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Dimension in the large scale

» What is the dimension of this object?
1,2,07

» Gromov defined “dimension in the large
scale”, called asymptotic dimension.
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Quasi-isometry

> Let f: X — Y be a map between two metric spaces. f is a
(K, L)-quasi-isometric embedding if for all x,y € X,

’X_Ky’_Lg\f(x)—f(y)ISK’X—H"‘L (1)

» In addition, if for any y € Y there is x € X such that
ly — f(x)| <L, then f is called a (K, L)-quasi-isometry, and
we say X is quasi-isometric (Ql) to Y.

For example, i) L X2 ’p(-
1. A bounded set X is QI to a point. L= st X

2. The Z? grid graph (each edge has length 1) is QI to E2.
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Asymptotic dimension &éj Ue

» Let X be a metric space. Let & = {U;} be a cover of X. ®

» For D > 0, we say the D-multiplicity of the cover is (at most)
n if any D-ball in X intersects at most n elements in .

» Def. The asymptotic dimension of X, asdim X, is at most n if
for any D > 0 there is a cover U of X such that
(1) the D-multiplicity is at most n + 1.
(2) There is B such that for all U € U, diam U < B.

» If such n does not exist, then asdim X = oco. asdim X = n if
asdim X < n and asdim X £ n— 1.

For example, | M: {)X}

1. If X is bounded, then asdim X = 0.

—wdlt = I
2. asdimR = 1. DB-.JNX
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Examples Aot T2 L Dowh =3
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1. asdimE" = n.
2. asdimH" = n. w—\—,—%mho
| luo

v/ 3. asdim of a tree is < 1. - ’
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Basic properties of asymptotic dimension

1. If X is Ql to Y then asdim X = asdim Y.

2. If Y C X then asdim(Y, d|y) < asdim(X, d), more generally,
if f:Y — X is a Ql-embedding, then asdim Y < asdim X.

3. asdim(X x Y) < asdim X + asdim Y. On X x Y, we put, for
example, the (I-metric, ie, dx + dy.

Some motivation

» Method to show asdim X < oo or obtain a bound on asdim X
is sometimes interesting.

» One can define asymptotic dimension for a finitely generated

roup G using its Cayley graph, Cay(G), 2
group G using its Cayley graph, Cay(G) Qv(Z') ﬁ
asdim G = asdim Cay(G).

(1) If G is finitely presented and asdim G < oo then the
Novikov conjecture holds for G (Yu).

(2) MCG(S), the mapping class group of a compact surface S
has asdim MCG(S) < oo (Bestvina-Bromberg-F).

(3) Unknown if asdim Out(F,) < co?
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Sample results on graphs associated to surfaces

There are many graphs associated to a surface S. They tend to be
hyperbolic in the sense of Gromov.
Let Sz 1, be the compact orientable surface of genus g with b
boundary components.
> Let C(Sg,p) be the curve graph of S, . JC( S)
asdimC(S) < oo (Bell-F)
asdim C(Sg,p) < 4g + b — 3 (Bestvina-Bromberg)
> Let A(Sg, ) be the arc graph of 5; .
asdim A(S, ) < UETRIETE=3) _ 5 (Schieimer-F).
> Let D(M, S, ) be the disk graph for a compression body M
with an upper boundary S (for example, M is a handlebody
with OM = S).
asdimD(M, Sz p) < w — 2. (Schleimer-F).
cf. let D(Hg) be the disc graph of the genus g handle body.
asdimD(H,z) < 24(g — 1)? (Hamenstadt).



Asymptotic dimension of planes and planar graphs

Theorem (F-Papasoglu)

(1) Let X be a geodesic space that is homeomorphic to R?. , Then

asdim X < 3. Xcmj\/l
(2) Let X be a planar graph. Then asdim X < 3. y\_/d s

2 3
X '.%j(n_{ 2 Jv) R;},‘,X < gvdn ‘R,Z'S_S

Q1~ewhd .
(i) By now, Lang-Jorgensen improved it to asdim X < 2.

(i) (2) easilly follows from (1) by embedding X to R2.

(iii) For each n=10,1,2,--- 00, R3 has a (Riemannian) metric d
such that asdim(R3, d) = n.
b (1R0/8.) 2100

Remark
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Proof of the theorem ad~ R54)<=3

Proof of Thm (1). Given D > 0, we want to find a cover U of X
by uniformly bounded sets, whose D-multiplicity < 4.
Fix a base point e € X. Define annuli

An = {x € X|10D(n —1) < d(e, x) < 10Dn}

Then X = UpenAn.

We will find a cover of each A, by uniformly (over n as well)
bounded sets, of D-multiplicity 2, ie, asdim A, < 1, “uniformly”.
This gives a desired cover of X, of D-multiplicity 4.
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Cactus W

» A cactusis a
graph/geodesic space
such that a segment is
contained in at most one » If X is QI to a cactus, then

circle. @ asdim X < 1.

» Similar to a tree, if X is a cactus,
then asdim X < 1, uniformly (over
all cacti).

Lemma (Annuli are cacti)

The annuli A, are uniformly QI to cacti,
so that asdim A, < 1, uniformly.
Remark. Strictly speaking we are
looking at a connected component of

each annulus.
The lemma implies asdim X < 3. O
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Some questions

1. Can we characterize a geodesic space X with asdim X = 17
If in addition, Hy(X) is uniformly generated (ie, there is L > 0
such that H;(X) is generated by a loop of length < L), then
X is QI to an unbounded tree (F-Whyte).

2. It follows that if a f.p. group G has asdim G =1, then it is
virtually free. But there is a f.g. group G of asdim G =1,
which is not virtually free, for example, the “lamplighter
group, which is the wreath product Z, ! Z. Known examples
are with torsions.

Is it true that a torsion free, f.g. group G of asdim G =1 is
always a free group?

3. Let K, be the complete graph with m vertices. If a graph '
with finite degrees excludes K, as a minor, then
asdim [ < 4™ — 1 (Ostrovskii-Rosenthel). In particular a
planar graph satisfies asdim < 4% — 1.

Can we find a Ql-invariant condition for a graph I to have
asdim [ < 007
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