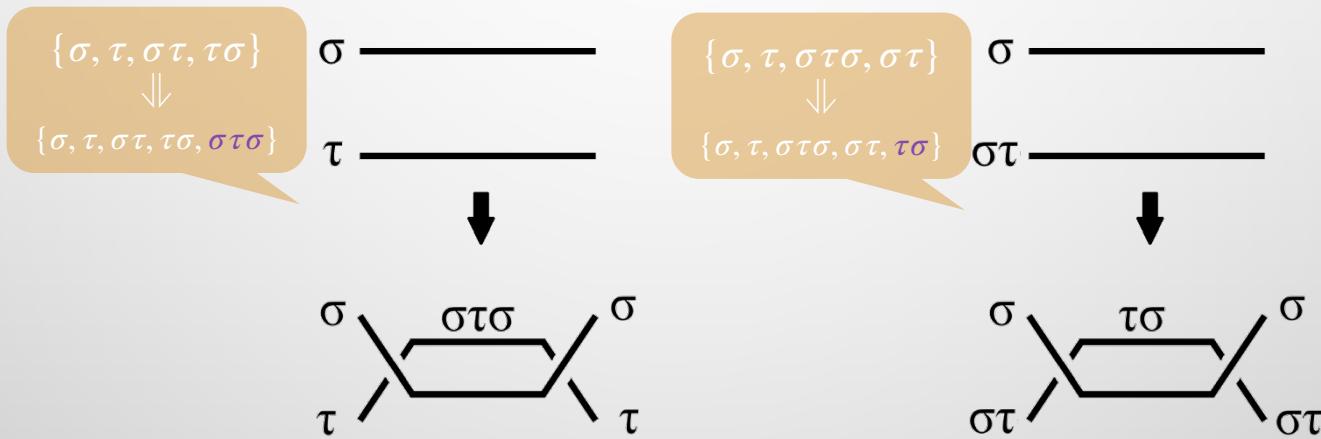
$(S_3, 4)$



Introduction

Proposition

Any $(S_3, 4)$ -colorable link is also $(S_3, 5)$ -colorable.



Question

Is an $(S_3, 5)$ -colorable link L always $(S_3, 4)$ -colorable ?

Main theorem

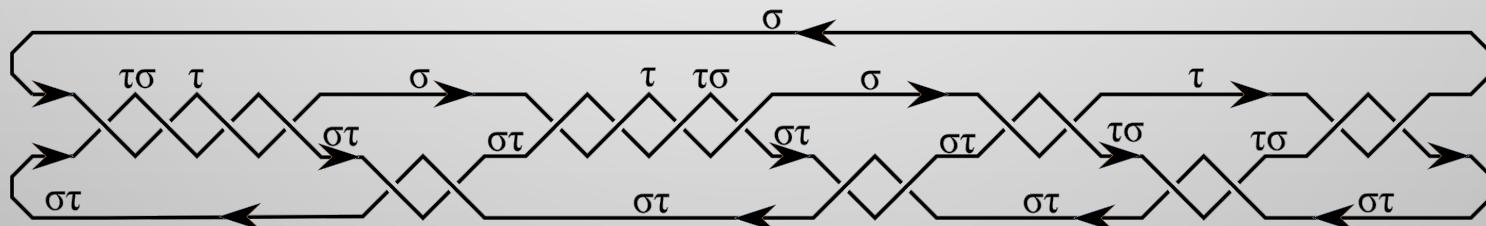
Theorem 1 [I. – Matsudo]

Any $(S_3, 5)$ -colorable **2-bridge link** is also $(S_3, 4)$ -colorable.

In fact, a 2-bridge link L is $(S_3, 4)$ -colorable if and only if L has a Conway diagram $D = C(2a_1, 2b_1, 2a_2, 2b_2, \dots, 2b_m, 2a_{m+1})$

such that D satisfies $\sum_{i=1}^{m+1} |a_i| \equiv 0 \pmod{2}$.

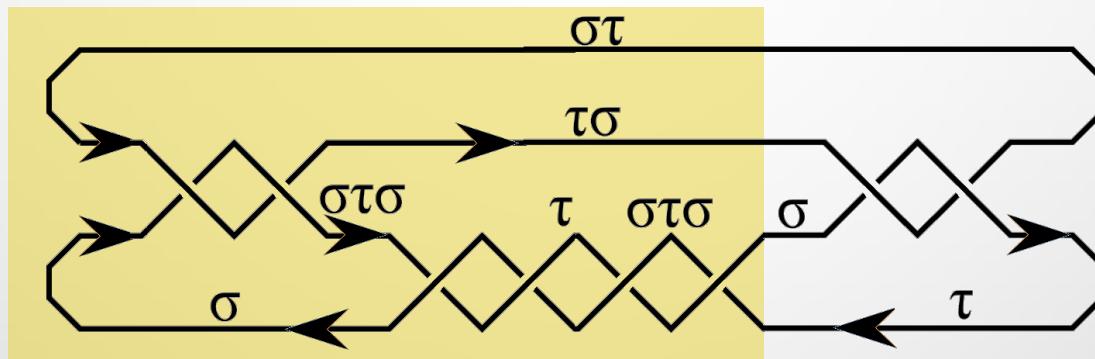
(Example 1) $C[4, -2, -4, 2, 2, -2, -2]$



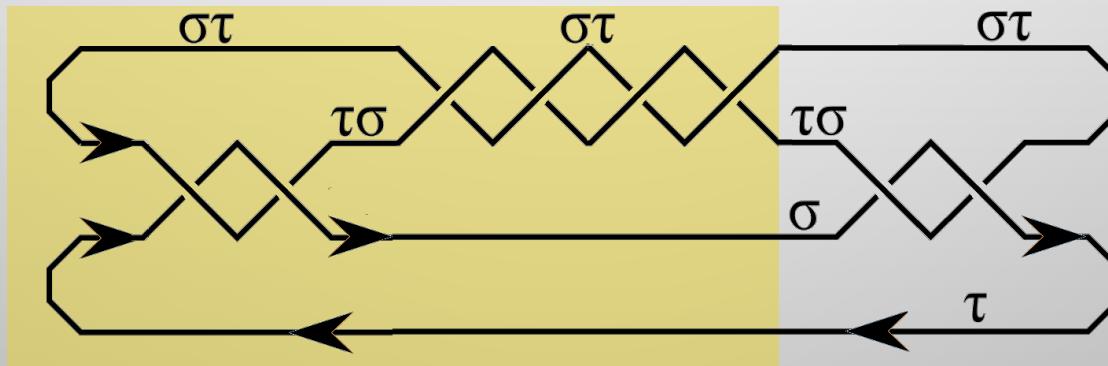
Main theorem

Key of proof $((S_3, 5)\text{-colorable} \Rightarrow (S_3, 4)\text{-colorable})$

$C[2,4, 2]$



R-moves



Examples

By Theorem 1, all the $(S_3, 5)$ -colorable 2-bridge links are $(S_3, 4)$ -colorable. Some of them actually are also $(S_3, 3)$ -colorable, but some others are not.

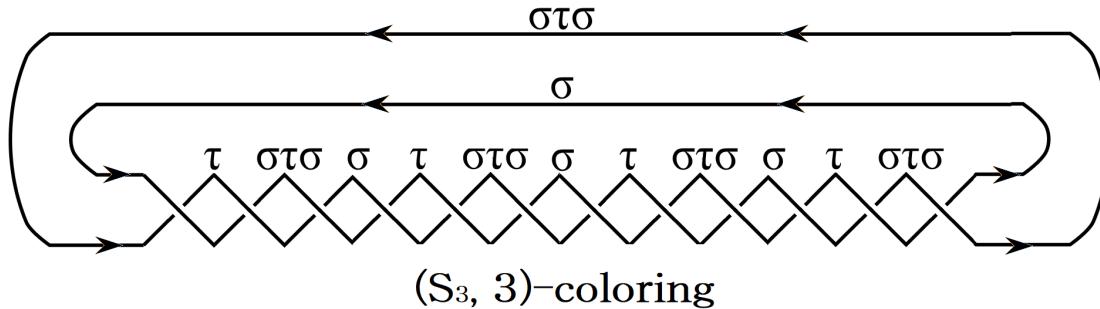
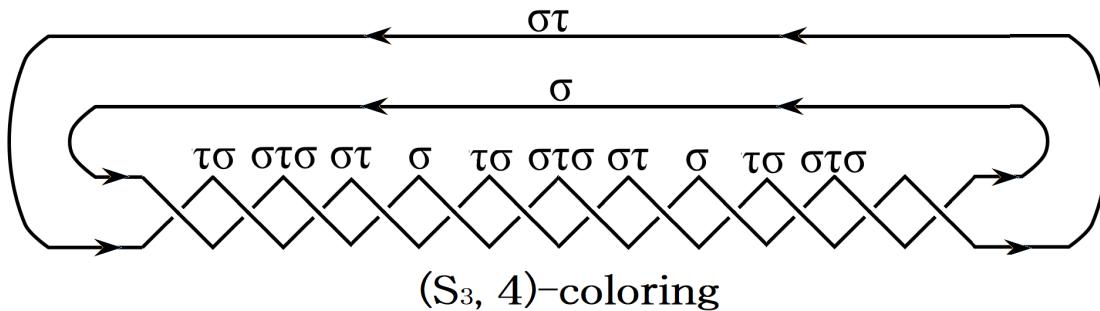
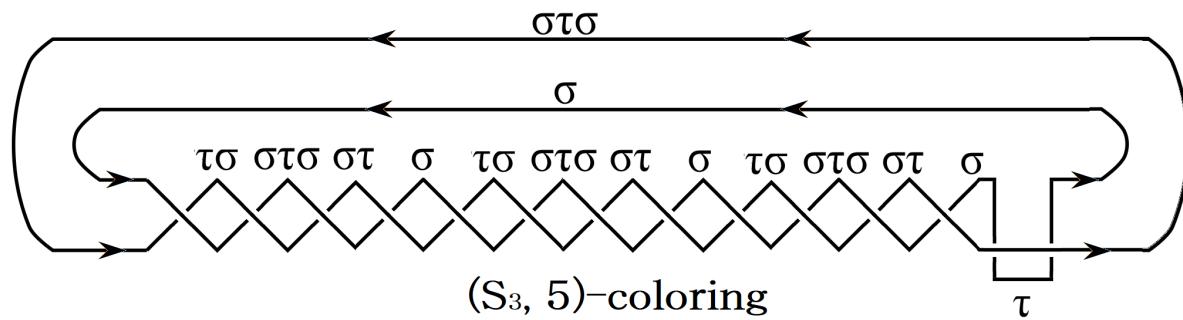
$T(2, q)$: a **torus link**

$T(2, q)$ is $(S_3, 4)$ -colorable but not $(S_3, 3)$ -colorable
 $\Leftrightarrow q \equiv 0 \pmod{4}$ and $q \not\equiv 0 \pmod{3}$

$J(k, l)$: a **double twist link**

$J(k, l)$ is $(S_3, 4)$ -colorable but not $(S_3, 3)$ -colorable
 $\Leftrightarrow kl \equiv 3 \pmod{4}$ and $kl \not\equiv 2 \pmod{3}$

Examples



Thank you
for your attention.