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“The Grassmannian is a valuable geometric tool for understanding
and designing algorithms for phylogenetic trees”

B. Sturmfels, L. Pachter

Algebraic Statistics for Computational Biology
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phylogenetic tree from distance data involving n taxa which might
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An important problem in computational biology is to construct a
phylogenetic tree from distance data involving n taxa which might
be organisms or genes.

For example consider an alignment of four genomes:

Human ACAATGTCATTAGCGAT...

Mouse ACGTTGTCAATAGAGAT...

Rat ACGTAGTCATTACACAT...

Chicken GCACAGTCAGTAGAGCT...

From such sequence data, computational biologists infer the
distance between any two taxa. There are various algorithms for
carrying out this inference.
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For our example we may think
of the distance between any
two strings as a refined
version of the Hamming
distance (= the proportion of
characters where they differ).

D =


H M R C

H 0 1.1 1.0 1.4
M 1.1. 0 0.3 1.3
R 1.0 0.3 0 1.2
C 1.4 1.3 1.2 0


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lengths which represent this distance matrix, provided such a tree
exists.
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For our example we may think
of the distance between any
two strings as a refined
version of the Hamming
distance (= the proportion of
characters where they differ).

D =


H M R C

H 0 1.1 1.0 1.4
M 1.1. 0 0.3 1.3
R 1.0 0.3 0 1.2
C 1.4 1.3 1.2 0


The problem of phylogenetics is to construct a tree with edge
lengths which represent this distance matrix, provided such a tree
exists.

For instance, the distance in
this tree between “Human” and
“Mouse” equals

0.6+0.3+0.2=1.1

which is the corresponding
entry in the inferred distance
matrix.
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Tree metrics and m−dissimilarity maps

A dissimilarity matrix D is a map D : X2 → R, with

D(xi , xj) = D(xj , xi) ≥ 0

D(xi , xi) = 0.
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Tree metrics and m−dissimilarity maps

A dissimilarity matrix D is a map D : X2 → R, with

D(xi , xj) = D(xj , xi) ≥ 0

D(xi , xi) = 0.

A metric is a non-negative dissimilarity matrix satisfying the
triangle inequality:

D(x, y) ≤ D(x,w) + D(y,w) ∀x, y,w ∈ X

We say that D has a realization if there is a weighted graph G
whose node set contains X and the distance d(u, v) between
nodes u, v ∈ X is exactly D(u, v).
In the case the graph is a tree and X corresponds to the set of
leaves, D is called a tree metric.
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Theorem (Tree-Metric Theorem - the Four-Point Condition)

A metric D is a tree metric if and only if, for every four leaves
i,j,k ,l ∈ X, the maximum of the three numbers

D(i, j) + D(k , l), D(i, k) + D(j, l), D(i, l) + D(j, k).

is attained at least twice.
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Theorem (Tree-Metric Theorem - the Four-Point Condition)

A metric D is a tree metric if and only if, for every four leaves
i,j,k ,l ∈ X, the maximum of the three numbers

D(i, j) + D(k , l), D(i, k) + D(j, l), D(i, l) + D(j, k).

is attained at least twice.

Tree metrics on n leaves are parametrized by a the so-called
space of trees Tn ⊂ R

(n
2). (X = [n])
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Let T be a n− tree with a positive weight assigned to each edge.
Thus, the distance between leaves i
and j is the sum of the weights of the
path connecting i and j.

D(H,M) = 0.6 + 0.3 + 0.2 = 1.1
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Let T be a n− tree with a positive weight assigned to each edge.
Thus, the distance between leaves i
and j is the sum of the weights of the
path connecting i and j.

D(H,M) = 0.6 + 0.3 + 0.2 = 1.1

For every subset V ⊂ [n] we denote by [V ] the smallest subtree of
T containing V .

We define ω([V ]) as the sum of the weights on the edges of [V ].



Introduction Tree metrics and m−dissimilarity maps Tropical Geometry Results Graphs of genus 1

Let T be a n− tree with a positive weight assigned to each edge.
Thus, the distance between leaves i
and j is the sum of the weights of the
path connecting i and j.

D(H,M) = 0.6 + 0.3 + 0.2 = 1.1

For every subset V ⊂ [n] we denote by [V ] the smallest subtree of
T containing V .

We define ω([V ]) as the sum of the weights on the edges of [V ].

ω([HMR]) = 0.6 + 0.3 + 0.2 + 0.1 = 1.2
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An m−dissimilarity tensor D is a map D : Xm → R, with

D(x1, . . . , xm) = D(xπ(1), . . . , xπ(m)) for all permutations π ∈ Sm

D(x1, x2, . . . , xm) = 0 if xi = xj for some i and j.
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We say that a graph G realizes D if the node set of G contains X
and for every x1, . . . , xm ∈ X , the weight of the smallest subgraph in
G containing x1, . . . , xm is D(x1, . . . , xm). An m−dissimilarity tensor
which is realizable is called a m−distance map.
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An m−dissimilarity tensor D is a map D : Xm → R, with

D(x1, . . . , xm) = D(xπ(1), . . . , xπ(m)) for all permutations π ∈ Sm

D(x1, x2, . . . , xm) = 0 if xi = xj for some i and j.

We say that a graph G realizes D if the node set of G contains X
and for every x1, . . . , xm ∈ X , the weight of the smallest subgraph in
G containing x1, . . . , xm is D(x1, . . . , xm). An m−dissimilarity tensor
which is realizable is called a m−distance map.

Theorem (Pachter–Speyer, 2004)

Let T be a tree with n leaves and no vertices of degree 2. Let
m ≥ 3 be an integer, If n ≥ 2m − 1, then T is determined by the set
of values ω([V ]) as V ranges over all m element subset of [n]. If
n = 2m − 2, this is not true.
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A motivation

Suppose that our data consistes of measurements of the
frequency of occurence of different words in { A, C, G T, }n as
columns of an alignment on n DNA sequences.
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A motivation

Suppose that our data consistes of measurements of the
frequency of occurence of different words in { A, C, G T, }n as
columns of an alignment on n DNA sequences.

To select a tree model we could compute the MLE for each of the
(2n − 5)!! trees.

All the MLE computation is very difficult, also for a single
trees.

this approach requires examining all exponentially many trees.
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A motivation

Suppose that our data consistes of measurements of the
frequency of occurence of different words in { A, C, G T, }n as
columns of an alignment on n DNA sequences.

To select a tree model we could compute the MLE for each of the
(2n − 5)!! trees.

All the MLE computation is very difficult, also for a single
trees.

this approach requires examining all exponentially many trees.

One popular way to avoid these problems is the “distance based
approach” which is to collapse the data to a dissimilarity map and
then to obtain a tree via a projection onto tree space Tn

(neighbor-joining algorithm).
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D(ijk) =
1
2
(Dij + Djk + Dik )

ψ(3) : Tn → R
(n

3)
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Q1 Is it possible to define the space of m−distance maps DT

arising from trees T as the image of the tree space Tn under
a certain map ψ(m) : R(

n
2) → R(

n
m). ?
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known how to test if this map comes from a tree.
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D(ijk) =
1
2
(Dij + Djk + Dik )

ψ(3) : Tn → R
(n

3)

Q1 Is it possible to define the space of m−distance maps DT

arising from trees T as the image of the tree space Tn under
a certain map ψ(m) : R(

n
2) → R(

n
m). ?

Q2 : If yes, describeWm,n := ψ(m)(Tn)

If we are simply given an m−dissimilarity tensor D ∈ R(
n
m) it is not

known how to test if this map comes from a tree.

Q2’ : DescribeWm,n := ψ(m)(Tn) as the parameter space of
m−distance maps.
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Tropical Geometry

We work in the semi-ring

(R ∪ {−∞},⊕,⊗)

where
x ⊕ y = max{x, y} x ⊗ y = x + y
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Tropical Geometry

We work in the semi-ring

(R ∪ {−∞},⊕,⊗)

where
x ⊕ y = max{x, y} x ⊗ y = x + y

Consider indeterminates x1, . . . , xn

Tropical monomials xa1
1 ⊗ · · · ⊗ xan

n represent ordinary linear
forms

∑n
i=i aixi , i.e. linear functions F : Rn → R.

tropical polynomials
⊕

a∈A Ca ⊗ xa1
1 ⊗ · · · ⊗ xan

n , with A ∈ Nn

and Ca ∈ R, represent piecewise-linear functions F : Rn → R.
To compute F(x) we take the maximum of the affine-linear
forms Ca +

∑n
i=i aixi for a ∈ A.
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Given a tropical polynomial F =
⊕

a∈A Ca ⊗ xa1
1 ⊗ · · · ⊗ xan

n we
define the tropical hypersurface H(F) as the corner locus of the
function F , that is(w1, . . . ,wn) ∈ R

n :

 n∑
i=1

aiwi + Ca


a∈A

attain the maximum twice


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Consider an ordinary polynomial

f =
∑
e∈E

fe1···en xe1
1 · · · x

en
n

The tropicalization of f , Trop(f) is defined as

Trop(f) =
⊕
e∈E

fe1···en ⊗ xe1
1 ⊗ · · · ⊗ xen

n
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Let I ⊂ K [x1, . . . , xn] be an ideal, we define the tropical variety of I
as

H(I) = ∩f∈IH(Trop(f))
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Let I ⊂ K [x1, . . . , xn] be an ideal, we define the tropical variety of I
as

H(I) = ∩f∈IH(Trop(f))

We are mainly interested in the tropical variety defined by

H(Im,n)

where Im,n is the ideal of the Grassmannian Gm,n ⊂ P
(n

m)−1.
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Let I ⊂ K [x1, . . . , xn] be an ideal, we define the tropical variety of I
as

H(I) = ∩f∈IH(Trop(f))

We are mainly interested in the tropical variety defined by

H(Im,n)

where Im,n is the ideal of the Grassmannian Gm,n ⊂ P
(n

m)−1.

Definition

The tropical Grassmannian Gm,n is the tropical variety H(Im,n)
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Theorem
The ideal I2,n is generated by the quadratic polynomials

xik xjl − xijxkl − xilxjk (1 ≤ i < j < k < l ≤ n) (1)
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We fix our attention on G2,n.

Theorem
The ideal I2,n is generated by the quadratic polynomials

xik xjl − xijxkl − xilxjk (1 ≤ i < j < k < l ≤ n) (1)

(xik ⊗ xjl) ⊕ (xij ⊗ xkl) ⊕ (xil ⊗ xjk )

D(i, k) + D(j, l), D(i, j) + D(k , l), D(i, l) + D(j, k)
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We fix our attention on G2,n.

Theorem
The ideal I2,n is generated by the quadratic polynomials

xik xjl − xijxkl − xilxjk (1 ≤ i < j < k < l ≤ n) (1)

(xik ⊗ xjl) ⊕ (xij ⊗ xkl) ⊕ (xil ⊗ xjk )

D(i, k) + D(j, l), D(i, j) + D(k , l), D(i, l) + D(j, k)

Theorem (Speyer–Sturmfels, 2004)

The space of trees Tn is (up to sign) the tropical Grassmannian
G2,n.
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Q1 Characterize tropically the map ψ(m)

|(G2,n)
: G2,n → R

(n
m).
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Q1 Characterize tropically the map ψ(m)

|(G2,n)
: G2,n → R

(n
m).

For m = 3, the map ψ(3) has a tropical monomial form. In fact, one
has

Dijk =
1
2
(Dij + Djk + Dik ) = (Dij ⊗ Djk ⊗ Dik )

1
2
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Q1 Characterize tropically the map ψ(m)

|(G2,n)
: G2,n → R

(n
m).

For m = 3, the map ψ(3) has a tropical monomial form. In fact, one
has

Dijk =
1
2
(Dij + Djk + Dik ) = (Dij ⊗ Djk ⊗ Dik )

1
2

Q2 (proposed by B. Sturmfels) characterize the image
W3,n := ψ(3)(G2,n) ⊂ R

(n
3) of the tree space G2,n and then find

a natural systems of tropical polynomials which defineW3,n

as a tropical subvariety of R(
n
3).
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Q1 Characterize tropically the map ψ(m)

|(G2,n)
: G2,n → R

(n
m).

For m = 3, the map ψ(3) has a tropical monomial form. In fact, one
has

Dijk =
1
2
(Dij + Djk + Dik ) = (Dij ⊗ Djk ⊗ Dik )

1
2

Q2 (proposed by B. Sturmfels) characterize the image
W3,n := ψ(3)(G2,n) ⊂ R

(n
3) of the tree space G2,n and then find

a natural systems of tropical polynomials which defineW3,n

as a tropical subvariety of R(
n
3).

For m ≥ 4 the situation is much harder and more interesting. Here
there is no monomial map of which the subtree weight map ψ(m) is
the tropicalization.
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A necessary condition to be a m−distance map is given by a
generalization of the four-point condition, that is the maximum is
reach for at least two terms between

D(Rij) + D(Rkl), D(Rik) + D(Rjl), D(Ril) + D(Rjk).

for every subset R of m − 2 elements in [n] and i, j, k , l ∈ [n] \ R.
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for every subset R of m − 2 elements in [n] and i, j, k , l ∈ [n] \ R.

A simple count of dimension on tropical grassmanianns shows that
this condition is not adequate in any case, except for n = 5 and
m = 3.
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A necessary condition to be a m−distance map is given by a
generalization of the four-point condition, that is the maximum is
reach for at least two terms between

D(Rij) + D(Rkl), D(Rik) + D(Rjl), D(Ril) + D(Rjk).

for every subset R of m − 2 elements in [n] and i, j, k , l ∈ [n] \ R.

A simple count of dimension on tropical grassmanianns shows that
this condition is not adequate in any case, except for n = 5 and
m = 3.

Q3 (proposed by R. Yoshida) How much the “generalized
four-point condition” is not a sufficient condition for
m−distance map ?
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The ideal Im,n is generated by quadratic polynomials known as the
Plücker relations. Among these are the three-term Plücker
relations which are defined as

gR ,ijkl := xRik xRjl − xRijxRkl − xRilxRjk

where R is any (m − 2)−element subset of [n] and i, j, k , l ∈ [n] \R.



Introduction Tree metrics and m−dissimilarity maps Tropical Geometry Results Graphs of genus 1

The ideal Im,n is generated by quadratic polynomials known as the
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Plücker relations. Among these are the three-term Plücker
relations which are defined as
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The three-term Plücker relations are not enough to generate Im,n.
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The ideal Im,n is generated by quadratic polynomials known as the
Plücker relations. Among these are the three-term Plücker
relations which are defined as

gR ,ijkl := xRik xRjl − xRijxRkl − xRilxRjk

where R is any (m − 2)−element subset of [n] and i, j, k , l ∈ [n] \R.

The three-term Plücker relations are not enough to generate Im,n.

pR ,ijkl := Trop(gR ,ijkl) = (xRij ⊗ xRkl) ⊕ (xRik ⊗ xRjl) ⊕ (xRil ⊗ xRjk )

Definition
The three-term tropical Grassmannian Tm,n is the intersection

Tm,n :=
⋂

R ,i,j,k ,l

H(pR ,ijkl) ⊂ R
(n

m)

Tm,n is also known as the space of m−trees.
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Results on ψ(m) andWm,n

What about

ψ(m) : G2,n → R(
n
m)

(. . . ,D(i, j), . . . ) 7→ (. . . ,D(i1, i2, . . . , im), . . . )
?
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Results on ψ(m) andWm,n

What about

ψ(m) : G2,n → R(
n
m)

(. . . ,D(i, j), . . . ) 7→ (. . . ,D(i1, i2, . . . , im), . . . )
?

Theorem (–, Cools, 2010)

Suppose I = {i1, ..., im}. Then

D(I) =
1
2

(
min

s∈r(Sm)

{
D(i1, is(1)) + D(is(1), is2(1)) + ...+ D(ism−1(1), i1)

})
where r(Sm) is the subset of Sm of “real” permutations, i.e.
permutations with only one term in the disjoint cycle notation.
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)

is not a real permutation

Remarks

the sum does not depend on the choice of ij in I.
it is easy to see that the minimum is attained at least twice:

if s ∈ r(Sm) gives the minimum, then also s−1 gives the
minimum;
switching the leafs on a cherry, does not make a difference.



Introduction Tree metrics and m−dissimilarity maps Tropical Geometry Results Graphs of genus 1(
2 3 4 5 1

)
is a real permutation(

2 1 4 5 3
)

is not a real permutation

Remarks
the sum does not depend on the choice of ij in I.
it is easy to see that the minimum is attained at least twice:

if s ∈ r(Sm) gives the minimum, then also s−1 gives the
minimum;
switching the leafs on a cherry, does not make a difference.

Theorem (–, Cools, 2010)

Suppose I = {i1, ..., im}. Then

D(I) =
1
2

(
min

s∈r(Sm)

{
D(i1, is(1)) + D(is(1), is2(1)) + ...+ D(ism−1(1), i1)

})
where r(Sm) is the subset of Sm of “real” permutations, i.e.
permutations with only one term in the disjoint cycle notation.
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2 3 4 5 1

)
is a real permutation(

2 1 4 5 3
)

is not a real permutation

Remarks
the sum does not depend on the choice of ij in I.
it is easy to see that the minimum is attained at least twice:

if s ∈ r(Sm) gives the minimum, then also s−1 gives the
minimum;
switching the leafs on a cherry, does not make a difference.

Corollary

D(I) =

 ⊕
s∈r(Sm)

1
D(i1, is(1)) ⊗ D(is(1), is2(1)) ⊗ · · · ⊗ D(ism−1(1), i1)


− 1

2

=

 ⊕
s∈r(Sm)

(
D(i1, is(1)) ⊗ D(is(1), is2(1)) ⊗ · · · ⊗ D(ism−1(1), i1)

)−1


− 1

2
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For m = 3 one has r(S3) = {s1, s2} with

s1 =
(
2 3 1

)
and s1 = s−1

2

Thus

D(i1i2i3) =

 ⊕
s∈r(S3)

(
D(i1, is(1)) ⊗ D(is(1), is2(1)) ⊗ D(is2(1), is3(1))

)−1


− 1

2

=
(
(D(i1, i2) ⊗ D(i2, i3) ⊗ D(i1, i3))

−1
)− 1

2 =

= −
1
2
(− ((D(i1, i2) + D(i2, i3) + D(i1, i3))) =

=
1
2
((D(i1, i2) + D(i2, i3) + D(i1, i3))
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Example: n = 7,m = 4, G2,7 ⊂ R
21, W4,7 ⊂ R

35(
i2 i3 i4 i1

) (
i3 i4 i2 i1

) (
i2 i4 i1 i3

)
D(i1i2i3i4) =

1
2
·min

D(i1, i2) + D(i2, i3) + D(i3, i4) + D(i1, i4)
D(i1, i3) + D(i2, i3) + D(i2, i4) + D(i1, i4)
D(i1, i2) + D(i2, i4) + D(i3, i4) + D(i1, i3)


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Example: n = 7,m = 4, G2,7 ⊂ R
21, W4,7 ⊂ R

35(
i2 i3 i4 i1

) (
i3 i4 i2 i1

) (
i2 i4 i1 i3

)
D(i1i2i3i4) =

1
2
·min

D(i1, i2) + D(i2, i3) + D(i3, i4) + D(i1, i4)
D(i1, i3) + D(i2, i3) + D(i2, i4) + D(i1, i4)
D(i1, i2) + D(i2, i4) + D(i3, i4) + D(i1, i3)


D := (1, 1, 1, 1, 1, . . . , 1, 1, 1, 1, 2) < G2,7

ψ(4)(D) = (2, 2, 2, 2, 2, . . . , 2, 2, 2, 2) =: Q

Q ∈ W4,7 since Q = ψ(4)(D′) where

D′ := (1, 1, 1, 1, 1, . . . , 1, 1, 1, 1, 1) ∈ G2,7
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Example: n = 7,m = 4, G2,7 ⊂ R
21, W4,7 ⊂ R

35(
i2 i3 i4 i1

) (
i3 i4 i2 i1

) (
i2 i4 i1 i3

)
D(i1i2i3i4) =

1
2
·min

D(i1, i2) + D(i2, i3) + D(i3, i4) + D(i1, i4)
D(i1, i3) + D(i2, i3) + D(i2, i4) + D(i1, i4)
D(i1, i2) + D(i2, i4) + D(i3, i4) + D(i1, i3)


D := (1, 1, 1, 1, 1, . . . , 1, 1, 1, 1, 2) < G2,7

ψ(4)(D) = (2, 2, 2, 2, 2, . . . , 2, 2, 2, 2) =: Q

Q ∈ W4,7 since Q = ψ(4)(D′) where

D′ := (1, 1, 1, 1, 1, . . . , 1, 1, 1, 1, 1) ∈ G2,7

ψ(m) is not injective but ψ(m)
|G2,n

is injective
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Theorem (–, Cools, 2010)
One has

Wm,n ⊆ Tm,n ∩ ψ
(m)(R(

n
2))

Moreover, for m = 3 the equality holds

W3,n = T3,n ∩ ψ
(3)(R(

n
2))

Theorem (–, Cools, 2010)

If n ≥ 5, one has φ(3)(G2,n) = φ(3)(R(
n
2)) ∩ G3,n.
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W3,n = G3,n ∩ ψ
(3)(R(

n
2))
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W3,n = G3,n ∩ ψ
(3)(R(

n
2))

f = (a1 − b1)x1 + · · ·+ (an − bn)xn + c1 − c2
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W3,n = G3,n ∩ ψ
(3)(R(

n
2))

f = (a1 − b1)x1 + · · ·+ (an − bn)xn + c1 − c2

f t := (c ⊗ xa1
1 ⊗ · · · ⊗ xan

n ) ⊕ (c2 ⊗ xb1
1 ⊗ · · · ⊗ xbn

n ).
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Z(f) = H(f t)



Introduction Tree metrics and m−dissimilarity maps Tropical Geometry Results Graphs of genus 1

W3,n = G3,n ∩ ψ
(3)(R(

n
2))

f = (a1 − b1)x1 + · · ·+ (an − bn)xn + c1 − c2

f t := (c ⊗ xa1
1 ⊗ · · · ⊗ xan

n ) ⊕ (c2 ⊗ xb1
1 ⊗ · · · ⊗ xbn

n ).

Lemma

Z(f) = H(f t)

ψ(3)(R(
n
2)) is defined by linear equations f1, . . . , fc , where

c :=
n(n−1)(n−5)

6 is its codimension in R(
n
3).
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W3,n = G3,n ∩ ψ
(3)(R(

n
2))

f = (a1 − b1)x1 + · · ·+ (an − bn)xn + c1 − c2

f t := (c ⊗ xa1
1 ⊗ · · · ⊗ xan

n ) ⊕ (c2 ⊗ xb1
1 ⊗ · · · ⊗ xbn

n ).

Lemma

Z(f) = H(f t)

ψ(3)(R(
n
2)) is defined by linear equations f1, . . . , fc , where

c :=
n(n−1)(n−5)

6 is its codimension in R(
n
3).

Theorem (–, Cools, 2010)

W3,n = H(f t
1) ∩ · · · ∩ H(f t

c) ∩ G3,n

and f t
1, . . . , f

t
c have an explicit combinatorial description.
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Theorem (Cools, 2011)

If n ≥ 5, one has φ(4)(G2,n) ⊆ φ
(4)(R(

n
2)) ∩ G4,n.
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Theorem (Cools, 2011)

If n ≥ 5, one has φ(4)(G2,n) ⊆ φ
(4)(R(

n
2)) ∩ G4,n.

Conjecture (Cools, 2011)

φ(m)(G2,n) ⊆ φ
(m)(R(

n
2)) ∩ Gm,n.
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Theorem (Cools, 2011)

If n ≥ 5, one has φ(4)(G2,n) ⊆ φ
(4)(R(

n
2)) ∩ G4,n.

Conjecture (Cools, 2011)

φ(m)(G2,n) ⊆ φ
(m)(R(

n
2)) ∩ Gm,n.

Theorem (Giraldo, 2012)

φ(m)(G2,n) ⊆ φ
(m)(R(

n
2)) ∩ Gm,n.
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Graphs of genus 1

Let D be a distance matrix of order n × n
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a graph of genus 1 ?
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Let D be a distance matrix of order n × n

Q What are the conditions on D(i, j) such that D is realizable by
a graph of genus 1 ?
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• A characterization of realizable metric by graph of genus 1
gives information about the moduli space of tropical curves of
genus 1.
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gives information about the moduli space of tropical curves of
genus 1.

• Graphs of genus 1 are important in Phylogenetic:
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Theorem (–,Cools, 2014)

A metric D = (Dij) ∈ R
15 on 6 vertices arises from a metric graph

of genus ≤ 1 if and only if there exist 3 quarters
I1, I2, I3 ⊂ [6] = {1, . . . , 6} such that:
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Theorem (–,Cools, 2014)

A metric D = (Dij) ∈ R
15 on 6 vertices arises from a metric graph

of genus ≤ 1 if and only if there exist 3 quarters
I1, I2, I3 ⊂ [6] = {1, . . . , 6} such that:

i) each Ii satisfies the four-point condition, i.e. if
Ii = {v1, v2, v3, v4}, then the maximum in

Dv1v2 + Dv3v4 , Dv1v3 + Dv2v4 , Dv1v4 + Dv2v3

is attained at least twice.
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Theorem (–,Cools, 2014)

A metric D = (Dij) ∈ R
15 on 6 vertices arises from a metric graph

of genus ≤ 1 if and only if there exist 3 quarters
I1, I2, I3 ⊂ [6] = {1, . . . , 6} such that:

i) each Ii satisfies the four-point condition, i.e. if
Ii = {v1, v2, v3, v4}, then the maximum in

Dv1v2 + Dv3v4 , Dv1v3 + Dv2v4 , Dv1v4 + Dv2v3

is attained at least twice.

ii) ∪3
i1

Ii = [6] and
∣∣∣∣∩3

i1
Ii
∣∣∣∣ ∈ {0, 2}
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Theorem (–,Cools, 2014)

A metric D = (Dij) ∈ R
15 on 6 vertices arises from a metric graph

of genus ≤ 1 if and only if there exist 3 quarters
I1, I2, I3 ⊂ [6] = {1, . . . , 6} such that:

i) each Ii satisfies the four-point condition, i.e. if
Ii = {v1, v2, v3, v4}, then the maximum in

Dv1v2 + Dv3v4 , Dv1v3 + Dv2v4 , Dv1v4 + Dv2v3

is attained at least twice.

ii) ∪3
i1

Ii = [6] and
∣∣∣∣∩3

i1
Ii
∣∣∣∣ ∈ {0, 2}

iii) if |Ii ∩ Ij | = 2, with Ii = {v1, v2, v3, v4} and Ij = {v1, v2, v5, v6}

then the minimum in
Dv1v2 + Dv3v4 , Dv1v3 + Dv2v4 , Dv1v4 + Dv2v3

is attained by Dv1v2 + Dv3v4 and the minimum in
Dv1v2 + Dv5v6 , Dv1v5 + Dv2v6 , Dv1v6 + Dv2v5

is attained by Dv1v2 + Dv5v6 .



Introduction Tree metrics and m−dissimilarity maps Tropical Geometry Results Graphs of genus 1

Ei be the n × n−matrix where

(Ei)jk =


1 if j = i , k

1 if j , i = k

0 elsewhere
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Ei be the n × n−matrix where

(Ei)jk =


1 if j = i , k

1 if j , i = k

0 elsewhere

Di(α) = D − α · Ei

Theorem

Di(α) is a distance matrix if and only if

α ≤
1
2
· (dpi + dir − dpr), for all p, r , i.

The new metric Di(α), obtained from D, is called a compaction.
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The compaction of an index i of D leads to a new matrix with a
possible pair of equal rows (and by symmetry of equal columns).

By deleting one of these equal rows and columns we obtain a new
matrix whose order is one unit lower. This new matrix is called a
reduction of D.
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The compaction of an index i of D leads to a new matrix with a
possible pair of equal rows (and by symmetry of equal columns).

By deleting one of these equal rows and columns we obtain a new
matrix whose order is one unit lower. This new matrix is called a
reduction of D.

Definition
Given a distance matrix D of order n × n define the vector
a = (a1, . . . , an) where

ai =
1
2
· min

p,i,r,i
{dpi + dir − dpr }

The vector a is called the compaction vector of D.
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Notice that, in the case i is a
leaf, then the entry ai is the
length of the edge connecting
the i to its internal node.

i
ai
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Consider now the compaction matrix

D(a) = D − a1 · E1 − · · · − an · En.
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Consider now the compaction matrix

D(a) = D − a1 · E1 − · · · − an · En.

If two rows i and j of D(a) are
equal this means that nodes i
and j form a cherry.
We contract them to give a
single leaf labeled i, j.

i

j
i, j

=⇒
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Consider now the compaction matrix

D(a) = D − a1 · E1 − · · · − an · En.

If two rows i and j of D(a) are
equal this means that nodes i
and j form a cherry.
We contract them to give a
single leaf labeled i, j.

i

j
i, j

=⇒

Theorem
A distance matrix D, of order n, as an n−gon as a realization if and
only if there exists a real permutation π such that

diπs(i) = min{diπ(i) + dπ(i)π2(i) + · · ·+ dπs−1(i)πs(i), dπs(i)πs+1(i) + · · ·+ dπn−1(i)i}

for all i = 1, . . . , n and for all s = 1, . . . , n.
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Algorithm[–,Cools, 2014]

INPUT: a distance matrix D

Step 1 Compute the compaction vector a of D. If a is the null vector
then go to step 4

Step 2 compute the compaction matrix D(a) of D with respect to a.
Keep track of a and of equal rows in D(a).

step 3 Remove equal rows (and columns) in D(a) obtaining a matrix
D′. Pose D = D′ and go to step 1

step 4 Check if D is realizable by a n−gon. If so, going forward on
the procedure, we can construct a graph of genus 1 which is a
realization of the initial matrix D.
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D1 =



1 2 3 4 5 6
1 0 2 5 6 7 4
2 2 0 5 6 7 4
3 5 5 0 4 5 3
4 6 6 4 0 3 2
5 7 7 5 3 0 3
6 4 4 3 2 3 0


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D1 =



1 2 3 4 5 6
1 0 2 5 6 7 4
2 2 0 5 6 7 4
3 5 5 0 4 5 3
4 6 6 4 0 3 2
5 7 7 5 3 0 3
6 4 4 3 2 3 0


a1 = (1, 1,

3
2
, 1, 2, 0)
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D1 =



1 2 3 4 5 6
1 0 2 5 6 7 4
2 2 0 5 6 7 4
3 5 5 0 4 5 3
4 6 6 4 0 3 2
5 7 7 5 3 0 3
6 4 4 3 2 3 0


a1 = (1, 1,

3
2
, 1, 2, 0)

D1(a1) =



1 2 3 4 5 6
1 0 0 5

2 4 4 3
2 0 0 5

2 4 4 3
3 5

2
5
2 0 3

2
3
2

3
2

4 4 4 3
2 0 0 1

5 4 4 3
2 0 0 1

6 3 3 3
2 1 1 0


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D1 =



1 2 3 4 5 6
1 0 2 5 6 7 4
2 2 0 5 6 7 4
3 5 5 0 4 5 3
4 6 6 4 0 3 2
5 7 7 5 3 0 3
6 4 4 3 2 3 0


a1 = (1, 1,

3
2
, 1, 2, 0)

D1(a1) =



1 2 3 4 5 6
1 0 0 5

2 4 4 3
2 0 0 5

2 4 4 3
3 5

2
5
2 0 3

2
3
2

3
2

4 4 4 3
2 0 0 1

5 4 4 3
2 0 0 1

6 3 3 3
2 1 1 0


D2 =


1, 2 3 4, 5 6

1, 2 0 5
2 4 3

3 5
2 0 3

2
3
2

4, 5 4 3
2 0 1

6 3 3
2 1 0


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D2 =


1, 2 3 4, 5 6

1, 2 0 5
2 4 3

3 5
2 0 3

2
3
2

4, 5 4 3
2 0 1

6 3 3
2 1 0


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D2 =


1, 2 3 4, 5 6

1, 2 0 5
2 4 3

3 5
2 0 3

2
3
2

4, 5 4 3
2 0 1

6 3 3
2 1 0


a2 = (2, 0,

1
2
, 0)
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D2 =


1, 2 3 4, 5 6

1, 2 0 5
2 4 3

3 5
2 0 3

2
3
2

4, 5 4 3
2 0 1

6 3 3
2 1 0


a2 = (2, 0,

1
2
, 0)

D2(a2) =


1, 2 3 4, 5 6

1, 2 0 1
2

3
2 1

3 1
2 0 1 3

2
4, 5 3

2 1 0 1
2

6 1 3
2

1
2 0


The compaction vector of D2(a2)is the null vector.

However, D2(a2) has a realization by an 4−gon.
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
1, 2 3 4, 5 6

1, 2 0 1
2

3
2 1

3 1
2 0 1 3

2
4, 5 3

2 1 0 1
2

6 1 3
2

1
2 0

 1, 2 3

4, 56

1
2

1
2

1 1
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
1, 2 3 4, 5 6

1, 2 0 1
2

3
2 1

3 1
2 0 1 3

2
4, 5 3

2 1 0 1
2

6 1 3
2

1
2 0


a2 = (2, 0,

1
2
, 0)

3

6

1, 2

4, 5

1
2

1
2

1 1

2

1
2
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
1, 2 3 4, 5 6

1, 2 0 1
2

3
2 1

3 1
2 0 1 3

2
4, 5 3

2 1 0 1
2

6 1 3
2

1
2 0


a2 = (2, 0,

1
2
, 0)

a1 = (1, 1,
3
2
, 1, 2, 0)

6

1

2

3

4

5

1
2

1
2

1 1

2

1
2

1
1

3
2

1

2
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Thank you for your attention
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