Results on m-dissimilarity tensors and graphs of genus 1
 Joint works with Filip Cools

Cristiano Bocci

Department of Information Engineering and Mathematics
University of Siena - Italy

February 21th, 2014
Korea Institute for Advanced Study (KIAS), Seoul, Korea

"The Grassmannian is a valuable geometric tool for understanding and designing algorithms for phylogenetic trees"
B. Sturmfels, L. Pachter

Algebraic Statistics for Computational Biology

An important problem in computational biology is to construct a phylogenetic tree from distance data involving n taxa which might be organisms or genes.

An important problem in computational biology is to construct a phylogenetic tree from distance data involving n taxa which might be organisms or genes.

For example consider an alignment of four genomes:

Human	ACAATGTCATTAGCGAT...
Mouse	ACGTTGTCAATAGAGAT...
Rat	ACGTAGTCATTACACAT..
Chicken	GCACAGTCAGTAGAGCT...

An important problem in computational biology is to construct a phylogenetic tree from distance data involving n taxa which might be organisms or genes.

For example consider an alignment of four genomes:

Human	ACAATGTCATTAGCGAT...
Mouse	ACGTTGTCAATAGAGAT...
Rat	ACGTAGTCATTACACAT...
Chicken	GCACAGTCAGTAGAGCT...

From such sequence data, computational biologists infer the distance between any two taxa. There are various algorithms for carrying out this inference.

For our example we may think of the distance between any two strings as a refined version of the Hamming distance (= the proportion of characters where they differ).

$$
\left.D=\begin{array}{c}
\\
H \\
M \\
\mathrm{R} \\
\mathrm{C}
\end{array} \begin{array}{cccc}
\mathrm{H} & \mathrm{M} & \mathrm{R} & \mathrm{C} \\
0 & 1.1 & 1.0 & 1.4 \\
1.1 . & 0 & 0.3 & 1.3 \\
1.0 & 0.3 & 0 & 1.2 \\
1.4 & 1.3 & 1.2 & 0
\end{array}\right)
$$

For our example we may think of the distance between any two strings as a refined version of the Hamming distance (= the proportion of characters where they differ).

$$
\left.D=\begin{array}{c}
\\
H \\
M \\
R \\
C
\end{array} \begin{array}{cccc}
\mathrm{H} & \mathrm{M} & \mathrm{R} & \mathrm{C} \\
\mathrm{C} & 1.1 & 1.0 & 1.4 \\
1.1 . & 0 & 0.3 & 1.3 \\
1.0 & 0.3 & 0 & 1.2 \\
1.4 & 1.3 & 1.2 & 0
\end{array}\right)
$$

The problem of phylogenetics is to construct a tree with edge lengths which represent this distance matrix, provided such a tree exists.

For our example we may think of the distance between any two strings as a refined version of the Hamming distance (= the proportion of characters where they differ).

$D=$| |
| :---: |
| H |
| M |
| R |
| C |\(\left(\begin{array}{cccc}H \& M \& R \& C

0 \& 1.1 \& 1.0 \& 1.4

1.1 . \& 0 \& 0.3 \& 1.3

1.0 \& 0.3 \& 0 \& 1.2

1.4 \& 1.3 \& 1.2 \& 0\end{array}\right)\)

The problem of phylogenetics is to construct a tree with edge lengths which represent this distance matrix, provided such a tree exists.

For instance, the distance in this tree between "Human" and "Mouse" equals

$$
0.6+0.3+0.2=1.1
$$

which is the corresponding entry in the inferred distance matrix.

Tree metrics and m-dissimilarity maps

A dissimilarity matrix D is a map $D: X^{2} \rightarrow \mathbb{R}$, with

- $D\left(x_{i}, x_{j}\right)=D\left(x_{j}, x_{i}\right) \geq 0$
- $D\left(x_{i}, x_{i}\right)=0$.

Tree metrics and m-dissimilarity maps

A dissimilarity matrix D is a map $D: X^{2} \rightarrow \mathbb{R}$, with

- $D\left(x_{i}, x_{j}\right)=D\left(x_{j}, x_{i}\right) \geq 0$
- $D\left(x_{i}, x_{i}\right)=0$.

A metric is a non-negative dissimilarity matrix satisfying the triangle inequality:

$$
D(x, y) \leq D(x, w)+D(y, w) \quad \forall x, y, w \in X
$$

Tree metrics and m-dissimilarity maps

A dissimilarity matrix D is a map $D: X^{2} \rightarrow \mathbb{R}$, with

- $D\left(x_{i}, x_{j}\right)=D\left(x_{j}, x_{i}\right) \geq 0$
- $D\left(x_{i}, x_{i}\right)=0$.

A metric is a non-negative dissimilarity matrix satisfying the triangle inequality:

$$
D(x, y) \leq D(x, w)+D(y, w) \quad \forall x, y, w \in X
$$

We say that D has a realization if there is a weighted graph G whose node set contains X and the distance $d(u, v)$ between nodes $u, v \in X$ is exactly $D(u, v)$.
In the case the graph is a tree and X corresponds to the set of leaves, D is called a tree metric.

Theorem (Tree-Metric Theorem - the Four-Point Condition)

A metric D is a tree metric if and only if, for every four leaves $i, j, k, l \in X$, the maximum of the three numbers

$$
D(i, j)+D(k, I), \quad D(i, k)+D(j, I), \quad D(i, l)+D(j, k) .
$$

is attained at least twice.

Theorem (Tree-Metric Theorem - the Four-Point Condition)

A metric D is a tree metric if and only if, for every four leaves $i, j, k, l \in X$, the maximum of the three numbers

$$
D(i, j)+D(k, l), \quad D(i, k)+D(j, l), \quad D(i, l)+D(j, k) .
$$

is attained at least twice.

Tree metrics on n leaves are parametrized by a the so-called space of trees $\mathcal{T}_{n} \subset \mathbb{R}^{\binom{n}{2}} . \quad(X=[n])$

Let T be a n - tree with a positive weight assigned to each edge.
Thus, the distance between leaves i and j is the sum of the weights of the path connecting i and j.

$$
D(\mathrm{H}, \mathrm{M})=0.6+0.3+0.2=1.1
$$

Let T be a n - tree with a positive weight assigned to each edge.
Thus, the distance between leaves i and j is the sum of the weights of the path connecting i and j.

$$
D(\mathrm{H}, \mathrm{M})=0.6+0.3+0.2=1.1
$$

For every subset $V \subset[n]$ we denote by $[V]$ the smallest subtree of T containing V.
We define $\omega([V])$ as the sum of the weights on the edges of $[V]$.

Let T be a n - tree with a positive weight assigned to each edge.
Thus, the distance between leaves i and j is the sum of the weights of the path connecting i and j.

$$
D(\mathrm{H}, \mathrm{M})=0.6+0.3+0.2=1.1
$$

For every subset $V \subset[n]$ we denote by $[V]$ the smallest subtree of T containing V.
We define $\omega([\mathrm{V}])$ as the sum of the weights on the edges of $[\mathrm{V}]$.
$\omega([\mathrm{HMR}])=0.6+0.3+0.2+0.1=1.2$

An m-dissimilarity tensor D is a map $D: X^{m} \rightarrow \mathbb{R}$, with

- $D\left(x_{1}, \ldots, x_{m}\right)=D\left(x_{\pi(1)}, \ldots, x_{\pi(m)}\right)$ for all permutations $\pi \in S_{m}$
- $D\left(x_{1}, x_{2}, \ldots, x_{m}\right)=0$ if $x_{i}=x_{j}$ for some i and j.

An m-dissimilarity tensor D is a map $D: X^{m} \rightarrow \mathbb{R}$, with

- $D\left(x_{1}, \ldots, x_{m}\right)=D\left(x_{\pi(1)}, \ldots, x_{\pi(m)}\right)$ for all permutations $\pi \in S_{m}$
- $D\left(x_{1}, x_{2}, \ldots, x_{m}\right)=0$ if $x_{i}=x_{j}$ for some i and j.

We say that a graph G realizes D if the node set of G contains X and for every $x_{1}, \ldots, x_{m} \in X$, the weight of the smallest subgraph in G containing x_{1}, \ldots, x_{m} is $D\left(x_{1}, \ldots, x_{m}\right)$. An m-dissimilarity tensor which is realizable is called a m-distance map.

An m-dissimilarity tensor D is a map $D: X^{m} \rightarrow \mathbb{R}$, with

- $D\left(x_{1}, \ldots, x_{m}\right)=D\left(x_{\pi(1)}, \ldots, x_{\pi(m)}\right)$ for all permutations $\pi \in S_{m}$
- $D\left(x_{1}, x_{2}, \ldots, x_{m}\right)=0$ if $x_{i}=x_{j}$ for some i and j.

We say that a graph G realizes D if the node set of G contains X and for every $x_{1}, \ldots, x_{m} \in X$, the weight of the smallest subgraph in G containing x_{1}, \ldots, x_{m} is $D\left(x_{1}, \ldots, x_{m}\right)$. An m-dissimilarity tensor which is realizable is called a m-distance map.

Theorem (Pachter-Speyer, 2004)

Let T be a tree with n leaves and no vertices of degree 2. Let $m \geq 3$ be an integer, If $n \geq 2 m-1$, then T is determined by the set of values $\omega([\mathrm{V}])$ as V ranges over all m element subset of $[n]$. If $n=2 m-2$, this is not true.

A motivation

Suppose that our data consistes of measurements of the frequency of occurence of different words in $\{A, C, G T,\}^{n}$ as columns of an alignment on n DNA sequences.

A motivation

Suppose that our data consistes of measurements of the frequency of occurence of different words in $\{\mathrm{A}, \mathrm{C}, \mathrm{G} T,\}^{n}$ as columns of an alignment on n DNA sequences.
To select a tree model we could compute the MLE for each of the $(2 n-5)!!$ trees.

- All the MLE computation is very difficult, also for a single trees.
- this approach requires examining all exponentially many trees.

A motivation

Suppose that our data consistes of measurements of the frequency of occurence of different words in $\{\mathrm{A}, \mathrm{C}, \mathrm{G} T,\}^{n}$ as columns of an alignment on n DNA sequences.
To select a tree model we could compute the MLE for each of the $(2 n-5)!!$ trees.

- All the MLE computation is very difficult, also for a single trees.
- this approach requires examining all exponentially many trees.

One popular way to avoid these problems is the "distance based approach" which is to collapse the data to a dissimilarity map and then to obtain a tree via a projection onto tree space \mathcal{T}_{n} (neighbor-joining algorithm).

$$
\begin{gathered}
D(i j k)=\frac{1}{2}\left(D_{i j}+D_{j k}+D_{i k}\right) \\
\psi^{(3)}: \mathcal{T}_{n} \rightarrow \mathbb{R}^{\binom{n}{3}}
\end{gathered}
$$

$$
\begin{gathered}
D(i j k)=\frac{1}{2}\left(D_{i j}+D_{j k}+D_{i k}\right) \\
\psi^{(3)}: \mathcal{T}_{n} \rightarrow \mathbb{R}^{\binom{n}{3}}
\end{gathered}
$$

Q1 Is it possible to define the space of m-distance maps D_{T} arising from trees T as the image of the tree space \mathcal{T}_{n} under a certain map $\psi^{(m)}: \mathbb{R}^{\binom{n}{2}} \rightarrow \mathbb{R}^{\binom{n}{m}}$ 。?

$$
\begin{gathered}
D(i j k)=\frac{1}{2}\left(D_{i j}+D_{j k}+D_{i k}\right) \\
\psi^{(3)}: \mathcal{T}_{n} \rightarrow \mathbb{R}^{\binom{n}{3}}
\end{gathered}
$$

Q1 Is it possible to define the space of m-distance maps D_{T} arising from trees T as the image of the tree space \mathcal{T}_{n} under a certain map $\psi^{(m)}: \mathbb{R}^{\binom{n}{2}} \rightarrow \mathbb{R}^{\binom{n}{m}}$ 。?

Q2 : If yes, describe $\mathcal{W}_{m, n}:=\psi^{(m)}\left(\mathcal{T}_{n}\right)$

$$
\begin{gathered}
D(i j k)=\frac{1}{2}\left(D_{i j}+D_{j k}+D_{i k}\right) \\
\psi^{(3)}: \mathcal{T}_{n} \rightarrow \mathbb{R}^{\binom{n}{3}}
\end{gathered}
$$

Q1 Is it possible to define the space of m-distance maps D_{T} arising from trees T as the image of the tree space \mathcal{T}_{n} under a certain $\operatorname{map} \psi^{(m)}: \mathbb{R}^{\binom{n}{2}} \rightarrow \mathbb{R}^{\binom{n}{m}}$.?

Q2 : If yes, describe $\mathcal{W}_{m, n}:=\psi^{(m)}\left(\mathcal{T}_{n}\right)$
If we are simply given an m-dissimilarity tensor $D \in \mathbb{R}^{\binom{n}{m}}$ it is not known how to test if this map comes from a tree.

$$
\begin{gathered}
D(i j k)=\frac{1}{2}\left(D_{i j}+D_{j k}+D_{i k}\right) \\
\psi^{(3)}: \mathcal{T}_{n} \rightarrow \mathbb{R}^{\binom{n}{3}}
\end{gathered}
$$

Q1 Is it possible to define the space of m-distance maps D_{T} arising from trees T as the image of the tree space \mathcal{T}_{n} under a certain map $\psi^{(m)}: \mathbb{R}^{\binom{n}{2}} \rightarrow \mathbb{R}^{\binom{n}{m}}$ 。?

Q2 : If yes, describe $\mathcal{W}_{m, n}:=\psi^{(m)}\left(\mathcal{T}_{n}\right)$
If we are simply given an m-dissimilarity tensor $D \in \mathbb{R}^{\binom{n}{m}}$ it is not known how to test if this map comes from a tree.

Q2' : Describe $\mathcal{W}_{m, n}:=\psi^{(m)}\left(\mathcal{T}_{n}\right)$ as the parameter space of m-distance maps.

Tropical Geometry

We work in the semi-ring

$$
(\mathbb{R} \cup\{-\infty\}, \oplus, \otimes)
$$

where

$$
x \oplus y=\max \{x, y\} \quad x \otimes y=x+y
$$

Tropical Geometry

We work in the semi-ring

$$
(\mathbb{R} \cup\{-\infty\}, \oplus, \otimes)
$$

where

$$
x \oplus y=\max \{x, y\} \quad x \otimes y=x+y
$$

Consider indeterminates x_{1}, \ldots, x_{n}

- Tropical monomials $x_{1}^{a_{1}} \otimes \cdots \otimes x_{n}^{a_{n}}$ represent ordinary linear forms $\sum_{i=i}^{n} a_{i} x_{i}$, i.e. linear functions $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Tropical Geometry

We work in the semi-ring

$$
(\mathbb{R} \cup\{-\infty\}, \oplus, \otimes)
$$

where

$$
x \oplus y=\max \{x, y\} \quad x \otimes y=x+y
$$

Consider indeterminates x_{1}, \ldots, x_{n}

- Tropical monomials $x_{1}^{a_{1}} \otimes \cdots \otimes x_{n}^{a_{n}}$ represent ordinary linear forms $\sum_{i=i}^{n} a_{i} x_{i}$, i.e. linear functions $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- tropical polynomials $\bigoplus_{a \in \mathcal{A}} C_{a} \otimes x_{1}^{a_{1}} \otimes \cdots \otimes x_{n}^{a_{n}}$, with $\mathcal{A} \in \mathbb{N}^{n}$ and $C_{a} \in \mathbb{R}$, represent piecewise-linear functions $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$. To compute $F(x)$ we take the maximum of the affine-linear forms $C_{a}+\sum_{i=i}^{n} a_{i} x_{i}$ for $a \in \mathcal{A}$.

Given a tropical polynomial $F=\bigoplus_{a \in \mathcal{A}} C_{a} \otimes x_{1}^{a_{1}} \otimes \cdots \otimes x_{n}^{a_{n}}$ we define the tropical hypersurface $\mathcal{H}(F)$ as the corner locus of the function F, that is

$$
\left\{\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}:\left\{\sum_{i=1}^{n} a_{i} w_{i}+C_{a}\right\}_{a \in \mathcal{A}} \text { attain the maximum twice }\right\}
$$

Given a tropical polynomial $F=\bigoplus_{a \in \mathcal{F}} C_{a} \otimes x_{1}^{a_{1}} \otimes \cdots \otimes x_{n}^{a_{n}}$ we define the tropical hypersurface $\mathcal{H}(F)$ as the corner locus of the function F, that is

$$
\left\{\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}:\left\{\sum_{i=1}^{n} a_{i} w_{i}+C_{a}\right\}_{a \in \mathcal{A}} \text { attain the maximum twice }\right\}
$$

Consider an ordinary polynomial

$$
f=\sum_{e \in E} f_{e_{1} \cdots e_{n}} x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}
$$

The tropicalization of $f, \operatorname{Trop}(f)$ is defined as

$$
\operatorname{Trop}(f)=\bigoplus_{e \in E} f_{e_{1} \cdots e_{n}} \otimes x_{1}^{e_{1}} \otimes \cdots \otimes x_{n}^{e^{n}}
$$

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, we define the tropical variety of I as

$$
\mathcal{H}(I)=\cap_{f \in I} \mathcal{H}(\operatorname{Trop}(f))
$$

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, we define the tropical variety of I as

$$
\mathcal{H}(I)=\cap_{f \in I} \mathcal{H}(\operatorname{Trop}(f))
$$

We are mainly interested in the tropical variety defined by

$$
\mathcal{H}\left(I_{m, n}\right)
$$

where $I_{m, n}$ is the ideal of the Grassmannian $G_{m, n} \subset \mathbb{P}^{\binom{n}{m}-1}$.

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, we define the tropical variety of I as

$$
\mathcal{H}(I)=\cap_{f \in I} \mathcal{H}(\operatorname{Trop}(f))
$$

We are mainly interested in the tropical variety defined by

$$
\mathcal{H}\left(I_{m, n}\right)
$$

where $I_{m, n}$ is the ideal of the Grassmannian $G_{m, n} \subset \mathbb{P}^{\binom{n}{m}-1}$.

Definition

The tropical Grassmannian $\mathcal{G}_{m, n}$ is the tropical variety $\mathcal{H}\left(I_{m, n}\right)$

We fix our attention on $\mathcal{G}_{2, n}$.

We fix our attention on $\mathcal{G}_{2, n}$.

Theorem

The ideal $l_{2, n}$ is generated by the quadratic polynomials

$$
\begin{equation*}
x_{i k} x_{j l}-x_{i j} x_{k l}-x_{i l} x_{j k} \quad(1 \leq i<j<k<l \leq n) \tag{1}
\end{equation*}
$$

We fix our attention on $\mathcal{G}_{2, n}$.

Theorem

The ideal $l_{2, n}$ is generated by the quadratic polynomials

$$
\begin{equation*}
x_{i k} x_{j l}-x_{i j} x_{k l}-x_{i l} x_{j k} \quad(1 \leq i<j<k<I \leq n) \tag{1}
\end{equation*}
$$

$$
\begin{gathered}
\left(x_{i k} \otimes x_{j l}\right) \oplus\left(x_{i j} \otimes x_{k l}\right) \oplus\left(x_{i l} \otimes x_{j k}\right) \\
D(i, k)+D(j, l), \quad D(i, j)+D(k, l), \quad D(i, l)+D(j, k)
\end{gathered}
$$

We fix our attention on $\mathcal{G}_{2, n}$.

Theorem

The ideal $l_{2, n}$ is generated by the quadratic polynomials

$$
\begin{equation*}
x_{i k} x_{j l}-x_{i j} x_{k l}-x_{i l} x_{j k} \quad(1 \leq i<j<k<l \leq n) \tag{1}
\end{equation*}
$$

$$
\begin{gathered}
\left(x_{i k} \otimes x_{j l}\right) \oplus\left(x_{i j} \otimes x_{k l}\right) \oplus\left(x_{i l} \otimes x_{j k}\right) \\
D(i, k)+D(j, l), \quad D(i, j)+D(k, l), \quad D(i, l)+D(j, k)
\end{gathered}
$$

Theorem (Speyer-Sturmfels, 2004)

The space of trees \mathcal{T}_{n} is (up to sign) the tropical Grassmannian $\mathcal{G}_{2, n}$.

Q1 Characterize tropically the $\operatorname{map} \psi_{\mid\left(\mathcal{G}_{2, n}\right)}^{(m)}: \mathcal{G}_{2, n} \rightarrow \mathbb{R}^{\binom{n}{m}}$.

Q1 Characterize tropically the map $\psi_{\mid\left(\mathcal{G}_{2, n}\right)}^{(m)}: \mathcal{G}_{2, n} \rightarrow \mathbb{R}^{\binom{n}{m}}$.
For $m=3$, the $\operatorname{map} \psi^{(3)}$ has a tropical monomial form. In fact, one has

$$
D_{i j k}=\frac{1}{2}\left(D_{i j}+D_{j k}+D_{i k}\right)=\left(D_{i j} \otimes D_{j k} \otimes D_{i k}\right)^{\frac{1}{2}}
$$

Q1 Characterize tropically the $\operatorname{map} \psi_{\mid\left(\mathcal{G}_{2, n}\right)}^{(m)}: \mathcal{G}_{2, n} \rightarrow \mathbb{R}_{\binom{n}{m}}$.
For $m=3$, the $\operatorname{map} \psi^{(3)}$ has a tropical monomial form. In fact, one has

$$
D_{i j k}=\frac{1}{2}\left(D_{i j}+D_{j k}+D_{i k}\right)=\left(D_{i j} \otimes D_{j k} \otimes D_{i k}\right)^{\frac{1}{2}}
$$

Q2 (proposed by B. Sturmfels) characterize the image $\mathcal{W}_{3, n}:=\psi^{(3)}\left(\mathcal{G}_{2, n}\right) \subset \mathbb{R}^{(n)}$ of the tree space $\mathcal{G}_{2, n}$ and then find a natural systems of tropical polynomials which define $\mathcal{W}_{3, n}$ as a tropical subvariety of $\mathbb{R}^{\left({ }_{3}^{n}\right)}$.

Q1 Characterize tropically the $\operatorname{map} \psi_{\mid\left(\mathcal{G}_{2, n}\right)}^{(m)}: \mathcal{G}_{2, n} \rightarrow \mathbb{R}_{\binom{n}{m}}$.
For $m=3$, the $\operatorname{map} \psi^{(3)}$ has a tropical monomial form. In fact, one has

$$
D_{i j k}=\frac{1}{2}\left(D_{i j}+D_{j k}+D_{i k}\right)=\left(D_{i j} \otimes D_{j k} \otimes D_{i k}\right)^{\frac{1}{2}}
$$

Q2 (proposed by B. Sturmfels) characterize the image $\mathcal{W}_{3, n}:=\psi^{(3)}\left(\mathcal{G}_{2, n}\right) \subset \mathbb{R}^{\left({ }^{(}\right)}$) of the tree space $\mathcal{G}_{2, n}$ and then find a natural systems of tropical polynomials which define $\mathcal{W}_{3, n}$ as a tropical subvariety of $\mathbb{R}^{\left({ }_{3}^{n}\right)}$.

For $m \geq 4$ the situation is much harder and more interesting. Here there is no monomial map of which the subtree weight $\operatorname{map} \psi^{(m)}$ is the tropicalization.

A necessary condition to be a m-distance map is given by a generalization of the four-point condition, that is the maximum is reach for at least two terms between

$$
D(R i j)+D(R k l), \quad D(R i k)+D(R j l), \quad D(R i l)+D(R j k)
$$

for every subset R of $m-2$ elements in $[n]$ and $i, j, k, I \in[n] \backslash R$.

A necessary condition to be a m-distance map is given by a generalization of the four-point condition, that is the maximum is reach for at least two terms between

$$
D(R i j)+D(R k l), \quad D(R i k)+D(R j l), \quad D(R i l)+D(R j k)
$$

for every subset R of $m-2$ elements in $[n]$ and $i, j, k, l \in[n] \backslash R$.
A simple count of dimension on tropical grassmanianns shows that this condition is not adequate in any case, except for $n=5$ and $m=3$.

A necessary condition to be a m-distance map is given by a generalization of the four-point condition, that is the maximum is reach for at least two terms between

$$
D(R i j)+D(R k l), \quad D(R i k)+D(R j l), \quad D(R i l)+D(R j k)
$$

for every subset R of $m-2$ elements in $[n]$ and $i, j, k, I \in[n] \backslash R$.
A simple count of dimension on tropical grassmanianns shows that this condition is not adequate in any case, except for $n=5$ and $m=3$.

Q3 (proposed by R. Yoshida) How much the "generalized four-point condition" is not a sufficient condition for m-distance map ?

The ideal $I_{m, n}$ is generated by quadratic polynomials known as the Plücker relations. Among these are the three-term Plücker relations which are defined as

$$
g_{R, j k l}:=x_{R i k} x_{R j l}-x_{R i j} x_{R k l}-x_{R i l} x_{R j k}
$$

where R is any $(m-2)$-element subset of $[n]$ and $i, j, k, I \in[n] \backslash R$.

The ideal $I_{m, n}$ is generated by quadratic polynomials known as the Plücker relations. Among these are the three-term Plücker relations which are defined as

$$
g_{R, j k l}:=x_{R i k} x_{R j l}-x_{R i j} x_{R k l}-x_{R i l} x_{R j k}
$$

where R is any $(m-2)$-element subset of $[n]$ and $i, j, k, l \in[n] \backslash R$.
The three-term Plücker relations are not enough to generate $I_{m, n}$.

The ideal $I_{m, n}$ is generated by quadratic polynomials known as the Plücker relations. Among these are the three-term Plücker relations which are defined as

$$
g_{R, j k l}:=x_{R i k} x_{R j l}-x_{R i j} x_{R k l}-x_{R i l} x_{R j k}
$$

where R is any $(m-2)$-element subset of $[n]$ and $i, j, k, l \in[n] \backslash R$.
The three-term Plücker relations are not enough to generate $I_{m, n}$.

$$
p_{R, j k k l}:=\operatorname{Trop}\left(g_{R, j j k l}\right)=\left(x_{R i j} \otimes x_{R k l}\right) \oplus\left(x_{R i k} \otimes x_{R j l}\right) \oplus\left(x_{R i l} \otimes x_{R j k}\right)
$$

The ideal $I_{m, n}$ is generated by quadratic polynomials known as the Plücker relations. Among these are the three-term Plücker relations which are defined as

$$
g_{R, j \mathrm{jkl}}:=x_{R i k} x_{R j l}-x_{R i j} x_{R k l}-x_{R i l} x_{R j k}
$$

where R is any $(m-2)$-element subset of $[n]$ and $i, j, k, l \in[n] \backslash R$.
The three-term Plücker relations are not enough to generate $I_{m, n}$.

$$
p_{R, i j k l}:=\operatorname{Trop}\left(g_{R, j i k l}\right)=\left(x_{R i j} \otimes x_{R k l}\right) \oplus\left(x_{R i k} \otimes x_{R j l}\right) \oplus\left(x_{R i l} \otimes x_{R j k}\right)
$$

Definition

The three-term tropical Grassmannian $\mathcal{T}_{m, n}$ is the intersection

$$
\mathcal{T}_{m, n}:=\bigcap_{R, i, j, k, l} \mathcal{H}\left(p_{R, i j k l}\right) \subset \mathbb{R}^{\binom{n}{m}}
$$

$\mathcal{T}_{m, n}$ is also known as the space of m-trees.

Results on $\psi^{(m)}$ and $\mathcal{W}_{m, n}$

What about

$$
\begin{array}{lclc}
\psi^{(m)}: & \mathcal{G}_{2, n} & \rightarrow & \mathbb{R}^{\left({ }_{m}^{n}\right)} \\
(\ldots, D(i, j), \ldots) & \mapsto & \left(\ldots, D\left(i_{1}, i_{2}, \ldots, i_{m}\right), \ldots\right)
\end{array}
$$

Results on $\psi^{(m)}$ and $\mathcal{W}_{m, n}$

What about

$$
\begin{array}{lclc}
\psi^{(m)}: & \mathcal{G}_{2, n} & \rightarrow & \mathbb{R}_{\left(m_{m}^{(n)}\right.} \\
(\ldots, D(i, j), \ldots) & \mapsto & \left(\ldots, D\left(i_{1}, i_{2}, \ldots, i_{m}\right), \ldots\right)
\end{array}
$$

Theorem (-, Cools, 2010)

Suppose $I=\left\{i_{1}, \ldots, i_{m}\right\}$. Then

$$
D(I)=\frac{1}{2}\left(\min _{s \in r\left(S_{m}\right)}\left\{D\left(i_{1}, i_{s(1)}\right)+D\left(i_{s(1)}, i_{s^{2}(1)}\right)+\ldots+D\left(i_{s^{m-1}}(1), i_{1}\right)\right\}\right)
$$

where $r\left(S_{m}\right)$ is the subset of S_{m} of "real" permutations, ie. permutations with only one term in the disjoint cycle notation.

$\left(\begin{array}{lllll}2 & 3 & 4 & 5 & 1\end{array}\right)$ is a real permutation
 $\left(\begin{array}{lllll}2 & 1 & 4 & 5 & 3\end{array}\right)$ is not a real permutation

$\left(\begin{array}{lllll}2 & 3 & 4 & 5 & 1\end{array}\right)$ is a real permutation
 $\left(\begin{array}{lllll}2 & 1 & 4 & 5 & 3\end{array}\right)$ is not a real permutation

Remarks

- the sum does not depend on the choice of i_{j} in I.

$\left(\begin{array}{lllll}2 & 3 & 4 & 5 & 1\end{array}\right)$ is a real permutation
 $\left(\begin{array}{lllll}2 & 1 & 4 & 5 & 3\end{array}\right)$ is not a real permutation

Remarks

- the sum does not depend on the choice of i_{j} in I.
- it is easy to see that the minimum is attained at least twice:

$\left(\begin{array}{lllll}2 & 3 & 4 & 5 & 1\end{array}\right)$ is a real permutation
 $\left(\begin{array}{lllll}2 & 1 & 4 & 5 & 3\end{array}\right)$ is not a real permutation

Remarks

- the sum does not depend on the choice of i_{j} in I.
- it is easy to see that the minimum is attained at least twice:
- if $s \in r\left(S_{m}\right)$ gives the minimum, then also s^{-1} gives the minimum;
- switching the leafs on a cherry, does not make a difference.
$\left(\begin{array}{lllll}2 & 3 & 4 & 5 & 1\end{array}\right)$ is a real permutation
$\left(\begin{array}{lllll}2 & 1 & 4 & 5 & 3\end{array}\right)$ is not a real permutation
Remarks
- the sum does not depend on the choice of i_{j} in I.
- it is easy to see that the minimum is attained at least twice:
- if $s \in r\left(S_{m}\right)$ gives the minimum, then also s^{-1} gives the minimum;
- switching the leafs on a cherry, does not make a difference.

Theorem (-, Cools, 2010)

Suppose $I=\left\{i_{1}, \ldots, i_{m}\right\}$. Then
$D(I)=\frac{1}{2}\left(\min _{s \in r\left(S_{m}\right)}\left\{D\left(i_{1}, i_{s(1)}\right)+D\left(i_{s(1)}, i_{s^{2}(1)}\right)+\ldots+D\left(i_{s^{m-1}(1)}, i_{1}\right)\right\}\right)$
where $r\left(S_{m}\right)$ is the subset of S_{m} of "real" permutations, i.e. permutations with only one term in the disjoint cycle notation.
$\left(\begin{array}{lllll}2 & 3 & 4 & 5 & 1\end{array}\right)$ is a real permutation
$\left(\begin{array}{lllll}2 & 1 & 4 & 5 & 3\end{array}\right)$ is not a real permutation
Remarks

- the sum does not depend on the choice of i_{j} in I.
- it is easy to see that the minimum is attained at least twice:
- if $s \in r\left(S_{m}\right)$ gives the minimum, then also s^{-1} gives the minimum;
- switching the leafs on a cherry, does not make a difference.

Corollary

$$
\begin{aligned}
& D(I)=\left(\bigoplus_{s \in r\left(S_{m}\right)} \frac{1}{D\left(i_{1}, i_{s(1)}\right) \otimes D\left(i_{s(1)}, i_{s^{2}(1)}\right) \otimes \cdots \otimes D\left(i_{s^{m-1}(1)}, i_{1}\right)}\right)^{-\frac{1}{2}} \\
& \quad=\left(\bigoplus_{s \in r\left(S_{m}\right)}\left(D\left(i_{1}, i_{s(1)}\right) \otimes D\left(i_{s(1)}, i_{s^{2}(1)}\right) \otimes \cdots \otimes D\left(i_{s^{m-1}(1)}, i_{1}\right)\right)^{-1}\right)^{-\frac{1}{2}}
\end{aligned}
$$

For $m=3$ one has $r\left(S_{3}\right)=\left\{s_{1}, s_{2}\right\}$ with

$$
s_{1}=\left(\begin{array}{lll}
2 & 3 & 1
\end{array}\right) \text { and } s_{1}=s_{2}^{-1}
$$

Thus

$$
\begin{aligned}
D\left(i_{1} i_{2} i_{3}\right) & =\left(\bigoplus_{s \in r\left(S_{3}\right)}\left(D\left(i_{1}, i_{s(1)}\right) \otimes D\left(i_{s(1)}, i_{s^{2}(1)}\right) \otimes D\left(i_{s^{2}(1)}, i_{s^{3}(1)}\right)\right)^{-1}\right)^{-\frac{1}{2}} \\
& =\left(\left(D\left(i_{1}, i_{2}\right) \otimes D\left(i_{2}, i_{3}\right) \otimes D\left(i_{1}, i_{3}\right)\right)^{-1}\right)^{-\frac{1}{2}}= \\
& =-\frac{1}{2}\left(-\left(\left(D\left(i_{1}, i_{2}\right)+D\left(i_{2}, i_{3}\right)+D\left(i_{1}, i_{3}\right)\right)\right)=\right. \\
& =\frac{1}{2}\left(\left(D\left(i_{1}, i_{2}\right)+D\left(i_{2}, i_{3}\right)+D\left(i_{1}, i_{3}\right)\right)\right.
\end{aligned}
$$

Example: $n=7, m=4, \quad \mathcal{G}_{2,7} \subset \mathbb{R}^{21}, \quad \mathcal{W}_{4,7} \subset \mathbb{R}^{35}$

$$
\left.\begin{array}{c}
\left(\begin{array}{llll}
i_{2} & i_{3} & i_{4} & i_{1}
\end{array}\right)\left(\begin{array}{llll}
i_{3} & i_{4} & i_{2} & i_{1}
\end{array}\right) \quad\left(\begin{array}{lll}
i_{2} & i_{4} & i_{1}
\end{array} i_{3}\right.
\end{array}\right) .
$$

Example: $n=7, m=4, \quad \mathcal{G}_{2,7} \subset \mathbb{R}^{21}, \quad \mathcal{W}_{4,7} \subset \mathbb{R}^{35}$

$$
\left.\begin{array}{c}
\left(\begin{array}{llll}
i_{2} & i_{3} & i_{4} & i_{1}
\end{array}\right)\left(\begin{array}{llll}
i_{3} & i_{4} & i_{2} & i_{1}
\end{array}\right)\left(\begin{array}{lll}
i_{2} & i_{4} & i_{1}
\end{array} i_{3}\right.
\end{array}\right) .
$$

$Q \in \mathcal{W}_{4,7}$ since $Q=\psi^{(4)}\left(D^{\prime}\right)$ where

$$
D^{\prime}:=(1,1,1,1,1, \ldots, 1,1,1,1,1) \in \mathcal{G}_{2,7}
$$

Example: $n=7, m=4, \quad \mathcal{G}_{2,7} \subset \mathbb{R}^{21}, \quad \mathcal{W}_{4,7} \subset \mathbb{R}^{35}$

$$
\left.\begin{array}{c}
\left(\begin{array}{llll}
i_{2} & i_{3} & i_{4} & i_{1}
\end{array}\right)\left(\begin{array}{llll}
i_{3} & i_{4} & i_{2} & i_{1}
\end{array}\right)\left(\begin{array}{lll}
i_{2} & i_{4} & i_{1}
\end{array} i_{3}\right.
\end{array}\right) .
$$

$Q \in \mathcal{W}_{4,7}$ since $Q=\psi^{(4)}\left(D^{\prime}\right)$ where

$$
D^{\prime}:=(1,1,1,1,1, \ldots, 1,1,1,1,1) \in \mathcal{G}_{2,7}
$$

$\psi^{(m)}$ is not injective but $\psi_{\mid \mathcal{G}_{2, n}}^{(m)}$ is injective

Theorem (-, Cools, 2010)

One has

$$
\mathcal{W}_{m, n} \subseteq \mathcal{T}_{m, n} \cap \psi^{(m)}\left(\mathbb{R}^{\binom{n}{2}}\right)
$$

Moreover, for $m=3$ the equality holds

$$
\mathcal{W}_{3, n}=\mathcal{T}_{3, n} \cap \psi^{(3)}\left(\mathbb{R}^{\binom{n}{2}}\right)
$$

Theorem (-, Cools, 2010)

If $n \geq 5$, one has $\phi^{(3)}\left(\mathcal{G}_{2, n}\right)=\phi^{(3)}\left(\mathbb{R}^{\binom{n}{2}}\right) \cap \mathcal{G}_{3, n}$.

$$
\mathcal{W}_{3, n}=\mathcal{G}_{3, n} \cap \psi^{(3)}\left(\mathbb{R}^{\binom{n}{2}}\right.
$$

$$
\begin{gathered}
\mathcal{W}_{3, n}=\mathcal{G}_{3, n} \cap \psi^{(3)}\left(\mathbb{R}^{\binom{n}{2}}\right) \\
f=\left(a_{1}-b_{1}\right) x_{1}+\cdots+\left(a_{n}-b_{n}\right) x_{n}+c_{1}-c_{2}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{W}_{3, n}=\mathcal{G}_{3, n} \cap \psi^{(3)}\left(\mathbb{R}^{\binom{n}{2}}\right) \\
f=\left(a_{1}-b_{1}\right) x_{1}+\cdots+\left(a_{n}-b_{n}\right) x_{n}+c_{1}-c_{2} \\
f^{t}:=\left(c \otimes x_{1}^{a_{1}} \otimes \cdots \otimes x_{n}^{a_{n}}\right) \oplus\left(c_{2} \otimes x_{1}^{b_{1}} \otimes \cdots \otimes x_{n}^{b_{n}}\right) .
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{W}_{3, n}=\mathcal{G}_{3, n} \cap \psi^{(3)}\left(\mathbb{R}_{2}^{\left({ }_{2}^{n}\right)}\right) \\
f=\left(a_{1}-b_{1}\right) x_{1}+\cdots+\left(a_{n}-b_{n}\right) x_{n}+c_{1}-c_{2} \\
f^{t}:=\left(c \otimes x_{1}^{a_{1}} \otimes \cdots \otimes x_{n}^{a_{n}}\right) \oplus\left(c_{2} \otimes x_{1}^{b_{1}} \otimes \cdots \otimes x_{n}^{b_{n}}\right) .
\end{gathered}
$$

Lemma

$$
Z(f)=\mathcal{H}\left(f^{f}\right)
$$

$$
\mathcal{W}_{3, n}=\mathcal{G}_{3, n} \cap \psi^{(3)}\left(\mathbb{R}^{\left({ }^{n}\right)}\right)
$$

$$
\begin{gathered}
f=\left(a_{1}-b_{1}\right) x_{1}+\cdots+\left(a_{n}-b_{n}\right) x_{n}+c_{1}-c_{2} \\
f^{t}:=\left(c \otimes x_{1}^{a_{1}} \otimes \cdots \otimes x_{n}^{a_{n}}\right) \oplus\left(c_{2} \otimes x_{1}^{b_{1}} \otimes \cdots \otimes x_{n}^{b_{n}}\right)
\end{gathered}
$$

Lemma

$$
Z(f)=\mathcal{H}\left(f^{f}\right)
$$

$\psi^{(3)}\left(\mathbb{R}^{(n)}\right)$ is defined by linear equations f_{1}, \ldots, f_{c}, where $c:=\frac{n(n-1)(n-5)}{6}$ is its codimension in $\mathbb{R}^{\left({ }_{3}^{3}\right)}$.

$$
\mathcal{W}_{3, n}=\mathcal{G}_{3, n} \cap \psi^{(3)}\left(\mathbb{R}^{\binom{n}{)}}\right.
$$

$$
f=\left(a_{1}-b_{1}\right) x_{1}+\cdots+\left(a_{n}-b_{n}\right) x_{n}+c_{1}-c_{2}
$$

$$
f^{t}:=\left(c \otimes x_{1}^{a_{1}} \otimes \cdots \otimes x_{n}^{a_{n}}\right) \oplus\left(c_{2} \otimes x_{1}^{b_{1}} \otimes \cdots \otimes x_{n}^{b_{n}}\right)
$$

Lemma

$$
Z(f)=\mathcal{H}\left(f^{f}\right)
$$

$\psi^{(3)}\left(\mathbb{R}^{\binom{n}{2}}\right)$ is defined by linear equations f_{1}, \ldots, f_{c}, where $c:=\frac{n(n-1)(n-5)}{6}$ is its codimension in $\mathbb{R}^{\binom{n}{3}}$.

Theorem (-, Cools, 2010)

$$
\mathcal{W}_{3, n}=\mathcal{H}\left(f_{1}^{t}\right) \cap \cdots \cap \mathcal{H}\left(f_{c}^{t}\right) \cap \mathcal{G}_{3, n}
$$

and $f_{1}^{t}, \ldots, f_{c}^{t}$ have an explicit combinatorial description.

Theorem (Cools, 2011)

If $n \geq 5$, one has $\phi^{(4)}\left(\mathcal{G}_{2, n}\right) \subseteq \phi^{(4)}\left(\mathbb{R}^{\binom{n}{2}}\right) \cap \mathcal{G}_{4, n}$.

Theorem (Cools, 2011)

If $n \geq 5$, one has $\phi^{(4)}\left(\mathcal{G}_{2, n}\right) \subseteq \phi^{(4)}\left(\mathbb{R}^{(n)}\right) \cap \mathcal{G}_{4, n}$.

Conjecture (Cools, 2011)

$$
\phi^{(m)}\left(\mathcal{G}_{2, n}\right) \subseteq \phi^{(m)}\left(\mathbb{R}^{\left({ }_{2}^{n}\right)}\right) \cap \mathcal{G}_{m, n} .
$$

Theorem (Cools, 2011)

If $n \geq 5$, one has $\phi^{(4)}\left(\mathcal{G}_{2, n}\right) \subseteq \phi^{(4)}\left(\mathbb{R}^{(n)}\right) \cap \mathcal{G}_{4, n}$.

Conjecture (Cools, 2011)

$$
\phi^{(m)}\left(\mathcal{G}_{2, n}\right) \subseteq \phi^{(m)}\left(\mathbb{R}^{\left({ }_{2}^{n}\right)}\right) \cap \mathcal{G}_{m, n} .
$$

Theorem (Giraldo, 2012)
$\phi^{(m)}\left(\mathcal{G}_{2, n}\right) \subseteq \phi^{(m)}\left(\mathbb{R}^{\left({ }_{2}^{n}\right)}\right) \cap \mathcal{G}_{m, n}$.

Graphs of genus 1

Let D be a distance matrix of order $n \times n$

Graphs of genus 1

Let D be a distance matrix of order $n \times n$

Q What are the conditions on $D(i, j)$ such that D is realizable by a graph of genus 1 ?

Graphs of genus 1

Let D be a distance matrix of order $n \times n$

Q What are the conditions on $D(i, j)$ such that D is realizable by a graph of genus 1?

- A characterization of realizable metric by graph of genus 1 gives information about the moduli space of tropical curves of genus 1.
- A characterization of realizable metric by graph of genus 1 gives information about the moduli space of tropical curves of genus 1.
- Graphs of genus 1 are important in Phylogenetic:

- A characterization of realizable metric by graph of genus 1 gives information about the moduli space of tropical curves of genus 1.
- Graphs of genus 1 are important in Phylogenetic:

- A characterization of realizable metric by graph of genus 1 gives information about the moduli space of tropical curves of genus 1.
- Graphs of genus 1 are important in Phylogenetic:

Theorem (-,Cools, 2014)

A metric $D=\left(D_{i j}\right) \in \mathbb{R}^{15}$ on 6 vertices arises from a metric graph of genus ≤ 1 if and only if there exist 3 quarters
$I_{1}, I_{2}, I_{3} \subset[6]=\{1, \ldots, 6\}$ such that:

Theorem (-,Cools, 2014)

A metric $D=\left(D_{i j}\right) \in \mathbb{R}^{15}$ on 6 vertices arises from a metric graph of genus ≤ 1 if and only if there exist 3 quarters
$I_{1}, I_{2}, I_{3} \subset[6]=\{1, \ldots, 6\}$ such that:
i) each l_{i} satisfies the four-point condition, i.e. if $I_{i}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, then the maximum in

$$
D_{v_{1} v_{2}}+D_{v_{3} v_{4}}, \quad D_{v_{1} v_{3}}+D_{v_{2} v_{4}}, \quad D_{v_{1} v_{4}}+D_{v_{2} v_{3}}
$$

is attained at least twice.

Theorem (-,Cools, 2014)

A metric $D=\left(D_{i j}\right) \in \mathbb{R}^{15}$ on 6 vertices arises from a metric graph of genus ≤ 1 if and only if there exist 3 quarters
$I_{1}, I_{2}, I_{3} \subset[6]=\{1, \ldots, 6\}$ such that:
i) each l_{i} satisfies the four-point condition, i.e. if $I_{i}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, then the maximum in

$$
D_{v_{1} v_{2}}+D_{v_{3} v_{4}}, \quad D_{v_{1} v_{3}}+D_{v_{2} v_{4}}, \quad D_{v_{1} v_{4}}+D_{v_{2} v_{3}}
$$

is attained at least twice.
ii) $\cup_{i_{1}}^{3} I_{i}=[6]$ and $\left|\cap_{i_{1}}^{3} I_{i}\right| \in\{0,2\}$

Theorem (-,Cools, 2014)

A metric $D=\left(D_{i j}\right) \in \mathbb{R}^{15}$ on 6 vertices arises from a metric graph of genus ≤ 1 if and only if there exist 3 quarters
$I_{1}, I_{2}, I_{3} \subset[6]=\{1, \ldots, 6\}$ such that:
i) each I_{i} satisfies the four-point condition, i.e. if $I_{i}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, then the maximum in

$$
D_{v_{1} v_{2}}+D_{v_{3} v_{4}}, \quad D_{v_{1} v_{3}}+D_{v_{2} v_{4}}, \quad D_{v_{1} v_{4}}+D_{v_{2} v_{3}}
$$

is attained at least twice.
ii) $\cup_{i_{1}}^{3} I_{i}=[6]$ and $\left|\cap_{i_{1}}^{3} I_{i}\right| \in\{0,2\}$
iii) if $\left|I_{i} \cap I_{j}\right|=2$, with $I_{i}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $I_{j}=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ then the minimum in

$$
D_{v_{1} v_{2}}+D_{v_{3} v_{4}}, \quad D_{v_{1} v_{3}}+D_{v_{2} v_{4}}, \quad D_{v_{1} v_{4}}+D_{v_{2} v_{3}}
$$

is attained by $D_{v_{1} v_{2}}+D_{v_{3} v_{4}}$ and the minimum in

$$
D_{v_{1} v_{2}}+D_{v_{5} v_{6}}, \quad D_{v_{1} v_{5}}+D_{v_{2} v_{6}}, \quad D_{v_{1} v_{6}}+D_{v_{2} v_{5}}
$$

is attained by $D_{v_{1} v_{2}}+D_{v_{5} v_{6}}$.
E_{i} be the $n \times n$-matrix where

$$
\left(E_{i}\right)_{j k}= \begin{cases}1 & \text { if } j=i \neq k \\ 1 & \text { if } j \neq i=k \\ 0 & \text { elsewhere }\end{cases}
$$

E_{i} be the $n \times n$-matrix where

$$
\begin{gathered}
\left(E_{i}\right)_{j k}= \begin{cases}1 & \text { if } j=i \neq k \\
1 & \text { if } j \neq i=k \\
0 & \text { elsewhere }\end{cases} \\
D_{i}(\alpha)=D-\alpha \cdot E_{i}
\end{gathered}
$$

Theorem

$D_{i}(\alpha)$ is a distance matrix if and only if

$$
\alpha \leq \frac{1}{2} \cdot\left(d_{p i}+d_{i r}-d_{p r}\right), \text { for all } p, r \neq i .
$$

The new metric $D_{i}(\alpha)$, obtained from D, is called a compaction.

The compaction of an index i of D leads to a new matrix with a possible pair of equal rows (and by symmetry of equal columns).

By deleting one of these equal rows and columns we obtain a new matrix whose order is one unit lower. This new matrix is called a reduction of D.

The compaction of an index i of D leads to a new matrix with a possible pair of equal rows (and by symmetry of equal columns).

By deleting one of these equal rows and columns we obtain a new matrix whose order is one unit lower. This new matrix is called a reduction of D.

Definition

Given a distance matrix D of order $n \times n$ define the vector $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ where

$$
a_{i}=\frac{1}{2} \cdot \min _{p \neq i, r \neq i}\left\{d_{p i}+d_{i r}-d_{p r}\right\}
$$

The vector \mathbf{a} is called the compaction vector of D.

Notice that, in the case i is a leaf, then the entry a_{i} is the length of the edge connecting the i to its internal node.

Consider now the compaction matrix

$$
D(\mathbf{a})=D-a_{1} \cdot E_{1}-\cdots-a_{n} \cdot E_{n} .
$$

Consider now the compaction matrix

$$
D(\mathbf{a})=D-a_{1} \cdot E_{1}-\cdots-a_{n} \cdot E_{n} .
$$

If two rows i and j of $D(\mathbf{a})$ are equal this means that nodes i and j form a cherry.
We contract them to give a
 single leaf labeled i, j.

Consider now the compaction matrix

$$
D(\mathbf{a})=D-a_{1} \cdot E_{1}-\cdots-a_{n} \cdot E_{n} .
$$

If two rows i and j of $D(\mathbf{a})$ are equal this means that nodes i and j form a cherry.
We contract them to give a single leaf labeled i, j.

Theorem

A distance matrix D, of order n, as an n-gon as a realization if and only if there exists a real permutation π such that

$$
d_{i \pi^{s}(i)}=\min \left\{d_{i \pi(i)}+d_{\pi(i) \pi^{2}(i)}+\cdots+d_{\pi^{s-1}(i) \pi^{s}(i)}, d_{\pi^{s}(i) \pi^{s+1}(i)}+\cdots+d_{\pi^{n-1}(i) i}\right\}
$$

for all $i=1, \ldots, n$ and for all $s=1, \ldots, n$.

Algorithm[-,Cools, 2014]

INPUT: a distance matrix D
Step 1 Compute the compaction vector \mathbf{a} of D. If \mathbf{a} is the null vector then go to step 4
Step 2 compute the compaction matrix $D(\mathbf{a})$ of D with respect to \mathbf{a}. Keep track of a and of equal rows in $D(\mathbf{a})$.
step 3 Remove equal rows (and columns) in $D(\mathbf{a})$ obtaining a matrix D^{\prime}. Pose $D=D^{\prime}$ and go to step 1
step 4 Check if D is realizable by a n-gon. If so, going forward on the procedure, we can construct a graph of genus 1 which is a realization of the initial matrix D.

$$
D_{1}=\begin{gathered}
\\
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{gathered}\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 2 & 5 & 6 & 7 & 4 \\
2 & 0 & 5 & 6 & 7 & 4 \\
5 & 5 & 0 & 4 & 5 & 3 \\
6 & 6 & 4 & 0 & 3 & 2 \\
7 & 7 & 5 & 3 & 0 & 3 \\
4 & 4 & 3 & 2 & 3 & 0
\end{array}\right)
$$

$$
D_{1}=\begin{gathered}
\\
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{gathered}\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 2 & 5 & 6 & 7 & 4 \\
2 & 0 & 5 & 6 & 7 & 4 \\
5 & 5 & 0 & 4 & 5 & 3 \\
6 & 6 & 4 & 0 & 3 & 2 \\
7 & 7 & 5 & 3 & 0 & 3 \\
4 & 4 & 3 & 2 & 3 & 0
\end{array}\right)
$$

$$
\mathbf{a}_{1}=\left(1,1, \frac{3}{2}, 1,2,0\right)
$$

$$
\begin{aligned}
& D_{1}=\begin{array}{l}
\\
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 2 & 5 & 6 & 7 & 4 \\
2 & 0 & 5 & 6 & 7 & 4 \\
5 & 5 & 0 & 4 & 5 & 3 \\
6 & 6 & 4 & 0 & 3 & 2 \\
7 & 7 & 5 & 3 & 0 & 3 \\
4 & 4 & 3 & 2 & 3 & 0
\end{array}\right) \\
& \begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& D_{1}\left(\mathbf{a}_{1}\right)=\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}\left(\begin{array}{cccccc}
0 & 0 & \frac{5}{2} & 4 & 4 & 3 \\
0 & 0 & \frac{5}{2} & 4 & 4 & 3 \\
\frac{5}{2} & \frac{5}{2} & 0 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\
4 & 4 & \frac{3}{2} & 0 & 0 & 1 \\
4 & 4 & \frac{3}{2} & 0 & 0 & 1 \\
3 & 3 & \frac{3}{2} & 1 & 1 & 0
\end{array}\right) \\
& \mathbf{a}_{1}=\left(1,1, \frac{3}{2}, 1,2,0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& D_{1}=\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}\left(\begin{array}{llllll}
0 & 2 & 5 & 6 & 7 & 4 \\
2 & 0 & 5 & 6 & 7 & 4 \\
5 & 5 & 0 & 4 & 5 & 3 \\
6 & 6 & 4 & 0 & 3 & 2 \\
7 & 7 & 5 & 3 & 0 & 3 \\
4 & 4 & 3 & 2 & 3 & 0
\end{array}\right) \\
& \begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& D_{1}\left(\mathbf{a}_{1}\right)=\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\left(\begin{array}{cccccc}
0 & 0 & \frac{5}{2} & 4 & 4 & 3 \\
0 & 0 & \frac{5}{2} & 4 & 4 & 3 \\
\frac{5}{2} & \frac{5}{2} & 0 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\
4 & 4 & \frac{3}{2} & 0 & 0 & 1 \\
4 & 4 & \frac{3}{2} & 0 & 0 & 1
\end{array}\right) \quad D_{2}=\begin{array}{cccc}
1,2 & 3 & 4,5 & 6 \\
3 \\
4,5 \\
6
\end{array}\left(\begin{array}{ccc}
3 \\
0 & \frac{5}{2} & 4 \\
3 \\
\frac{5}{2} & 0 & \frac{3}{2} \\
4 & \frac{3}{2} \\
4 & \frac{3}{2} & 0 \\
1 \\
3 & \frac{3}{2} & 1
\end{array} 00\right)
\end{aligned}
$$

$$
D_{2}=\begin{aligned}
& 1,2 \\
& 3 \\
& 4,5 \\
& 6
\end{aligned}\left(\begin{array}{cccc}
1,2 & 3 & 4,5 & 6 \\
0 & \frac{5}{2} & 4 & 3 \\
\frac{5}{2} & 0 & \frac{3}{2} & \frac{3}{2} \\
4 & \frac{3}{2} & 0 & 1 \\
3 & \frac{3}{2} & 1 & 0
\end{array}\right)
$$

$$
D_{2}=\begin{aligned}
& 1,2 \\
& 3 \\
& 4,5 \\
& 6
\end{aligned}\left(\begin{array}{cccc}
1,2 & 3 & 4,5 & 6 \\
0 & \frac{5}{2} & 4 & 3 \\
\frac{5}{2} & 0 & \frac{3}{2} & \frac{3}{2} \\
4 & \frac{3}{2} & 0 & 1 \\
3 & \frac{3}{2} & 1 & 0
\end{array}\right)
$$

$$
\mathbf{a}_{2}=\left(2,0, \frac{1}{2}, 0\right)
$$

$$
\begin{aligned}
D_{2}=\begin{array}{l}
1,2 \\
3 \\
4,5 \\
6
\end{array}\left(\begin{array}{cccc}
1,2 & 3 & 4,5 & 6 \\
0 & \frac{5}{2} & 4 & 3 \\
\frac{5}{2} & 0 & \frac{3}{2} & \frac{3}{2} \\
4 & \frac{3}{2} & 0 & 1 \\
3 & \frac{3}{2} & 1 & 0
\end{array}\right) \\
\\
\\
\\
D_{2}\left(a_{2}\right)=\begin{array}{l}
1,2 \\
3 \\
4,5
\end{array}\left(\begin{array}{ccccc}
1,2 & 3 & 4,5 & 6 \\
0 & \frac{1}{2} & \frac{3}{2} & 1 \\
\frac{1}{2} & 0 & 1 & \frac{3}{2} \\
\frac{3}{2} & 1 & 0 & \frac{1}{2} \\
1 & \frac{3}{2} & \frac{1}{2} & 0
\end{array}\right)
\end{aligned}
$$

The compaction vector of $D_{2}\left(\mathbf{a}_{2}\right)$ is the null vector.
However, $D_{2}\left(\mathbf{a}_{2}\right)$ has a realization by an 4 -gon.

1,2
3
4,5
6

0 \& \frac{1}{2} \& \frac{3}{2} \& 1

\frac{1}{2} \& 0 \& 1 \& \frac{3}{2}

\frac{3}{2} \& 1 \& 0 \& \frac{1}{2}

1 \& \frac{3}{2} \& \frac{1}{2} \& 0\end{array}\right)\)

$$
\begin{aligned}
& 1,2 \quad 3 \quad 4,5 \quad 6 \\
& \begin{array}{l}
1,2 \\
3 \\
4,5 \\
6
\end{array}\left(\begin{array}{llll}
0 & \frac{1}{2} & \frac{3}{2} & 1 \\
\frac{1}{2} & 0 & 1 & \frac{3}{2} \\
\frac{3}{2} & 1 & 0 & \frac{1}{2} \\
1 & \frac{3}{2} & \frac{1}{2} & 0
\end{array}\right) \\
& \mathbf{a}_{2}=\left(2,0, \frac{1}{2}, 0\right)
\end{aligned}
$$

Thank you for your attention

