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Lecture 1. Basic facts in Algebraic

Statistics

Statistics is the science of data analysis. What do statisticians do with their data? They build models of the

process that generated the data and, in what is known as statistical inference, draw conclusions about this

process.

In Algebraic Statistics the inference tools look di↵erent from those found in many texts on mathematical

statistics or computational biology: they are written in the language of abstract algebra. The algebraic

language for statistics clarifies many of the ideas central to the analysis of discrete data, and, within the

context of biological sequence analysis, unifies the main ingredients of many widely used algorithms.

Algebraic Statistics is a new field, less than two decades old, whose precise scope is still emerging.

The term itself was coined by Giovanni Pistone, Eva Riccomagno and Henry Wynn, with the title of their

book [47]. That book explains how polynomial algebra arises in problems from experimental design and

discrete probability, and it demonstrates how computational algebra techniques can be applied to statistics.

This application reveals many important aspects. In particular if a statistical model can be described by a

set of polynomials, then we can use Gröbner bases to study such set and then, as a consequence, we have

the chance to use softwares for Computer Algebra as Co.Co.A., Macaulay2 and Singular to study such

statistical models.

If [47] can be considered the european point of view in Algebraic Statistics, it is mandatory to notice

that american researchers introduced new algebraic and geometric tools in the study of statistical models:

polytopes, graph theory, tropical geometry, secant varieties. This use mainly concerned with applications

on sequences alignment, statistical inference, Phylogenetics, Enumerative Biology (see, for example, [46]).

Year after year di↵erent aspects of statistical models show their counter-part in some algebraic and/or

geometric discipline bringing new ideas to attack specific problems in Statistics or to describe statistical

events.
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Thus we can now talk about an Algebra/Geometry-Statistics Dictionary:

Statistics Algebra

Independence Segre Variety

Binomial Random Variable Rational Normal Curve

Log-linear Model Toric Variety

Mixture Model Secant Variety

ML Estimation Tropicalization

Design Zero-dimensional Scheme
...

...

This dictionary is far to be complete and new correspondences can be added, as we will see, for the case

of the concept of identifiability, in Lecture 3.

1.1 Statistical models

Definition 1.1.1. A statistical model is a family of probability distributions on some state space.

Our state space is finite and denoted by [m] = {1, 2, . . . ,m}. A probability distribution on [m] is a point

of the probability simplex

�m�1 := {(p1, . . . , pm) 2 Rm :
mX

i=1

pi = 1, pi � 0 8i}.

We can use also the language of random variables: let X be a random variable with values in [m], then the

distribution of X is the point

⇣
Prob(X = 1),Prob(X = 2), . . . ,Prob(X = m)

⌘
2 �m�1.

Definition 1.1.2. A statistical model is a subsetM of �m�1.

Example 1.1.3 (Binomial random variable). Let X be the random variable describing the number of heads

in m flips of a biased coin (then the state space is {0, 1, . . . ,m}). Let us denote the unknown bias by ✓ 2 [0, 1].

If, for example, the coin is a “legal” one, then ✓ = 1
2 . If ✓ � 1

2 then head is favorite, while for ✓  1
2 tail will

be favorite. Thus the probability to observe j heads in m flips of the coin is given by:

Prob(X = j) =
 
m
j

!
✓ j(1 � ✓)m� j ✓ 2 [0, 1]
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Hence the associated statistical model, denotedMm, is the set of vectors
⇣
(1 � ✓)m,

⇣
m
1

⌘
✓(1 � ✓)m�1, . . . , ✓m

⌘

as ✓ varies in [0, 1], i.e.

Mm =

(⇣
(1 � ✓)m,

 
m
1

!
✓(1 � ✓)m�1, . . . , ✓m

⌘
: ✓ 2 [0, 1]

)
.

Definition 1.1.4. Let S ✓ K[p1, p2, . . . , pm] be a set of polynomials in the pi’s and consider

Z�(S ) = ZK(S ) \ �m�1

where ZK(S ) = {a 2 Km : f (a) = 0,8 f 2 S } is the zero set of S . Then Z�(S ) is an algebraic statistical

model.

Example 1.1.5. Consider the Hankel matrix

Mm =

0
BBBBBBBBB@

p0
p1

(m
1)

p2

(m
2)
· · · pm�1

( m
m�1)

p1

(m
1)

p2

(m
2)

p3

(m
3)
· · · pm�1

( m
m�1)

1
CCCCCCCCCA

and let S m be the set of 2 ⇥ 2 minors of Mm

S m =

8>>><
>>>:

p0 p2⇣
m
2

⌘ � p2
1⇣

m
1

⌘2 ,
p0 p3⇣

m
3

⌘ � p2
1⇣

m
1

⌘⇣
m
2

⌘ , . . .

9>>>=
>>>;
.

Then the modelMm of Example 1.1.3 is exactly Z�m (S m).

In the case m = 2 one hasM2 = Z�(4p0 p2 � p2
1) which can be represented in the following way

Definition 1.1.6. Consider a continuos function

f : ⇥ ✓ Rd ! Rm

✓ = (✓1, . . . , ✓d) 7!
⇣

f1(✓), . . . , fm(✓)
⌘

Then f (⇥) ⇢ �m�1 is a parametric statistical model, denoted byM f .

Remark 1.1.7. It is clear that the i�th component of f , fi, corresponds to the probability pi of the event i.
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The unknowns ✓1, . . . , ✓d represent the model parameters. In most cases of interest, d is much smaller

than m. The parameter vector ✓1, . . . , ✓d ranges over a suitable non-empty open subset ⇥ 2 Rd which is

called the parameter space of the model f . We assume that the parameter space ⇥ satisfies the condition

fi(✓) > 0 for all i 2 [m] and ✓ 2 ⇥ (1.1)

Under these hypotheses, the following two conditions are equivalent:

f (⇥) ✓ �m�1 ()
X

fi(✓) = 1. (1.2)

If (1.2) holds, then our model is simply the set f (⇥). If it does not hold,we pass to consider the normalization
1P
fi(✓)

�
f1(✓), . . . , fm(✓)

�
.

Definition 1.1.8. Suppose that the components fi’s of the function f in Definition 1.1.6 are of the form

f1 =
g1
h1
, . . . , fm =

gm
hm

, where gi, hi 2 R[✓1, . . . , ✓d] and ⇥ ⇢ Rd is a semi-algebraic set. Then f (⇥) ⇢ �m�1 is

a parametric algebraic statistical model.

In this model, after multiplying for the common denominator, each coordinate function pi is a polyno-

mial in the d unknowns, which means it has the form

fi(✓) =
X

a2Nd

ca✓
a1
1 ✓

a2
2 · · · ✓ad

d

where all but finitely many of the coe�cients ca 2 R are zero. Here (1.2) is an identity of polynomial

functions, which means that all non-constant terms of the polynomials fi cancel, and the constant terms add

up to 1.

Example 1.1.9. The modelMm of Example 1.1.3 is a parametric algebraic statistical model since

⇥ = [0, 1]

and

f j = p j =

 
m
j

!
✓ j(1 � ✓)m� j.

Let us introduce now the so-called mixture and secant models. Consider two random variables X,H

with X 2 [m], H 2 [r], such that

• X|H=i is represented by a distribution pi inMX

• H is represented by a distribution ⇡ 2 �r�1

• H is hidden, the probability of states at X is given by
Pr

i=1 ⇡i pi
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Definition 1.1.10. A mixture model is defined as

Mixtr(M) =
⇢ rX

i=1

⇡i pi | ⇡ 2 �r�1, p1, . . . , pr 2M
�

The secant model is defined as

S ecr(M) = Mixtr(M) \ �m�1

Example 1.1.11. Consider the model M2 of a binomial random variable on state [0, 1, 2] as defined in

Example 1.1.3. Then, as already said,M2 is a subset of �2 given by the equation

det

0
BBBBBBBB@
p0

p1
2

p1
2 p2

1
CCCCCCCCA = 0.

The second secant model ofM2, S ec2(M2), is the subset of �2 given by the condition

det

0
BBBBBBBB@
p0

p1
2

p1
2 p2

1
CCCCCCCCA � 0.

M2 S ec2(M2)

1.2 Maximum likelihood estimation

Our data are tipically given in the form of a sequence of observations

i1i2 · · · iN i j 2 [m]. (1.3)

Each data point i j is an element from our state space [m]. The integer N, which is the length of the sequence,

is called the sample size. Assuming that the observations (1.3) are independent and identically distributed

samples, we can summarize the data (1.3) in the data vector

u = (u1, . . . , um)

where uk =number of indices j 2 N such that i j = k. Hence u is a vector in Nm with u1 + u2 + · · · + um = N.

Definition 1.2.1. The empirical distribution is u
N =

1
N (u1, . . . , um). The entries ui

N ’s are the observed

relative frequencies of the various otucomes.
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Remark 1.2.2. It is obvious that the empirical distribution is a point in the probability simplex �m�1.

Let us fix our attention in the parametric statistical model M f . We say that this model is a good fit

for the data u if there exists a parameter vector ✓ 2 ⇥ such that the probability distribution f (✓) is very

close, in a statistical meaningful sense, to the empirical distribution. Suppose we draw N times at random

(independently and with replacement) from the set [m] with respect to the probability distribution f (✓).

Then the probability of observing the sequence (1.3) equals

L(✓) = fi1 (✓) fi2 (✓) · · · fiN (✓) = f1(✓)u1 f2(✓)u2 · · · fm(✓)um . (1.4)

This expression depends on the parameter vector ✓ as well as the data vector u. However, we think of u

as being fixed and then L is a function from ⇥ to the positive real numbers.

Definition 1.2.3. L(✓) is the likelihood function for the modelM f for the data i1i2 · · · iN.

Remark 1.2.4. Note that any reordering of the sequence (1.3) leads to the same data vector u. Hence the

probability of observing the data vector u is equal to

(u1 + u2 + · · · + um)!
u1!u2! · · · um!

L(✓) (1.5)

which is called the scaled likelihood function.

Remark 1.2.5. The vector u plays the role of a su�cient statistic for the modelM f . This means that the

likelihood function L(✓) depends on the data (1.3) only through u.

In practice one often replaces the likelihood function by its logarithm

`(✓) = log(L(✓)) = u1 · log(( f1(✓)) + u2 · log(( f2(✓)) + · · · + um · log(( fm(✓)) (1.6)

This is the log-likelihood function. Note that `(✓) is a function from the parameter space ✓ ✓ Rd to the

negative real numbers R<0.

The problem of maximum likelihood estimation is to maximize the likelihood function L(✓) in (1.4), or,

equivalently, the scaled likelihood function (1.5), or, equivalently, the log-likelihood function `(✓) in (1.6).

Here ✓ ranges over the parameter space ✓ ✓ Rd. Formally, we consider the optimization problem:

Maximize l(✓) subject to ✓ 2 ⇥.

Definition 1.2.6. A solution ✓̂ of the optimization problem is a maximum likelihood estimate of ✓ with

respect to the modelM f and data u.
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Sometimes, if the model satisfies certain properties, it may be that there always exists a unique maxi-

mum likelihood estimate ✓̂. This happens for linear models and toric models, due to the concavity of their

log-likelihood function, as we shall see in the Section 1.4. For most statistical models, however, the situa-

tion is not as simple. First, a maximum likelihood estimate need not exist (since we assume ⇥ to be open).

Second, even if ✓̂ exists, there can be more than one global maximum, in fact, there can be infinitely many

of them. And, third, it may be very di�cult to find any one of these global maxima. In that case, one may

content oneself with a local maximum of the likelihood function. There are numerical methods for finding

solutions to the maximum likelihood estimation problem such as the EM-algorithm.

1.3 Independence models and contingency tables

Let X and Y be discrete random variables. We assume that X takes on values in the set [m] and Y takes on

values in [n]. Their joint probability distribution is the m ⇥ n�matrix P = (pi j) where

pi j = Prob(X = i and Y = j).

The real numbers pi j’s are probabilities, then they are non-negative and their sum is one. Thus P is a point

in a probability simplex of dimension mn � 1, in symbols,

P 2 �mn�1 =

8>>><
>>>:

u 2 Rm⇥n :
mX

i=1

nX

j=1

ui j = 1 and ui j � 0 for all i, j

9>>>=
>>>;
.

The row sums of the matrix P give the distribution of the random variable X:

Prob(X = i) = pi+ = pi1 + pi2 + · · · + pin, (1.7)

and the column sums give the distribution of the random variable Y:

Prob(Y = j) = p+ j = p1 j + p2 j + · · · + pm j. (1.8)

Since both of these are probability distributions, they satisfy

p1+ + p2+ + · · · + pm+ = p+1 + p+2 + · · · + p+n = 1.

Equivalently, the vector of row sums (p1+, p2+, . . . , pm+) 2 [m] lies in the standard (m � 1)� simplex �m�1,

and the vector of column sums (p+1, p+2, . . . , p+n) 2 [n] lies in the standard (n � 1)�simplex �n�1. This

means that the linear map

↵ : Rm⇥n ! Rm ⇥ Rn

P = (pi j) 7! ((p1+, . . . , pm+), (p+1, . . . , p+n))
(1.9)
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restricts to a projection of convex polytopes

↵ : �mn�1 ! �m�1 ⇥ �n�1.

Definition 1.3.1. Two random variables X and Y are independent, written X y Y, if

Prob(X = i,Y = j) = Prob(X = i) · Prob(Y = j) for all (i, j) 2 [m] ⇥ [n]. (1.10)

The modelMXyY ⇢ �mn�1 of all possible joint probability distributions of two independent random vari-

ables is called independence model.

Remark 1.3.2. Given the joint probability distribution P = (pi j) of two random variables X and Y and

taking in mind formulas (1.7) and (1.8), the condition of independence (1.10) of X and Y can be equivalently

stated as

pi j = pi+ · p+ j for all (i, j) 2 [m] ⇥ [n]. (1.11)

Thus, the modelMXyY can be defined as

MXyX = {P 2 �mn�1 : P satisfies (1.11)} .

Example 1.3.3. From Remark 1.3.2 we obtain thatMXyY = Z�(S ) with

S =
⇢

pi j �
⇣Pn

k=1 pik
⌘
·
⇣Pm

l=1 pl j
⌘ �

thenMXyY is an algebraic statistical model.

Consider two independent random variables with m = n = 2. The model is

MXyY = {(p11, p12, p21, p22) : p11 p22 = p21 p12} \ �3

which can be represented as a surface in �3 as you can see in the next figure.
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Let us prove now an important result which characterize points in �mn�1 representing distribution of two

independent variables.

Lemma 1.3.4. Two random variables X and Y are independent if and only if their joint distributions matrix

P = (pi j) has rank 1.

Proof. An m ⇥ n�matrix P = (pi j) has rank 1 if and only if there exist real vectors (u1, . . . , um) and

(v1, . . . , vn) such that pi j = uiv j for all i and j. Here we can scale the entries so that
Pm

i=1 ui = 1 holds.

These conditions imply

v j =

0
BBBBB@

mX

i=1

ui

1
CCCCCA · v j =

mX

i=1

pi j = p+ j.

Assuming that P lies in �mn�1, we get

ui = ui ·
0
BBBBBB@

nX

j=1

p+ j

1
CCCCCCA =

nX

j=1

uiv j =

nX

j=1

pi j = pi+.

Thus a joint distribution matrix P has rank 1 if and only if pi j = pi+ · p+ j for all (i, j) 2 [m] ⇥ [n], which is

precisely, by Remark 1.3.2, the defining condition for X and Y to be independent. ⇤

Remark 1.3.5. Due to the previous Lemma, the independence modelMXyY can be seen as the subset of

�mn�1 consisting of all rank 1 matrices.

In Example 1.3.3 we saw thatMXyY can be defined, as algebraic model, by

MXyY = Z�
⇣
pi j �

0
BBBBB@

nX

k=1

pik

1
CCCCCA ·

0
BBBBB@

mX

l=1

pl j

1
CCCCCA
⌘

but these polynomials do not generate I(MXyY ). Let P = (pi j) be an m ⇥ n matrix of unknowns and let

R = R[p11, p12, . . . , pmn] be the ring polynomials in these unknowns. Let I2(P) be the ideal generated by all

the 2⇥ 2�minors of P. Thus I2(P) is generated by
⇣

m
2

⌘
·
⇣

n
2

⌘
quadratic polynomials of the form pi j pkl � pil pk j.

Then, by Remark 1.3.5MXyY is the intersection of the a�ne variety of I2(P) with the probability simplex

�mn�1. Thus I(MXyY ) =< 2 ⇥ 2 minors of P > + <
P

i, j pi j � 1 >.

This prove the first part of the statement of the following

Proposition 1.3.6. The independence model MXyY ⇢ �mn�1 is an algebraic variety of dimension (m �
1)(n � 1), known as the Segre variety, in the simplex �mn�1.

The computation of the dimension ofMXyY easily follow from the next Lemma.

Lemma 1.3.7. The restriction of the map ↵ to the independence modelMXyY is a bijection betweenMXyY

and �m�1 ⇥ �n�1. Its inverse is given by
⇣
(u1, . . . , um), (v1, . . . , vn)

⌘
7! P = (uiv j)i2[m], j2[n]. (1.12)
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We denote this bijectionMXyY ! �m�1 ⇥ �n�1 by the Greek letter µ, i.e. µ = ↵|MXyY and we call it the

moment map of the independence model. The inverse of the moment map µ�1 is given by the formula in

(1.12). It maps the convex polytope �m�1 ⇥ �n�1 bijectively onto the non-negative part of the Segre variety.

Remark 1.3.8. From the map (1.12) we get thatMXyY is a parametric algebraic statistical model where

⇥ = �m�1 ⇥ �n�1

and

pi j = fi j(v, u) = viu j.

Example 1.3.9. An element ofMXyY can be expressed as a matrix of rank 1, thus

S ecr(MXyY ) = {matrices M 2 �mn�1 of rank  r}.

For the moment we considered only probabilistic matrices, that is matrices where the sum of the entries

is egual to 1. However we can also consider more general matrices and we can eventually transform them

in probabilistic matrices simply normalizing them.

Definition 1.3.10. An (m ⇥ n)�matrix with non-negative integer entries is called a contingency table.

Contingency tables are the most basic data structure used by statisticians to record cross-classified

discrete data. Every probabilistic matrix is a contingency table. Here is a simple example of such a table.

These data concern eye color and hair color of 592 subjects. taken from [49] and discussed in [25].
Hair Color

Black Brunette Red Blonde Total

brown 68 119 26 7 220

blue 20 84 17 94 215

Eye Color hazel 15 54 14 10 93

Green 5 29 14 16 64

Total 108 286 71 127 592

A basic statistical question would be whether Hair Color and Eye Color are independent, and, if not,

what is the nature of their correlation. These questions can be phrased in the setting of the independence

model introduced previously. We regard the eye color as a random variable X whose four values are indexed

by the first four positive integers:

1 = Brown, 2 = Blue, 3 = Hazel, 4 = Green.
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Likewise, hair color is a random variable Y which takes four values:

1 = Black, 2 = Brunette, 3 = Red, 4 = Blonde.

If we divide the above 4 ⇥ 4�matrix by the grand total N = 592, which is the sample size of our data,

then we get the empirical distribution

P =
1

592

0
BBBBBBBBBBBBBBBBBBBBBBB@

68 119 26 7

20 84 17 94

15 54 14 10

5 29 14 16

1
CCCCCCCCCCCCCCCCCCCCCCCA

2 �15.

Proposition 1.3.11. The maximum likelihood estimate for an m ⇥ n�table is

N · µ�1(↵(P))

where P is the empirical distribution for that table and N is the grand total.

Thus the maximum likelihood estimate of a contingency table is the unique rank one table which has

the same row and column sums. If A is an m⇥n�table then we write Â for its maximum likelihood estimate.

For instance, if A is the above table of eye color and hair color data, then

Â = 592 · µ�1
✓⇣

220
592 ,

215
592 ,

93
592 ,

64
592

⌘
,
⇣

108
592 ,

286
592 ,

71
592 ,

127
592

⌘◆

=

0
BBBBBBBBBBBBBBBBBBBBBBB@

1485
37

7865
74

3905
148

6985
148

5805
148

30745
296

15265
592

27305
592

2511
148

13299
296

6603
592

11811
592

432
37

1144
37

284
37

508
37

1
CCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBB@

40.14 106.3 26.39 47.20

39.22 103.9 25.79 46.12

16.97 44.93 11.15 19.95

11.68 30.92 7.676 13.73

1
CCCCCCCCCCCCCCCCCCCCCCCA

(1.13)

Corollary 1.3.12. An m⇥n�contingency table A is independent if and only if it is equal to its own maximum

likelihood estimate Â.

Obviously, we can generalize to tensors all we said in this section. In particular, if we consider n

random variables X1, X2, . . . , Xn assuming values respectively in [m1], [m2], . . . , [mn] then we can define the

probability tensor P = (pi1i2···in ) as

pi1i2···in = Prob(X1 = i1, X2 = i2, . . . , Xn = in).

Here P is a (m1 ⇥ m2 ⇥ · · · ⇥ mn)�tensor and it represents a point in the probability simplex �m1m2···mn�1.

Again, the modelMX1yX2y···yXn of n independent random variables can be seen as the subset of �m1m2···mn�1

consisting of all rank 1 tensors.
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1.4 Linear and toric models

In this section we introduce two classes of models which, under weak conditions on the data, have the

property that the likelihood function has exactly one local maximum ✓̂ 2 ⇥. Since the parameter spaces of

the models are convex, the maximum likelihood estimate ✓̂ can be computed using any of the hill-climbing

methods of convex optimization, such as the gradient ascent algorithm.

Definition 1.4.1. An parametric algebraic statistical model f : Rd ! Rm is called a linear model if each

of its coordinate polynomials fi(✓) is a linear function, i.e.

fi(✓) =
dX

j=1

ai j✓ j + bi. (1.14)

The following proposition states the uniqueness of local maximum ✓̂ for this kind of models.

Proposition 1.4.2. For any linear model � and data u 2 Nm, the log-likelihood function `(✓) is concave. If

the linear map is one-to-one and all ui are positive then the log-likelihood function is strictly concave.

Proof. Our assertion that the log-likelihood function `(✓) is concave states that the Hessian matrix
✓

@2`
@✓ j@✓k

◆

is negative semi-definite for every ✓ 2 ⇥. In other words, we need to show that every eigenvalue of this

symmetric matrix is non-positive. The partial derivative of the linear function fi(✓) in (1.14) with respect to

the unknown ✓ j is the constant ai j. Hence the partial derivative of the log-likelihood function `(✓) equals

@`

@✓ j
=

mX

i=1

uiai j

fi(✓)
. (1.15)

Taking the derivative again, we get the following formula for the Hessian matrix
 
@2`

@✓ j@✓k

!
= �AT · diag

 
u1

f1(✓)2 ,
u2

f2(✓)2 , . . . ,
um

fm(✓)2

!
· A. (1.16)

Here A is the m⇥ d matrix whose entry in row i and column j equals ai j. This shows that the Hessian (1.16)

is a symmetric d ⇥ d matrix each of whose eigenvalues is non-positive.

The argument above shows that `(✓) is a concave function. Moreover, if the linear map f is one-to-one

then the matrix A has rank d. In that case, provided all ui are strictly positive, all eigenvalues of the Hessian

are strictly negative, and we conclude that `(✓) is strictly concave for all ✓ 2 ⇥. ⇤

Remark 1.4.3. The critical points of the likelihood function `(✓) of the linear model f are the solutions to

the system of d equations in d unknowns which are obtained by equating (1.15) to zero. What we get are

the likelihood equations
mX

i=1

uiai1

fi(✓)
=

mX

i=1

uiai2

fi(✓)
= · · · =

mX

i=1

uiaid

fi(✓)
= 0.
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Our second class of models with well-behaved likelihood functions are the toric models. These are also

known as log-linear models, and they form an important class of exponential families. Let A = (ai j) be a

non-negative integer d ⇥ m matrix with property that all columns sums are equal:

dX

i=1

ai1 =

dX

i=1

ai2 = · · · =
dX

i=1

aim (1.17)

The j�th column vector a j of the matrix A represents the monomial

✓a j = ⇧d
i=1✓

ai j
i for j = 1, 2, . . . ,m

Our assumption (1.17) says that these monomials all have the same degree.

Definition 1.4.4. The toric modelMA of A is the image of the orthant ⇥ = Rd
>0 under the map

fA : Rd ! Rm, ✓ 7! 1
Pm

j=1 ✓
a j
· (✓a1 , ✓a2 , . . . , ✓am ). (1.18)

Note that we can scale the parameter vector without changing the image: fA(✓) = fA(� · ✓). Hence the

dimension of the toric model fA(Rd
>0) is at most d � 1. In fact, the dimension of fA(Rd

>0) is one less than the

rank of A. The denominator polynomial
Pm

i=1 ✓
a j is known as the partition function. Sometimes we are

also given positive constants c1, . . . , cm > 0 and the map, now denoted fA,c is modified as follows:

fAc : Rd ! Rm, ✓ 7! 1
Pm

j=1 c j✓a j
· (c1✓

a1 , c2✓
a2 , . . . , cm✓

am ). (1.19)

In this lecture we consider only the case of ci = 1 for all i = 1, . . . , d.

In a toric model, the logarithms of the probabilities are linear functions in the logarithms of the param-

eters ✓i. It is for this reason that statisticians refer to toric models as log-linear models.

Maximum likelihood estimation for the toric model (1.18) means solving the following optimization

problem

Maximize pu1
1 · · · pum

m subject to (p1 . . . , pm) 2 fA(Rd
>0). (1.20)

This problem is equivalent to

Maximize ✓Au subject to ✓ 2 Rd
>0 and

mX

j=1

✓a j = 1 (1.21)

Here we are using multi-index notation for monomials in ✓ = (✓1, . . . , ✓d):

✓Au = ⇧d
i=1⇧

m
j=1✓

ai ju j
i = ⇧d

i=1✓
ai1u1+ai2u2+···+aimum
i and ✓a j = ⇧d

i=1✓
ai j
i .

Writing b = Au for the su�cient statistic, our optimization problem (1.21) is

Maximize ✓b subject to ✓ 2 Rd
>0 and

mX

j=1

✓a j = 1 (1.22)
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Proposition 1.4.5. Fix a toric model A and data u 2 Nm with sample size N = u1 + u2 + · · · + um and

su�cient statistic b = Au. Let p̂ = f (✓̂) be any local maximum for the equivalent optimization problems

(1.20), (1.21) and (1.22). Then

A · p̂ = 1
N
· b

Proof. We introduce a Lagrange multiplier �. Every local optimum of (1.22) is a critical point of the

following function in d + 1 unknowns ✓1, . . . , ✓d, �:

✓b + �

0
BBBBBB@1 �

mX

j=1

✓a j

1
CCCCCCA .

We apply the scaled gradient operator

✓ · r✓
 
✓1

@

@✓1
, ✓2

@

@✓2
, . . . , ✓d

@

@✓d

!

to the function above. The resulting critical equations for ✓̂ and p̂ state that

(✓̂)b · b = � ·
mX

j=1

(✓̂)a j · a j = � · A · p̂.

This says that the vector A · p̂ is a scalar multiple of the vector b = Au. Since the matrix A has the vector

(1, 1, . . . , 1) )in its row space, and since
Pm

j=1 p̂ j = 1, it follows that the scalar factor which relates the

su�cient statistic b = A · u to A · p̂ must be the sample size
Pm

j=1 u j = N. ⇤

Example 1.4.6. Consider the matrix

A =

0
BBBBBBBB@

0 1 2 . . . m � 1 m

m m � 1 m � 2 . . . 1 0

1
CCCCCCCCA

and the vector

c =
✓
1,

⇣
m
1

⌘
,
⇣

m
2

⌘
, . . . ,

⇣
m

m�1

⌘
, 1

◆
.

Thus the toric model f with components

f j(✓1, ✓2) = c j✓
a j =

 
m
j

!
✓ j

1✓
m� j
2

is the modelMm of Example 1.1.3. Setting ✓ = ✓1
✓1+✓2

yields “original” parameterization.

1.5 Model invariants

Consider a parametric algebraic statistical modelM f = f (⇥) ⇢ Rm, given by a (parametric) map

f : ⇥ ✓ Rd ! Rm

✓ = (✓1, . . . , ✓d) 7! �
f1(✓), . . . , fm(✓)

�
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We first extend the map f to C,

f̃ : Cd ! Cm

then we define the variety VM f := f̃ (Cd), that is the zariski closure of the image of f̃ .

Let I f ⇢ C[p1, . . . , pm] be the ideal of VM f : for the Hilbert basis theorem, I f is finitely generated

I f =< f1, . . . , fr > .

Definition 1.5.1. The ideal I f is called the invariant ideal of the modelM f . Its generators f1, . . . , fr are

the model invariants ofM f .

Example 1.5.2. Since the pi’s are probability, we know that
Pm

i=1 pi = 1, i.e. the probability vector

(p1, . . . , pm) is a zero of
mX

i=1

pi � 1 = 0

This invariant is called stochastic invariant.

The variety VM f is called the variety associated to the modelM f . Varieties are good approximations

to parameterizations as stated by the following

Theorem 1.5.3. VC(I( f̃ (Cd)) \ f̃ (Cd) has dimension strictly less than dim( f̃ (Cd)).

Remark 1.5.4. It is easy to check that the previous Theorem fails over R. Consider for example the function

f : R! R, f (x) = x2

Then f (R) = [0,1] but VR(I( f (R))) = R.

Example 1.5.5. The variety associated to the toric modelMA,c is defined as VA,c = f̃A,c(Cd) The invariant

ideal is given by

IA,c =< pu � pv : Au = Av,u, v 2 Nm > .

Understanding the algebraic structure of f̃ (Cd), f̃ (Cd) and I( f̃ (Cd)) (or better, of f (⇥), f (⇥) and

I( f (⇥))) can be useful for making statistical inference.

Roughly speaking, Vf is a variety that contains the (complex) joint distribution for all possible choices

of (complex) numerical parameters ✓1, . . . , ✓d for the modelM f . In applications, the choose of the model

representing a given event is usually the element of greatest interest. If an observed probability distribution

were “close” to Vf , thenM f could be interpreted as a model fitting the observed data.
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Remark 1.5.6. Extending the parameterization f to the complex numbers from the stochastic setting is

done because an algebraically closed field provides the easiest and most natural setting for understanding

polynomial maps. Of course, complex parameters and complex joint distributions are not so natural from a

statistical viewpoint. Obviously, the final goal would be to understand the model in the stochastic setting.

We have the following method which is statistically consistent.

Algebraic Algorithm for Statistical Inference:

INPUT: the joint distribution of observed frequencies P̂.

i) fix a set of models ⌦ = {M1,M2, . . . };

ii) for each modelMi in ⌦

• Find some/most/all invariants F for the variety Vi associated toMi;

• Test if F(P̂) ⇡ 0.

OUTPUT: the modelMi for which P̂ is as close as possible to Vi.

One part of understanding Vf is describing it implicitly, as the zero set of polynomials. This means to

find polynomials F 2 C[p1, . . . , pm] such that F(q) = 0 for all q 2 Vf . This is equivalent to find the kernel

of the map

�̃ : C[p1, . . . , pm]! C[✓1, . . . , ✓d]

The kernel of �̃ is the ideal I of the polynomials in the pi’s vanishing for all choices of (stochastic or

complex) parameters ✓i’s, i.e. it corresponds exactly to the ideal defined in Definition 1.5.1.

Remark 1.5.7. In the previous sections we considered elements in the unitary simplex �m. This proba-

bilistic condition can be interpreted in Algebraic Geometry as the fact that each probability distribution is

an element of a certain a�ne subspace of a projective space Pm�1. At the same time, we can view VM

projectively. In fact, by the stochastic invariant, one has VM ⇢ Pm�1. The passage to the projective case

forces us to look only for phylogenetic invariants among homogeneous polynomials.

What we want to do is to find explicitly the ideal for each parametric algebraic statistical model M.

Since, by Hilbert Basis Theorem ([26], Theorem 1.2, page 27), these ideals are finitely generated, this is

equivalent to give a list of generators of each ideal. The research of invariants seems to be a specific issue

of computational Algebraic Geometry. Here, the main techniques to manipulate polynomials are given
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by Gröbner Basis ([26], Chapter 15). Theorethicaly, Gröbner basis permit to find all the invariants ofM.

Unluckily, in the practical situation the use of Gröbner Basis is limited to a small number of parameters

and states. In fact, the basic alghorithm to give IT is the application of the elimination process to the

set of equations pi(✓) � P
a2Nd ca✓

a1
1 ✓

a2
2 · · · ✓ad

d = 0 with respect to the indeterminates/parameters ✓1, . . . , ✓d.

Thus, as soon as the number of states, the number of parameters or the degree of polynomials grow, the

computation becomes more and more complex and technology, at the moment, is not able to produce any

results. Hence, one of the main research problem in Algebraic Statistics is to exhibit combinatorial methods

to find invariants without using elimination theory. We will see two di↵erent cases in Lectures 2 and 4.

1.6 Graphical models

Consider the following graph

Y

X1 X2 X3

k states

m1 states m2 states m3 states

M1 M2 M3

where the grey node has a hidden random variable Y with state space [k] and the three white nodes have

three observable random variables X1, X2 and X3 with state spaces respectively [m1], [m2] and [m3]. At each

edge we associate a k ⇥ at�matrix M(t), t = 1, 2, 3, where the (i, j)�entry m(t)
i j is the probability to pass from

state i in Y to state j in Xt. Then each row of Mt has sum 1.

Suppose that the state at Y is momentarily fixed as k̃. Then, for each edge leading away from Y , towards

a white node, we have a point mk̃Xt
= (m(t)

k̃1
, . . . ,m(t)

k̃at
) 2 Pk�1 that represents the k̃�th row of the transition

matrix M(t). Thus, if we define

Pk̃ := mk̃X1
⌦ mk̃X2

⌦ mk̃X3
2 Pa1�1 ⇥ Pa2�1 ⇥ Pa3�1

then Pk̃ is a point in the Segre product ([35], Example 2.11, page 25) of three projective spaces whose

entries (up to scaling) are the expected frequencies of observing pattern at the white nodes conditioned by

the state at Y being k̃. Summing over all possible states at Y , we obtain the joint distribution

P = P1 + P2 + · · · + Pk.

Since we are summing k points on the variety Pa1�1 ⇥ Pa2�1 ⇥ Pa3�1, we obtain P 2 VT = S k(Pa1�1 ⇥ Pa2�1 ⇥
Pa3�1), i.e. the k�secant variety ([35], Example 8.5, page 90) of the Segre product Pa1�1 ⇥ Pa2�1 ⇥ Pa3�1.
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We have to point out that the distribution of initial states at Y does not explicitly appear, since it has been

accounted for in the arbitrary scaling factors that appear in each Pi, when we choose particular projective

coordinates to express them. Hence, the joint distribution P has been decomposed as the sum of k rank 1

tensors, one for each possible state at Y (and this forces P to have rank k, by the definition itself of tensor

rank).

More generally, we can consider any number n of observable nodes:

k states

a1 states a2 states a3 states an�2 states an�1 states an states

The variety associated to this model is the k�secant variety of the Segre product P↵1�1 ⇥ P↵2�1 ⇥ · · ·⇥ P↵n�1.

These kinds of models are specific examples of the class of so called graphical models. When a1 =

a2 = · · · = an = 2 the previous graphical model is called Bernoulli model.



Lecture 2. Phylogenetic Algebraic

Geometry

2.1 Introduction

One of the main problems in modern Biology is that of phylogenetic inference. Let us consider a model of

molecular evolution (for example, DNA sequences) and suppose that evolution occurs along a bifurcating

tree, proceeding from a root, i.e. the common ancestral species, toward the leaves, i.e. the descendant

species. We require that, at each site in the sequences, bases mutate according to a probabilistic process

that depends upon the edges of the tree. Only the sequences at the leaves of the tree can be observed, while

sequences at internal nodes correspond to hidden variables in this graphical model. Thus, the phyloge-

netic inference concerns the problem to infer the tree topology from observed sequences, assuming some

probabilistic (and reasonable) model.

In 1987, Cavender and Felsenstein [15] and, separately, Lake [43], introduced an algebraic approach to

attack this problem. In fact, under many standard models of molecular evolution, for a fixed tree topology,

the joint distribution of bases at the leaves are described by polynomial equations in the parameters of the

model. They proposed to search for polynomials, called phylogenetic invariants, which vanish on any joint

distribution arising from the tree and model, regardless of parameter values, in a similar way, later, the

concept of model invariant was introduced in Algebraic Statistics.

Recently, several authors have started to research and study phylogenetic invariants by a deeper use

of Algebraic Geometry, also in connection with Algebraic Statistics. Although the idea of Phylogenetic

Algebraic Geometry had already been undertaken in their works (for example, [4], [5], [6], [45] and [52])

only in [28] we can find its definition for the first time. Here the authors say that “Phylogenetic Alge-

braic Geometry is concerned with certain complex projective algebraic varieties derived from finite trees.

By Phylogenetic Algebraic Geometry we mean the study of algebraic varieties which represent statistical

19
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models of evolution”.

The varieties which arise from such a kind of model can be di↵erent. We can find, for example, the more

familiar ones, as secant varieties, determinantal varieties, toric varieties and Segre–Veronese varieties. This

happens, in general, when we consider models related to small trees, i.e. trees with at most five leaves.

For trees with more than six leaves instead, we can encounter families of new kinds of varieties, often

completely unknown. The study of such varieties is related especially to the search for the generators of

their ideals. By the Hilbert Basis Theorem we know that these generators are in a finite number and are

exactly the phylogenetic invariants associated to the corresponding tree.

For general background reading on Phylogenetics, we strongly suggest the books by Felsenstein [30]

and Semple-Steel [48]. They deeply analyze evolutionary trees according to Biology, Computer Science,

Statistics and Mathematics. Instead, for a survey of Algebraic Statistics and Computational Biology, the

book, [46], edited by Lior Pachter and Bernd Sturmfels, is surely the best choice. There is large literature

about Algebraic Geometry and Commutative Algebra. The elements we need, though, can be found in

[26] (Chapter 0), [35] (Lectures 1,2 and 8) and [36] (Chapter 1). For the interested reader, we suggest also

books [21] and [22], where the authors introduce concepts and results in Algebra and Geometry with the

perspective of possible applications. For references to others research papers we recommend again [30] and

[48]. For the most recent ones, the reader can consult [9] and [28]. In [28], there is also a very interesting

section where the authors collect a series of open problems.

2.2 Evolutionary trees and Markov models

Since graphs play an important role in Phylogenetics, we will start recalling some basic facts about them.

Definition 2.2.1. A graph G is an ordered pair (V, E) consisting of a non-empty set V of vertices and a

multiset E of edges each of which is an element of {(x, y) : x, y 2 V}. An edge that joins a vertex to itself is

a loop and the edges that join the same distinct pair of vertices are called parallel edges.

All the graphs we consider will have a finite set of vertices.

If e = {u, v} is an edge of a graph G, then u and v are adjacent and e is said to be incident with u and v.

The vertices u and v are the ends of e. Let v be a vertex of a graph G. The valency of v, ⌫(v), is the number of

edges in G that are incident with v. A path in a graph G is a sequence of distinct vertices v1, v2, . . . , vk such

that, for all i = 1, . . . , k�1, vi and vi+1 are adjacent. If, in addition, v1 and vk are adjacent, then the subgraph

of G, whose vertex set is {v1, v2, . . . , vk} and whose edge set is {(vk, v1)} [ {(vi, vi+1) : i = 1, . . . , k � 1},
is a cycle. A graph is connected if each pair of vertices in G can be joined by a path: otherwise G is

disconnected.
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Let us denote by |F| the cardinality of a set F. We recall the following

Lemma 2.2.2. Let G = (V, E) be a graph, then

X

v2V
⌫(v) = 2|E|.

Moreover, if G is connected, one has |V |  |E| + 1.
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Fig. 1a): A connected graph Fig. 1b): A disconnected graph

Graphs have several applications in Biology: food web and competition graphs, genome mapping and

interval graphs, pedigree (di)graphs. Here we deal with another application: the theory of phylogenetic

trees.

Definition 2.2.3. A tree T = (V, E) is a connected graph with no cycles. A tree is a path graph if all

vertices have valency at most two.
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Fig 2: An example of tree

An important characterization of trees is given by
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Theorem 2.2.4. Let G = (V, E) be a graph. Then the following are equivalent:

1) G is a tree;

2) for any two vertices v and u in V there exists a unique path in G from v to u;

3) G is connected and |V | = |E| + 1.

A vertex of a tree of valency one is called a leaf. We denote by L the set of leaves and define Ṽ := V \ L

the set of interior vertices. Similarly, we denote by Ẽ the set of interior edges. A tree is binary, or

bifurcated, if every interior vertex has valency three. Two distinct leaves of a tree are said to form a cherry

if they are adjacent to a common vertex. For example, in Figure 2, the pairs {v1, v2} and {v7, v8} are cherries.

A rooted tree is a tree that has exactly one distinguished vertex called the root, which we denote by the

letter r. For a rooted tree T we can define a natural partial order T on the vertex set V by

vi T v j if the path from the root of T to v j includes vi.

In this case we say that v j is a descendant of vi and that vi is an ancestor of v j. For this reason we always

draw a rooted tree with the root r at the top of the figure and oriented so as to respect the ancestor-descendant

relationship.
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Fig. 3: A rooted tree

Let us state, now, the definition of phylogenetic tree. Among several definitions, we will choose the one

closer to Biology:

Definition 2.2.5. An X-tree T is an ordered pair (T, �), where T is a tree with vertex set V, label set X and

� : X ! V is a map with the property that, for each v 2 V of valency at most two, v 2 �(X). An X�tree is

also called a semi-labelled tree (on X). A phylogenetic tree is an X�tree (T, �) with the property that � is
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a bijection from X into the set of leaves of T . If, in addition, every interior vertex of T has valency three, T
is a binary phylogenetic tree.

It is common in Biology to focus on binary trees (i.e., trivalent, except bivalent at the root) as being of

primary interest. In fact, most speciation events are believed to be of the sort where only two species at

a time arise from a parent species. Multifurcations in a tree might be used to represent ignorance such as

when several speciation events occur so closely in time that we are unable to resolve their order.

From now on, if not otherwise specified, we will consider only binary trees.

Proposition 2.2.6.

i) Let T be a binary phylogenetic X�tree and let n = |X|, Then, for all n � 2, T has 2n � 3 edges and

n � 3 interior edges.

ii) Let B(n) be the set of all binary phylogenetic trees with label set X = {1, 2, . . . , n}. If n = 2 then

|B(n)| = 1. If n � 3 then

|B(n)| = (2n � 4)!
(n � 2)!2n�2 = 1 ⇥ 3 ⇥ 5 ⇥ · · · ⇥ (2n � 5)

Proof. See [48], Propositions 2.1.3 and 2.1.4. ⇤

Obviously, we can extend the notion of an X�tree to the rooted case.

Definition 2.2.7. A rooted X-tree T is an ordered pair (T, �), where T is a rooted tree with vertex set

V, rooted vertex r, label set X and � : X ! V is a map with the property that, for each v 2 V \ {r} of

valency at most two, v 2 �(X). A rooted X�tree is also called a rooted semi-labelled tree (on X). A rooted

phylogenetic tree is a rooted X�tree (T, �) with the property that � is a bijection from X into the set of

leaves of T and the root has valency at least two. If, in addition, every interior vertex of T has valency

three, T is a rooted binary phylogenetic tree.

Let T be a rooted X�tree and let x, y be two leaves. We denote lca(x, y) the most recent common

ancestor of x and y. For example, in Figure 3, one has lca(v8, v9) = v7, lca(v8, v11) = lca(v8, v12) = v6,

lca(v8, v16) = v4. For a rooted phylogenetic tree T on X, we view the edges of T as being directed from the

root r. Then we consider T as describing the evolution of the set X of extant species that label the leaves of

T from a common hypothetical ancestral species at r; the other interior vertices of T correspond to further

hypothetical ancestral species or to past speciation events. Thus lca(x, y) can be seen as the most recent

shared ancestral species (or speciation event) of the species x and y.
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Remark 2.2.8. Unrooted phylogenetic trees are also biologically relevant because they are typically what

the tree reconstruction methods generate. We can observe that it is always possible to pass from an unrooted

tree to a rooted one and viceversa. In particular, passing from the unrooted to the rooted tree, means to

choose an internal vertex as the root or add another vertex inside an edge and choose it as the root.

Remark 2.2.9. In general, as X, we will use the set {1, 2, . . . , n}, where each number will correspond to a

specific species.

Remark 2.2.10. Let us mention some particular kinds of trees. The (rooted) caterpillar tree is any (rooted)

binary phylogenetic tree for which the induced subtree on the interior vertices is a path graph. A rooted

balanced tree of height h � 0 is a rooted binary phylogenetic tree, with n = 2h leaves, each of which is

separated from the root by exactly h edges. A star tree is a phylogenetic tree with no interior edges, i.e.

with a single interior vertex that is adjacent to all the leaves. In Figures 4 and 5 we show respectively the

unrooted and rooted cases. Each rooted case is obtained by adding another vertex inside an edge in the

respective unrooted case.

Fig 4 a) - b) - c): A caterpillar tree, a balanced tree of height 2, a star tree

Fig 5 a) - b) - c): The rooted cases

We introduce now the concept of Markov process.

Let X1, . . . , Xt be random variables on a sample space S taking value in a set U and let A = {1, 2, . . . , t}.
For a subset B ⇢ A and an event E of S we will write Prob(E| \i2B {Xi}) for Prob(E| \i2B {Xi = ui}), i.e. the

conditional probability of E given \i2B{Xi = ui}, for every selection of ui 2 U.

We fix an alphabet with k letters, for instance [k] = {1, 2, ..., k}.

Definition 2.2.11. Let T be a rooted tree with vertex set V. A Markov process on T , with state set [k], is a
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family {Xv : v 2 V} of random variables such that, whenever (u, v) is arc of T , with v < u, and ↵ 2 [k],

Prob(Xv = ↵| \w<v Xw) = Prob(Xv = ↵|Xu) (2.23)

Condition (2.23) is known as the Markov Property. Intuitevely, this states that, for each arc (u, v) of T , the

value of Xv, conditional on Xu, is independent of the X�values at all other “earlier” vertices.

Let T be a rooted tree. For each edge e = (u, v) of T (with u < v), a Markov process on T , with state set

[k], induces an associated k⇥k transition matrix, denoted M(e), where the (i, j)�entry, m(e)
i j , is the probability

to pass from state i on u to state j on v. We ask for

i) m(e)
i j � 0;

ii)
Pk

j=1 m(e)
i j = 1.

Thus, if we specify a Markov matrix for each edge of the tree, we have modeled how the entire evolu-

tionary process proceeds along the tree.

Once we fixed the root r we define also a root distribution

⇡(r) = (⇡(r)1, ⇡(r)2, . . . , ⇡(r)k)

where ⇡(r)i is the probability to have the state i at the root. Obviously ⇡(r)i � 0, 8i = 1, . . . , k and
Pk

i=1 ⇡(r)i = 1. The root distribution vector ⇡(r) gives probabilities of the various states for the variable

at the root, while k ⇥ k Markov matrices give transition probabilities of state changes from ancestral to

descendant nodes along each edge.

Definition 2.2.12. We refer to data (T,M) as the general Markov model on T , whereM = (⇡(r), {M(e) :

e 2 E}). We often refer toM as stochastic parameters, distinguishing them from tree parameters.

Remark 2.2.13. As to the DNA, the number of states is k = 4, but as to protein sequences, which are built

from twenty amino acids, k = 20. The case k = 2 is also of interest for DNA substitution models, if we

group bases into purines R = {A, G} and pyrimidines Y = {C, T}.

Let l1, . . . ln be the leaves of the tree T . Evolution occurs along the tree, but we can observe sequences

only at the leaves of T . With the parameters of the modelM thus specified, we are interested in the joint

distribution P of states at the leaves li’s. The joint distribution P is an n�dimensional k⇥ k⇥ · · ·⇥ k tensor

(or table or array) with entries

P(i1, . . . , in) = Prob(l1 = i1, · · · , ln = in)
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where Prob(l1 = i1, · · · , ln = in) represents the probability to have state i j at the leaf l j, for j = 1, . . . , n. In

general, we will denote P(i1, . . . , in) by pi1···in . The entries of P are the expected frequencies to be seen in

patterns of states (i1, . . . , in) at the leaves of the tree. These expected pattern frequencies can be explicitly

expressed in terms of the parameters of the model, as we can explain through an example.

Example 2.2.14. Consider the tree with leaves l1, . . . , l5.

r

h

h

h

l l l l l
1 3 52 4

1

2
3

e

e

e

e

e e

2

4 6 7

8

5

e
1

e
3

Let M(e) = (m(e))i j be the k ⇥ k matrix on the edge he, for e = 1, . . . , 8, and ⇡(r) the root distribution.

Suppose that we want to compute the probability pi1···i5 . If we start from a state w0 at the root, we can see

that ⇡(r)w0 m(1)
w0,w1 is the probability to have a state w1 at the vertex h1. Moving in this way, we can see that

we reach leaf l1 with state i1 by

⇡(r)w0 m(1)
w0,w1

m(2)
w1,w2

m(3)
w2,i1

where w2 is an unobserved state at the vertex h2. The procedure for the leaf l2 is similar, but, since we already

have the probability of transition until vertex h2, from the computation on l1, it is enough to multiply the

previous term by m(4)
w2,i2 . Now it is clear how to proceed. Thus we obtain

⇡(r)w0 m(1)
w0,w1

m(2)
w1,w2

m(3)
w2,i1 m(4)

w2,i2 m(5)
w1,w3

m(6)
w3,i3 m(7)

w3,i4 m(8)
w0,i5

This is the probability to have state i j at the leaf l j, j = 1, . . . , 5, and states w0, w1, w2 and w3 respectively

at the root r and at vertices h1, h2, h3. Since the internal nodes are hidden, we have to consider all possible

states at the internal nodes, thus the final probability will be

pi1···i5 =
X

1  wi  k

i = 0, 1, 2, 3

⇡(r)w0 m(1)
w0,w1

m(2)
w1,w2

m(3)
w2,i1 m(4)

w2,i2 m(5)
w1,w3

m(6)
w3,i3 m(7)

w3,i4 m(8)
w0,i5
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In general, let T = (V, E) be an n�taxon tree with Markov modelM = (⇡(r),M(e)). Let us denote by

s(e) and f (e) the ends of e. Thus the joint distribution P is given by the formula

P(i1, . . . , in) =
X

(bv)2H


⇡(r)br

Y
e

✓
m(e)

bs(e),b f (e)

◆�
(2.24)

where the product is taken over all edges e getting away from the root r and the sum is taken over the set

H = {(bv)v2V |bv 2 [k] if v , i j, bv = i j if v = i j} ⇢ [k]2n�2.

We can say that H represents the set of all “histories” consistent with the specified states at the leaves. More

generally, for the general Markov model on an n�taxon tree, each probability pi1,...,in will be a degree 2n� 2

polynomial, with kn�2 terms. The precise form of these polynomials reflects the topology of the tree T .

Remark 2.2.15. The model we have described here concerns a base substitution process at a single site.

In general, for phylogenetic inference, the data are aligned DNA sequences of some length L. Thus, we

assume that the evolutionary process at each site proceeds independently of all other sites, but according to

the same probabilistic process, with the same parameters. This independent, identically distributed (i.i.d.)

assumption is not desirable from a biological viewpoint. In fact, we can have substitutions at one site which

are not independent. However, a form of the i.i.d. assumption is essential since only by viewing each site

as a trial of the same process, we can obtain enough data to infer something about the parameters.

Let us point out the following important

Proposition 2.2.16. Fix an n�taxon tree T . Let r be a choice of root for T (which may be a leaf, an internal

node of valency 3, or along some edge). Then, for a generic choice of stochastic parameters S r for the

general Markov model rooted at r, and for any other choice of a root q for T , on either a leaf or an internal

node of valency 3, there is a uniquely determined choice of general Markov model parameters S q for the

model rooted at q producing the same joint distribution at the leaves as S r.

Proof. See [4], Proposition 1. ⇤

A consequence of the previous Proposition is that the location of the root in a tree T is a biological

problem, not a mathematical one.

The general Markov model has more parameters than models typically use in practice. Once the tree

parameter has been chosen as a particular n�taxon tree, there are k�1 free choices on ⇡(r) (since
Pk

i=1 ⇡(r)i =

1) and k(k � 1) free choices on the entries of the matrix M(e), for each edge e. Thus, one has N := (2n �
3)k(k� 1)+ k� 1 numerical parameters. The growth is only linear in the number of taxa, but the coe�cient,
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depending on k, could be very large. For example, for k = 2, the total number of parameters is 4n � 2,

while, for k = 4, it grows as 24n. The number of parameters has several e↵ects on the inference: slow

computations, overfitting. If the data can be described by a model with fewer parameters, that model may

provide a better basis for inference. Thus, in general, we consider particular restrictions on the stochastic

parameters of the general Markov model, given by mathematical and/or biological reasons.

Let us introduce now some examples of submodels of the general Markov model. The reader can find

a wider range of submodels in [7] (the General Time Reversible model and Mixture model) and in [5] (the

Stable Base Distribution model, the Simultaneous Diagonalization model, the Algebraic Time Reversible

model).

2.2.1 The Jukes-Cantor model for DNA

This model is the biologically-plausible model with the fewest parameters. It assumes a uniform root

distribution vector ⇡(r) = (0.25, 0.25, 0.25, 0.25) and edge transition matrices of the form

M(e) =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1 � ae
ae
3

ae
3

ae
3

ae
3 1 � ae

ae
3

ae
3

ae
3

ae
3 1 � ae

ae
3

ae
3

ae
3

ae
3 1 � ae

1
CCCCCCCCCCCCCCCCCCCCCCCA

where ae could vary for each edge e.

2.2.2 The Kimura 2-parameter model

Because of chemical similarities, the bases are classified as purines {A, G} and pyrimidines {C, T}. Assign-

ing probability a to in-class changes (transitions), and b to out-of-class changes (transversions), we arrive

at the Kimura 2-parameter model, with matrices

M(e) =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1 � (ae + 2be) ae be be

ae 1 � (ae + 2be) be be

be be 1 � (ae + 2be) ae

be be ae 1 � (ae + 2be)

1
CCCCCCCCCCCCCCCCCCCCCCCA

where the rows and columns are ordered by the states A, G, C, T (purines, followed by pyrimidines).

Typically a > b, since transitions are often observed more frequently than transversions.
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2.2.3 The Kimura 3-parameter model

A slight generalization, introduced more for its mathematical structure than for biological reasons, is the

Kimura 3-parameter model with transition matrices of the form

M(e) =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1 � ⇢e ae be ce

ae 1 � ⇢e ce be

be ce 1 � ⇢e ae

ce be ae 1 � ⇢e

1
CCCCCCCCCCCCCCCCCCCCCCCA

where ⇢e = ae + be + ce. A fundamental result on these structures is given by Hadamard conjugation ([38],

[39]) and it permits to introduce Fourier analysis as a tool for studying such models.

Remark 2.2.17. Many probabilistic models of the mutation process - as evolution proceeds down a tree

- focus on a single site in a sequence, and only on base substitutions occurring at that site. In general

we introduce more complicated models when we want to consider di↵erent types of sequence changes as

insertions, deletions and inversions ([45]).

2.3 Phylogenetic invariants

In 1987, Cavender and Felsenstein in [15], and, separately, Lake in [43] introduced the concept of phylo-

genetic invariants as a new approach to the study of phylogenetic trees arising from biological sequence

data (i.e. the case of k = 4 states: A,C,G,T). Obviously, we just consider the generalization to the case of k

states, with k an arbitrary positive integer, k � 2.

We recall that, given a topological tree T with n leaves (or terminal taxa) and a modelM of evolution

along this tree, it is possible to compute the expected pattern frequencies of the kn patterns of various states

at the leaves, in terms of the parameters of the model, as explained in (2.24).

Definition 2.3.1. A phylogenetic invariant, for the topological tree T and the parameterized model M,

is a polynomial in kn variables, which becomes zero when the expected frequencies are substituted for the

variables.

Since we want to consider an algebraic approach, we can work over the complex field. Thus, we will talk

of complex parameters to distinguish them from stochastic parameters, that is, positive real numbers. In

both cases, we require that the root distribution and each row of the transition matrices sum to 1.

Let {zi1···in } be a set of kn indeterminates indexed by 1  i1, . . . , in  k, and denote by R the polynomial

ring C[zi1···in ]. We can restate the previous definition in the following way.
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Definition 2.3.2. A phylogenetic invariant, for the general Markov model (T,M), is a polynomial f 2
C[zi1···in ] such that f ⌘ 0 under the substitution pi1···in ! zi1···in of the polynomial expressions for the expected

pattern frequencies at the leaves.

Example 2.3.3. Since the pi1···in ’s represent all the possible probabilities of the events in the joint distribu-

tion state, one has
X

1i1,...,ink

pi1···in = 1 (2.25)

This invariant, which is common to all n�taxon trees with k states, is called stochastic invariant.

Suppose that phylogenetic invariants can be found. This permits us to choose both the topological tree

and the pararameterized model. In fact, starting from the observed data, we can compute the observed

frequencies of patterns P̂i1···in ’s. The observed data are distinct sequences of states (in particular, in the case

k = 4, these are aligned DNA sequences), one for each of the n species. All sequences have the same length

M. Thus, the observed frequencies of patterns P̂i1···in ’s are given by

P̂i1···in =
occurrence of i1, . . . , in

M
.

Example 2.3.4. Consider four species with given DNA sequences of length 30.

Species 1 CGTTACCCACTAGTTTATGACGTTACCCAC

Species 2 CGTTACCGACTAAATGCTGTCGTTACCGAC

Species 3 AGCCCCCCAATTATGAGCGTAGCCCCCCAA

Species 4 CGGGATTAAAATGCCGCGGGCGGGATTAAA

Thus, for example, one has P̂TTCG =
5
30 = 0.16667.

If observed frequencies of patterns are good estimators of the expected frequencies, they will force the

invariants to vanish or, at least, to be small. Thus, we choose the topological tree so that its invariants

are close to vanish on the observed frequencies (then, in order to apply invariants to real data, one must

decide what it means for an invariant to be “close to vanishing” on observed frequencies). More precisely,

consider a phylogenetic invariant f for a general Markov model (T,M), whereM is given in the unknown

parameters ⇡(r)l,m(e)
i j . Let P = (pi1···in ) be the joint distribution tensor describing probabilities of states at

the leaves. Hence f (P) = 0. These probabilities are expressed in terms of the parameters of the modelM,

that is, the entries m(e)
i j and the root distribution. Replacing P with a joint distribution tensor P0, arising from

any specific choice of parameters for T andM, one has again f (P0) = 0. Call P̂ the tensor representing the

observed pattern frequencies of the data. If T andM are the correct tree and model relating to the sequence,
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then P̂ ⇡ P0. Since f (P0) = 0, then f (P̂) ⇡ 0. Thus, the near vanishing of the phylogenetic invariants on

the observed pattern frequencies is a good verification on T andM as correct tree and model.

This model-based method of choosing topological trees will be useful if we are able, first of all, to pro-

duce “e�ciently” phylogenetic invariants. Several techniques are used to find phylogenetic invariants: the

4�point condition with log-det metric ([15], [50]), the studying of algebraic relationships among expected

frequencies ([31], [32]), and harmonic analysis ([29]). In general, in the cited works, these techniques are

restricted to very specific topological trees and models (for example, in [15], the authors produce invariants

for the Jukes-Cantor 2-base model with 4 terminal taxa) with few hopes to extend them to the general case.

We suggest to look at the introduction of [4] for a better reference about these techniques.

Definition 2.3.5. Let (T1,M1) and (T2,M2) be two general Markov models with the same number of

leaves and with respectively joint distribution tensors P1 and P2. If a polynomial f is such that f (P1) = 0

(or f (P1) ⇡ 0) but f (P2) , 0 (or f (P2) 0 0) we say that f is topologically informative.

Example 2.3.6. Consider the model of Cavender and Felsenstein in [15]. This is a symmetric model with

k = 2 states given by 0 and 1.

b

a

d

c

After the stochastic invariant, we have the linear invariants given by the symmetry of the model: p0000 �
p1111, p0011 � p1100, p0001 � p1110, p0110 � p1001, etc. Finally, the last one is the informative invariant:

f = (p0100 + p1011 � p0111 � p1000)(p0010 + p1101 � p0001 � p1110)�
� (p0110 + p1001 � p0101 � p1010)(p0000 + p1111 � p0011 � p1100)

The origin of this invariant can be found in the 4�point condition for tree metrics. This polynomial vanishes

only for the 4-leaf tree where a and b are neighbours, and does not vanish for generic joint distributions

arising from the other two 4-leaf topologies (given by the other two ways to label leaves, with a in the same

cherry of c or d). Thus f is topologically informative.

2.4 Phylogenetic ideal and phylogenetic variety

As already said, a modelM on a tree T , with n leaves, has N := (k � 1) + (2n � 3)k(k � 1) free parameters

⇡i’s and m(e)
i j ’s. Thus, the stochastic parameter space for the tree T is given by S ⇢ [0, 1]N , and each s 2 S
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represents a modelM = (⇡(r), {M(e)}). Using Formula (2.24), we can define a parameterization map

'T : S ! [0, 1]kn

s ! P = [p11···1, . . . , pkk···k]
(2.26)

where [0, 1]kn represents the joint distribution state. An element P 2 [0, 1]kn in the image of 'T represents a

joint distribution of pattern frequencies at the leaves of T .

Since, by Formula (2.24), 'T is a polynomial map in the unknown parameters, (T,M) is a parametric

algebraic statistical model (Definition 1.1.8). Thus, we can use the same approach of Section 1.5 to define

ad ideal and a variety associated to (T,M). As a matter of fact, also in this case, we can extend the

parameterization to

�T : CN ! Ckn
. (2.27)

Definition 2.4.1. Let VT be the (Zarisky) closure of the image of �T , that is VT := �T (CN). VT is called

the phylogenetic variety associated to the tree T . The ideal IT ⇢ C[pi1···in ] of VT is called the phylogenetic

ideal.

Remark 2.4.2. In literature we can find a di↵erent (but equivalent) definition of phylogenetic ideal. In that

case the phylogenetic ideal IT is define as the ideal generated by the phylogenetic invariants of the general

Markov model (T,M). This follow from the fact that if two polynomials of C[pi1···in ] vanish under such

substitution, then so do any of their linear combinations with coe�cients in C[zi1···in ]. From Chapter 0 of

[26], it follows that the phylogenetic invariants form an ideal in R. Successively, from the definition of the

phylogenetic ideal IT we obtain the phylogenetic variety as the variety associated to IT .

Roughly speaking, VT is a variety that contains the (complex) joint distribution for all possible choices

of (complex) numerical parametersM = (⇡(r), {M(e)}) of general Markov model on the tree T . In applica-

tions, the tree topology is usually the parameter of greatest interest. If an observed distribution of pattern

frequencies were “close” to VT , that could be interpreted as support for inferring T . Thus, phylogenetic

invariants allow the inference of T without having to estimate all the other parameters, as, on the contrary,

maximum likelihood requires.

Remark 2.4.3. Extending the parameterization �T to the complex numbers from the stochastic setting is

done because an algebraically closed field provides the easiest and most natural setting for understanding

polynomial maps. Of course, complex parameters and complex joint distributions are not so natural from

a biological or statistical viewpoint. Obviously, the final goal would be to understand the model in the

stochastic setting.



33

The Algebraic Algorithm of Section 1.5 can be modified for the precise purpouse of general Markov

models on trees. Once the number n of species is fixed, the algorithm will run over all possible trees T with

n leaves.

Algebraic Algorithm for Phylogenetic Inference

INPUT: the joint distribution of observed frequencies P̂.

i) fix M;

ii) for each tree T

• Find some/most/all invariants f for VT ;

• Test if f (P̂) ⇡ 0.

OUTPUT: the tree T for which P̂ is as close as possible to VT .

Understanding VT well means both theoretical and practical understanding of problems of phylogenetic

inference. One part of understanding VT is describing it implicitly, as the zero set of polynomials. This

means to find polynomials f 2 R such that f (q) = 0 for all q 2 VT . This is equivalent to find the kernel of

the map

�̃T : C[zi1···in ]! C[s1, . . . , sN]

where C[s1, . . . , sN] is the polynomial ring associated to vector space CN (we can take, as variables si’s,

for example, the unknown stochastic parameters of the Markov model, ⇡(r)l, m(e)
i j ). The kernel of �̃T is the

ideal I of the polynomials in the zi1···in ’s vanishing for all choices of (stochastic or complex) parameters si’s,

i.e. it corresponds exactly to the phylogenetic ideal as defined in Definition 2.4.1. As already said at the end

of Section 1.5 to find explicitly the ideal of a general Markov model for each topological tree is equivalent

to giving a list of generators of such ideal. In the specific case of phylogenetic ideals Gröbner basis and

Elimination Theory show their limits. As a matter of fact the basic alghorithm to give IT is the application of

the elimination process to the set of equations zi1···in�pi1···in = 0 with respect to the indeterminates/parameters

⇡(r)l’s, m(e)
i j ’s. This process involves kn polynomials of degree 2n � 3 in the variables ⇡(r)l’s, m(e)

i j ’s. Thus,

as soon as the number of leaves, or the number of states grows, the computation becomes more and more

complex.

Remark 2.4.4. In finding phylogenetic invariants, the main goal is to determine the full ideal IT , i.e. an

ideal-theoretic definition of VT . However, a weaker goal is to determine a set of polynomials whose zero
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set is VT . Namely, what we are looking for is a set-theoretic definition of the variety without determining

the whole ideal.

Researchers, in the field of Phylogenetic Algebraic Geometry, are looking for di↵erent techniques and

tools to find phylogenetic invariants.

In [4], Allman and Rhodes present several methods of finding phylogenetic invariants for the general

Markov model of base substitution along any topological tree. In particular, the authors do not require any

conditions on the numbers n and k of leaves and states. The constructions are based on commutation and

symmetry relations of matrix expressions and that requires only linear algebra. In particular, for a 3-taxon

tree T , a strong set of invariants can be found. These invariants have degree k + 1 (the lowest possible) and

have many terms. For example, if k = 4, they are all degree five invariants (1728�dimensional space) and

the number of terms in each invariant is about 180. The constructions are successively generalized to the

n�taxon case. Unluckily, here, these invariants do not generate the full ideal, but in some cases they give a

satisfactory result. It is important to observe that, since they are expressed in matrix form, invariants may

be evaluated through numerical linear algebra.

A fully observable homogeneous Markov model has no hidden nodes and all matrices are the same. An

explicit analysis of this kind of model, on a tree with at most five leaves and k = 2, can be found in [27].

Remark 2.4.5. Although we consider here only the part of the study of phylogenetic invariants concerned

with Algebraic Geometry, it is mandatory to recall that a statistical understanding of the behaviour of these

polynomials is necessary. This is due, in particular, to the fact that we want to apply invariants to real and

noisy data. Moreover, the models of evolution are only an approximation of reality, then, from a statistical

point of view, we need the robustness of method under violation of model assumptions. Finally, Statistics

will be necessary for a good defintion of “close to vanish”.

We now fix our attention on the technique of flattening of a n�dimensional tensor. As we will see

in the next two Sections, the flattenings permit to obtain invariants from the “local” structure of the tree.

Moreover, the flattenings are strictly connected with the theory of secant varieties. There is a huge literature

on this theory; some papers are becoming fundamental in the research of phylogenetic invariants.

2.5 Flattenings

We introduce, now, the notion of edge flattening of a tensor P 2 Ckn according to an n�taxon tree T . Let

P = �T (s) be the joint distribution of states for some parameters choice for the general Markov model on

T . Consider an edge e of T . Then e induces a split of the taxa according to the connected components of
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T \ {e}. We can assume, eventually re-ordering the indices in P, that the split is {{l1, . . . , lt}, {lt+1, . . . , ln}}.
We can imagine now a statistical model based on the split induced by e: we can group the taxa {l1, . . . , lt}
and the taxa {lt+1, . . . , ln}, so that each is on a leaf attached to a common ancestral node, which is choosen to

be on one vertex of e (Fig. 6). The joint states at the taxa {l1, . . . , lt}, are described through a single kt�state

variable and similarly at {lt+1, . . . , ln} are described through a single kn�t�state variable. Thus, we have a

coarser graphical model with one hidden k�state internal node and two descendant nodes with respectively

kt and kn�t states. Forming the joint distribution for this coarser model, we get a kt ⇥ kn�t matrix Flate(P)

which is defined in the following way: fix any ordering of J1 := [k]t and J2 := [k]n�t and for u 2 J1, v 2 J2

let

Flate(P)(u, v) = P(u1, . . . , ut, v1, . . . , vn�t)

ln

ln

l1

l2

lt

lt+1

l1 lt lt+1

r

e

........

Fig. 6: An example of edge flattening

Then Flate(P) can be seen as a joint distribution for a related graphical model with a less complicated

structure: one hidden k�state internal node and two descendant nodes with kt and kn�t states, respectively.

Example 2.5.1. Consider the following 5�leaf tree T

l1

l2

l3

l4

5l

e e1 2
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with k = 2 states at each vertex, represented by 0 and 1. The two splits

{{l1, l2}, {l3, l4, l5}} and {{l1, l2, l3}, {l4, l5}}

give respectively the flattenings

Flate1 (P) =

0
BBBBBBBBBBBBBBBBBBBBBBB@

p00000 p00001 p00010 p00011 p00100 p00101 p00110 p00111

p01000 p01001 p01010 p01011 p01100 p01101 p01110 p01111

p10000 p10001 p10010 p10011 p10100 p10101 p10110 p10111

p11000 p11001 p11010 p11011 p11100 p11101 p11110 p11111

1
CCCCCCCCCCCCCCCCCCCCCCCA

(2.28)

and

Flate2 (P) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

p00000 p00001 p00010 p00011

p00100 p00101 p00110 p00111

p01000 p01001 p01010 p01011

p01100 p01101 p01110 p01111

p10000 p10001 p10010 p10011

p10100 p10101 p10110 p10111

p11000 p11001 p11010 p11011

p11100 p11101 p11110 p11111

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(2.29)

Here, for example, the (01, 000)�entry of Flate1 (P) is the probability of observing state 01 at leaf {l1, l2},
and state 000 at leaf {l3, l4, l5}. Of course, this entry is precisely p01000.

Remark 2.5.2. A combinatorial result, the Splits Equivalence Theorem, states that a tree is uniquely deter-

mined by its set of splits. See [SS] for a proof.

For the coarser graphical model, the joint distribution matrix must have the form

Flate(P) = MT
1 diag(⇡(r))M2 (2.30)

where M1 and M2 are k ⇥ kt and k ⇥ kn�t matrices and diag(⇡(r)) is a diagonal matrix with (i, i)�entry ⇡(r)i

(the precise description of M1 and M2 can be found in [7]).

Remark 2.5.3. The coarser model is not a phylogenetic tree since the number of states at the two leaves

are di↵erent powers of k.
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From (2.30) we quickly obtain that rank(Flate(P))  k. Hence, all (k+1)⇥(k+1) minors of Flate(P) must

vanish. These minors generate the full ideal of polynomials vanishing on matrices of rank  k, and thus we

have found all phylogenetic invariants associated to the coarser model. Such invariants are also invariants

for the original model on T , and they are called edge invariants associated to the edge e. Moreover, we

denote by Fedge(T ) the set of all (k + 1) ⇥ (k + 1) minors of the edge flattenings Flate(P) as e varies on E.

An important result concerning flattenings is the following

Theorem 2.5.4 (E. Allman, J. Rhodes, [6]). For k = 2 and any number of taxa n, the phylogenetic ideal

IT , for the general Markov modelM on an n-taxon tree T , is generated by Fedge(T ), the 3 ⇥ 3 minors of all

edge flattenings of a 2 ⇥ 2 ⇥ · · · ⇥ 2 tensor of indeterminants.

Thus, in particular one has

Corollary 2.5.5. For the 5-leaf tree T of Example 2.5.1, IT is generated by all 3 ⇥ 3 minors of matrices

(2.28) and (2.29).

However, for a larger k, it is not enough to consider only 2�dimensional edge flattenings (i.e., flattenings

to matrices) to obtain generators of the phylogenetic ideal. Consider, for example, a 3�taxon tree T : if k > 2

we know that IT contains polynomials of degree k + 1 although Fedge(T ) is empty. Hovewer, we can give

an interesting result.

Proposition 2.5.6 (E. Allman, J. Rhodes, [6]). For any k�state general Markov model on T , or any sub-

model, the phylogenetic ideal contains all edge invariants.

To find other invariants, we can introduce another kind of flattening which produces 3�dimensional

tensors. Consider an internal node v of T , contained in edges e1,e2,e3. Then v induces a tripartition of the

taxa according to the connected components of T \ {v, e1, e2, e3}. We may assume the tripartition is

{{l1, . . . , ln1 }, {ln1+1, . . . , ln1+n2 }, {ln1+n2+1, . . . , ln1+n2+n3 }}.

where n1 + n2 + n3 = n. Then a vertex flattening of P at v is a (kn1 ⇥ kn2 ⇥ kn3 )�array Flatv(P) defined as

follows: fix an ordering of J1 = [k]n1 , J2 = [k]n2 , J3 = [k]n3 , and for x 2 J1, y 2 J2, z 2 J3 let

Flatv(x, y, z) = P(x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3 ).

Thus, the final result of a vertex flattening is a graphical model with one hidden k�state internal node and

three descendant nodes with kn1 , kn2 , and kn3 states, respectively. Since an ideal is associated to such a

graphical model, we can talk of the ideal of the vertex flattening.
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Fig. 7: An example of vertex flattening

We have now all the elements to give the following

Conjecture 2.5.7 (E. Allman, J. Rhodes, [6]). For any k and any number of taxa n, the phylogenetic ideal

IT , for the general Markov model on an n�taxon tree T , is the sum of the ideals associated to the flattenings

of P at vertices of T .

It is important to remark that this Conjecture, for k = 2, is identical to Theorem 2.5.4. In fact, by the

results of Lansdberg and Manivel ([44]) we know that, in this case, the ideal associated to a vertex flattening

is the sum of the ideals associated to the edge flattenings of the three edges containing the vertex.

2.6 Secant varieties

In the previous section we only considered matrices with rows that sum to 1. This probabilistic condition

can be interpreted in Algebraic Geometry as the fact that each row of a transition matrix is an element of

a certain a�ne subspace of a projective space Pk�1. At the same time, as in Lecture 1, we can view VT

projectively. In fact, by the stochastic invariant, one has VT ⇢ Pkn�1. The passage to the projective case

forces us to look only for phylogenetic invariants among homogeneous polynomials.

Consider a 3-taxon rooted star tree T in the projective setting for k states.

l
1

l
2

l
3

e
2 3

e

e
1

r

Fig. 8: The 3�taxon tree T3
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Using the same construction of Section 1.6 we know that VT is S k(Pk�1 ⇥ Pk�1 ⇥ Pk�1), i.e. the k�secant

variety of the Segre product of three Pk�1.

We have to point out that the root distribution does not explicitly appear, since it has been accounted for

in the arbitrary scaling factors that appear in each Pi, when we choose particular projective coordinates to

express them. Hence, the joint distribution P has been decomposed as the sum of k rank 1 tensors, one for

each possible state at the root (and this forces P to have rank k, by the definition itself of tensor rank).

Example 2.6.1. Consider k = 2. The general Markov model on T3 has only 7 parameters and since the

stochastic invariant cuts out a 7�dimensional subspace of C23 , one could expect that there are no other

invariants. In fact, one has S 2(P1 ⇥ P1 ⇥ P1) = P7 (i.e. every 2 ⇥ 2 ⇥ 2 tensor is in the closure of the rank 2

tensors). We want to underline that for the 3-taxon tree, the construction of edge invariants yields nothing,

since there are no internal edges.

Example 2.6.2. Go on considering T3, but with k = 3. In this case the ideal defining S 3(P2 ⇥ P2 ⇥ P2)

was found in [33], and given in terms of Bayes models. Let A = (pi j1), B = (pi j2) and C = (pi j3) be three

3 ⇥ 3�matrices obtained by taking slices of the 3�dimensional tensor P associated to the model. Then one

has

Proposition 2.6.3 (L. D. Garcia, M. Stillman, B. Sturmfels, [33]). Let I be the ideal of S eck�1(P2⇥P2⇥P2),

the naive Bayes model with n = 3 ternary features with k classes. If k = 2 then I is generated by the

3 ⇥ 3�subdeterminantal of any two-dimensional table obtained by flattening the 3�dimensional tensor P.

If k = 3 then I is generated by the quartic entries of the various 3 ⇥ 3�matrices of the form

A · ad j(B) ·C �C · ad j(B) · A.

If k = 4 then I is the principal ideal generated by the following homogeneous polynomial of degree 9 with

9, 216 terms:

det(B)2 · det(A · B�1 ·C �C · B�1 · B).

If k � 5 then I is the zero ideal.

More generally, let T be a star tree with an internal node r and n leaves li. We can suppose that the

hidden variable associated to r has k states, while the hidden variable at the leaf li has ai states, i = 1, . . . , n.

The variety associated to this model is the k�secant variety of the Segre product Pa1�1 ⇥ Pa2�1 ⇥ · · · ⇥ Pan�1.

There is a useful relationship between the varieties S k(Pa1�1 ⇥ Pa2�1 ⇥ · · · ⇥ Pan�1) and S k(Pk�1 ⇥ Pk�1 ⇥
· · · ⇥ Pk�1). In fact, for any joint distribution P 2 S k(Pk�1 ⇥ Pk�1 ⇥ · · · ⇥ Pk�1), there is an “action” by k ⇥ an

complex matrices M in the last index of P. This gives us a point P ⇤n M 2 S k(Pk�1 ⇥ Pk�1 ⇥ · · · ⇥ Pan�1)
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(here k is repeated n � 1 times). Using the map �T , if P = �T (⇡(r), {M1,M2, . . . ,Mn}), where Mn is the

matrix on the edge leading to the n�th leaf, then P ⇤n M = �T (⇡(r), {M1,M2, . . . ,Mn�1,MnM}), though the

action extends to the points (on the variety) that are not in the image of �T . We can define also an “action”

by an ⇥ k matrices N on S k(Pk�1 ⇥ Pk�1 ⇥ · · · ⇥ Pan�1). Thus, given a k ⇥ an matrix M and an an ⇥ k matrix

N we have maps

S k(Pk�1 ⇥ Pk�1 ⇥ · · · ⇥ Pk�1)

⇤n M���!
 ���⇤nN

S k(Pk�1 ⇥ Pk�1 ⇥ · · · ⇥ Pan�1) (2.31)

From these maps, we can obtain maps between the ideals of the two varieties. The compositions of these

maps are related to GL(k,C) and GL(an,C) actions. In a similar way, we can define an action on each

distinct index, not just on the last one. Thus, we obtain an action of GL(a1,C)⇥GL(a2,C)⇥ · · ·⇥GL(an,C)

on S k(Pa1�1 ⇥ Pa2�1 ⇥ · · · ⇥ Pan�1). We have the following

Theorem 2.6.4 (E. Allman, J. Rhodes, [6]). Suppose a1, a2, . . . , an � k. Let F be any set of polynomials

whose zero set is S k(Pk�1 ⇥ Pk�1 ⇥ · · · ⇥ Pk�1). For t = 1, 2, . . . , n, let Zt = (zt
i j) be at ⇥ k matrices of

indeterminants. For an (a1 ⇥ a2 ⇥ · · ·⇥ an)� tensor P of indeterminants, let P̃ be the (k⇥ k⇥ · · ·⇥ k)�tensor

that results from letting each Zt acts formally in the t�th index of P (i.e. as the lower map in (2.31)). Let

F̃ denote the set of polynomials in the entries of P obtained from those in F by substituting into them

the entries of P, expressing the results as polynomials in the zt
i j, and then extracting the coe�cients. Let

Fedge be the set of (k + 1) ⇥ (k + 1) minors of the n flattenings of P on edges of the star tree. Finally,

let F (k; a1, a2, . . . , an) = F̃ [ Fedge. Then F (k; a1, a2, . . . , an) defines S k(Pa1�1 ⇥ Pa2�1 ⇥ · · · ⇥ Pan�1) set-

theoretically.

Similarly, an ideal-theoretic version of this result can be given:

Theorem 2.6.5 (E. Allman, J. Rhodes, [6]). Suppose a1, a2, . . . , an � k. Let F be any set of polynomials

generating the ideal of S k(Pk�1 ⇥ Pk�1 ⇥ · · · ⇥ Pk�1). Then the set F (k; a1, a2, . . . , an) generates the ideal of

S k(Pa1�1 ⇥ Pa2�1 ⇥ · · · ⇥ Pan�1).

Remark 2.6.6. Although Allman and Rhodes define S k(Pa1�1⇥Pa2�1⇥ · · ·⇥Pan�1) as the variety associated

to a star tree with t leaves, we obviously have to consider only n = 3, because the tree is bifurcating. We

have to point out that a set of polynomials, defining the variety S k(Pa1�1 ⇥ Pa2�1 ⇥ · · · ⇥ Pan�1), when k = 2,

can be found in [44].

Consider a vertex flattening on a tree T . Now, the variety associated to the coarsened model is the

variety of rank k tensors of size kn1 ⇥ kn2 ⇥ kn3 , i.e. S k(Pkn1�1 ⇥ Pkn2�1 ⇥ Pkn3�1). It is important to observe



41

that, in such a case, one has ai = kni for an integer ni depending on the splitting. Thus, the hypotheses

ai � k are satisfied and, in some way, we can try to use polynomials vanishing on S k(Pk�1 ⇥ Pk�1 ⇥ Pk�1) to

obtain invariants for the vertex flattening S k(Pkn1�1 ⇥ Pkn2�1 ⇥ Pkn3�1) and then for the starting tree T . More

precisely, one has the following

Theorem 2.6.7 (E. Allman, J. Rhodes, [6]). For a 3�leaf star tree, let F be a set of polynomials defining

S k(Pk�1 ⇥ Pk�1 ⇥ Pk�1) set-theoretically, and let F (k; a1, a2, a3) be as defined in Theorem 2.6.4. For an

n�taxon tree T , let F (T ) be the union of all sets F (k; kn1 , kn2 , kn3 ) associated to 3�dimensional flattenings

at nodes of T . Then the zero set of F (T ) is the phylogenetic variety VT .

In several cases, edge flattenings and vertex flattenings permit to determine, at least set-theoretically,

the phylogenetic variety. We can then investigate if di↵erent kinds of flattenings can give new phylogenetic

invariants (see [6], page 12). In any case, the previous theorems seem to suggest that the phylogenetic

variety is determined by the local structure of the tree and encourages Phylogenetic Algebraic Geometry in

this direction.

We can conclude with a remark about Theorem 2.6.4. An important consequence of this Theorem is the

following

Corollary 2.6.8. For n  5, the ideal of the variety S 2(Pa1�1 ⇥ Pa2�1 ⇥ · · · ⇥ Pan�1) associated to the

hidden naive Bayes model with a 2�state hidden variable and n observed variables with a1, . . . , an states,

is generated by the 3 ⇥ 3 minors of all 2�dimensional flattenings associated to bipartitions of the observed

variables.

We have to point out that the case n = 3 was already proved in [44]. The previous Corollary solves

several cases of the following

Conjecture 2.6.9 (L. D. Garcia, M. Stillman, B. Sturmfels, [33]). The prime ideal QG of any naive Bayes

model G with r = 2 classes is generated by the 3⇥ 3�subdeterminants of any 2-dimensional table obtained

by flattening the n�dimen-sional table (pi1i2···in ).

Theorem 2.6.4 limits the study of the ideal of S 2(Pa1�1 ⇥ Pa2�1 ⇥ · · · ⇥ Pan�1) to the “simplest” case

S 2(P1⇥P1⇥ · · ·⇥P1), since, applying the construction of this Theorem and maps as in (2.31), we obtain the

generators for the variety S 2(Pa1�1 ⇥ Pa2�1 ⇥ · · · ⇥ Pan�1), with ai � 2. Thus, the Conjecture can be restated

as

Conjecture 2.6.10 (L. D. Garcia, M. Stillman, B. Sturmfels, [33]). The ideal of the variety S 2(P1 ⇥ P1 ⇥
· · · ⇥ P1), that is, the ideal associated to the hidden naive Bayes model with a 2�state variable and n
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2�state observed variables, is generated by the 3 ⇥ 3-subdeterminants of all two-dimensional flattenings

arising from bipartitions of the observed variables.



Lecture 3. Identifiability, Bernoulli

models, decomposition of tensors

3.1 Identifiability

Consider a parametric algebraic statistical modelM f which is described by a parameterization map

f : ⇥ ✓ Rd ! Rm

✓ 7! �
f1(✓), . . . , fm(✓)

�

Definition 3.1.1. The modelM f is (strict) identifiable if f is injective.

The identifiability of a model is a foundamental property in Statistics, since inference will produce an

unique result on such model.

It is important to notice that in many cases, the above map will not be strictly injective. For example,

when we work with a general Markov model on tree, the above map is always r!-to-one, where r is the

number of hidden classes in the model (label-swapping e↵ect). However a finite number of solution is still

better than an infinite number of solutions !!!

The concept of identifiability in Statistics has an analogue in Projective Geometry. We use now defini-

tions and results given in Appendix, Section A.2.5.

We work over the complex field and we consider the projective space Pr = Pr
C, equipped with the

tautological line bundle OPr (1).

Definition 3.1.2. A projective variety X ⇢ Pr is called k-identifiable if the general element of S k(X) has a

unique decomposition as the sum of k elements of X.

An equivalent definition can be given in term of secant order of X (see Definition A.2.11)

43
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Definition 3.1.3. We say that X is (generically) k-identifiable if it has k-th secant order 1, i.e. if for

a general point P 2 S k(X), there is a unique unordered k-uple P1, . . . , Pk of points of X such that P 2
hP1, . . . , Pki.

It is clear that X is k-identifiable when the projection AbS k(X) ! S k(X) is birational. For this reason

X cannot be k-identifiable when dim(AbS k(X)) > S (k)(X). In particular, if X has dimension m then X is not

k-identifiable when r < k(m + 1) or when X is k-defective.

The main link between identifiability and weakly defective varieties lies in the following:

Theorem 3.1.4 (L. Chiantini, C. Ciliberto, [18], Corollary 2.7). Let X ⇢ Pr be an irreducible, projective,

non–degenerate variety of dimension m. Assume k(m + 1) � 1 < r. Then X is k-identifiable, unless it is

k–weakly defective.

Theorem 3.1.5 (L. Chiantini, C. Ciliberto, [18], Theorem 2.4). Let X ⇢ Pr be an irreducible, projective,

non–degenerate variety of dimension m. Assume k(m + 1) � 1 < r and assume that X is k-weakly defective.

Call ⌃ a general k-th contact variety. Then, the k-th secant order of ⌃ is equal to the k-th secant order of X.

Thus, a way to prove that a variety X is k-identifiable, at least when r , k(m+1)�1, is to prove that X is not

k-weakly defective, or, if it is k-weakly defective, that the general contact variety ⌃ has k-th secant order 1.

Using the connection between k-defectivity and k-weakly defectivity in term of the existence of degen-

erate subvarieties, passing through k general points in X, we can use Corollary A.2.17 for identifiability.

In conclusion, we obtain:

Corollary 3.1.6. Assume r > k(m + 1) � 1. Assume that for all n = 1, . . . ,m � 1, there are no families of

n-dimensional subvarieties of X, whose general element spans a linear space of dimension  k(n + 1) � 1

and passes through k + 1 general points of X. Then X is not k-weakly defective. Hence it is k-identifiable.

One should observe that both Corollary 3.1.6 and the second part of Theorem 3.1.4 cannot be inverted.

Example 3.1.7. When X is k-weakly defective, it can be k-identifiable as well. This may happen, by [18],

Theorem 2.4, when the contact locus has k-th secant order 1. Examples of such varieties can be found in

[18], Example 3.7, but they are singular. A smooth example was communicated us by G. Ottaviani. Take

the Segre embedding of X = P1 ⇥ P1 ⇥ P2 in P11. Using a computer-aided procedure, one can find that

the general hyperplane which is tangent to X at two points, is indeed tangent along a twisted cubic. The

computation was indeed performed at two specific points of X, but notice that Aut(X) acts transitively on

pair of points. Thus X is 1-weakly defective. Since a twisted cubic curve has first secant order equal to 1,

it turns out by [18], Theorem 2.4, that X is 1-identifiable. The 1-identifiability of X also follows from the

Kruskal’s identifiability criterion for the product of three projective spaces (see [42]).
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As a consequence, one cannot use the inverse of the previous argument to determine the non-identifiabi-

lity of a variety X, simply by studying degenerate subvarieties.

Those who wonder why we ask for the uniqueness just for a general element of S k(X), should consider

that for any k � 2 there are always points of S k(X) which have rank smaller than k.

Notice that k-identifiable implies (k � 1)-identifiable and so on. In a similar way, k�weak-defectivity

implies (k � 1)�weak-defectivity and so on.

A fundamental Geometric tool for the analysis of the identifiability of tensors, is the following proposi-

tion, which is essentially a consequence of Terracini Lemma.

Proposition 3.1.8 (L. Chiantini, G. Ottaviani, [19], Proposition 2.4). If there exists a set of k particular

points x1, . . . xk 2 X, such that the span

< Tx1 X, . . . ,Txk X >

contains TxX only if x = xi for some i = 1, . . . k, then X is k-identifiable.

Now we fix our attention on k�secant varieties of Segre products X = Pa1 ⇥ · · · ⇥ Pan . By Section 1.6

we know that S k(X) is the variety associated to the following graphical model.

k states

a1 + 1 states a2 + 1 states a3 + 1 states an�2 + 1 states an�1 + 1 states an + 1 states

By definition, the k�identifiability of X implies the identifiability of the model.

If we do not want to think at S k(X) as the variety associated to a statistical model, we can still consider

it as the set of (a1 ⇥ a2 ⇥ · · · ⇥ an)�tensors of rank  k. In this case the identifiability of X is strictly

related to then uniqueness of decomposition of tensors as a sum of decomposable tensors. Conditions

which guarantee the uniqueness of this decomposition are quite important in the applications [40]. Indeed,

many decomposition algorithms converge to one decomposition, so that a uniqueness result guarantees that

the decomposition found is the one we looked for. Even from a purely theoretical point of view, the study of



46

the decomposition shows some beautiful and not expected phenomena. After a look at the table in Section

3.7, we see that there are some exceptional sporadic cases which are intriguing.

So, one of the topics of this lecture is to show how to add the words identifiability/weak-defectivity to

our Algebra/Geometry-Statistics Dictionary:

Statistics Algebra

Independence Segre Variety

Binomial Random Variable Rational Normal Curve

Log-linear Model Toric Variety

Mixture Model Secant Variety

ML Estimation Tropicalization

Design Zero-dimensional Scheme

Identifiability Weak-Defectivity

...
...

At the same time, our results on identifiability of models will produce also results on decompositions of

tensors.

3.2 The main lemma

The inductive step, that allows us to provide e↵ective results on the identifiability of tensors and statistical

models on star graphs, relies in the following:

Lemma 3.2.1 (C. Bocci, L. Chiantini, G. Ottaviani, [13]). Let X be a smooth non-degenerate projective

subvariety of PN, of dimension n. Let Y denote the canonical Segre embedding of X ⇥ Pm into PM, M =

mN + m + N. Fix k with (n + 1)k < N + 1 and r < N such that r + 1 � (n + m + 1)k. Assume that a

general linear subspace of PN, of dimension r, which is tangent to X at k general points, is not tangent to X

elsewhere.

Then the general linear subspace of PM, of dimension mr + m + r, which is tangent to Y at (m + 1)k

general points, is not tangent to Y elsewhere.

Proof. First of all, notice that dim(Y) = (m + n), and (m + 1)(r + 1) � (m + n + 1)(m + 1)k. Thus, by

an obvious parameter count, there are linear subspaces of dimension mr + m + r which are tangent to Y at

(m + 1)k general points.
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Fix m + 1 independent points p0, . . . , pm of Pm and for j = 0, . . . ,m take k general points qi j of the fiber

X ⇥ {p j}. Call ⇡ j the natural projection of X ⇥ {p j} to X.

For h = 0, . . . ,m, fix a general linear subspace Rh, of dimension r, which is tangent to X ⇥ {ph} at the k

points q1h, . . . , qkh and passes through the points ⇡ j(qi j) ⇥ {ph}, for j , h. Since r + 1 � k(n + 1) + km, such

spaces Rh exist. Moreover Rh it is tangent to X⇥ {ph} only at the point q1h, . . . , qkh, by our assumption on X.

Let R be the span of all the Rh’s. We claim that R, which is a linear subspace of dimension mr + m + r,

is tangent to Y at all the points qi j, and it is not tangent to Y elsewhere. This will conclude the proof of the

lemma, by semicontinuity.

First notice that for all i, j, R contains m + 1 general points of {⇡ j(qi j)} ⇥ Pm, hence it contains these

fibers. Since R also contains the tangent spaces to X ⇥ {ph} at the points qih’s for all h, then it is tangent to

Y at all the points qi j’s.

Assume now that there exists a point x 2 Y , di↵erent from the qih’s, such that R is tangent to Y at x. Call

x0 the projection of x to Pm, so that in some coordinate system, we can write x0 = a0 p0 + · · · + am pm. There

is at least one of the ai’s, say a0, which is non-zero. Assume that also a1 , 0. Then, the projection of R to

PN ⇥ {p0}, which by construction coincides with R0, is also tangent to X ⇥ {p0} at the projection of qk1. By

the generality of the choice of the qi j’s, qk1 cannot coincide with any of the points q10, . . . , qk0. Thus we get

a contradiction.

So, we conclude that a1 = 0. Similarly we get that a2 = · · · = am = 0. It follows that x = x0 belongs to

X ⇥ {p0} and since R0 is tangent to X ⇥ {p0} at x, then x must coincide with some point qi0. ⇤

Remark 3.2.2. It is worthy of spending one Remark to point out that, by semicontinuity, if a general linear

subspace of PN , of dimension r, which is tangent to X at k general points, is not tangent to X elsewhere,

then the same phenomenon occurs for general linear subspaces of dimension r � 1, r � 2, and so on.

The Lemma, together with Proposition 3.1.8, produces the following general principle:

Corollary 3.2.3. With the same assumptions on X of Lemma 3.2.1, then Y = X⇥Pm is (m+1)k-identifiable.

3.3 Results on Segre products

Let X be the Segre product Pa1 ⇥ · · · ⇥ Paq embedded in the usual way in PN where N + 1 =
Qq

i=1(ai + 1). It

is well known that when k is bigger that the critical value

kc :=
Qq

i=1(ai + 1)
1 +

Pq
i=1 ai
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then the decomposition can never be unique (see the introduction of [11]). Only one case is known when

kc is an integer and there is a unique decomposition for tensors of rank equal to kc, namely when q = 3 and

a1 = 1, a2 = a3.

So, let us consider the range k < kc, where the problem can be understood better. Moreover, in this case,

the Lemma 3.2.1 permits an inductive process, starting with a X who is a Segre product for which we know

that the assumptions of Lemma 3.2.1 hold (by computer-aided specific computations or by Theorem 3.6.1

below) and then extending the number of factors of X.

A A

Pa1 ⇥ Pa2 ⇥ · · · ⇥ Pan

Pa1 ⇥ Pa2 ⇥ · · · ⇥ Pan�1 Pan

Pa1 ⇥ Pa2 ⇥ · · · ⇥ Pan�2 Pan�1

3.4 Many copies of P1

The main case in which the previous result applies is the Segre product of many projective lines.

Proposition 3.4.1 (C. Bocci, L. Chiantini, G. Ottaviani, [13]). Let X be the product of n copies of P1,

6  n  12, naturally embedded in P2n�1. Then for k < kc =
2n

n+1 the linear span of k general tangent spaces

at X, is not tangent to X elsewhere. In particular X is k-identifiable for all k < kc.

Proof. Just a computer-aided computation, following the algorithm presented in Section 3.8. In the case of

12 copies, the algorithm goes out of memory if implemented in a straightforward way. We used a “divide

and conquer” technique to save memory, running in 2 hours on a PC with two processors at 2GHz. ⇤

Theorem 3.4.2 (C. Bocci, L. Chiantini, G. Ottaviani, [13]). For n � 12, let X be the product of n copies of

P1, naturally embedded in PN, with N = 2n � 1. Then for r < 2n � 2n�12 and for k  r+1
n+1 , a general linear

subspace of dimension r which is tangent to X at k points, is not tangent to X elsewhere.

Proof. The proof goes by induction on n � 12. If n = 12, the claim follows from the previous Proposition

and Remark 3.2.2.

Assume the claim holds for n � 1. Again by Remark 3.2.2, it su�ces to prove the claim for r + 1 =

2n �2n�12. Fix k as above. Notice that k0 := dk/2e is at most (2n�1 �2n�13)/(n+1)+1, which is smaller than



49

(2n�1�2n�13)/n for n � 12. Thus we may apply induction: the general linear subspace of PN0 , N0 := 2n�1�1,

of dimension (2n�1�2n�13)�1, which is tangent to X0 := (P1)n�1 at k0 points, is not tangent to X0 elsewhere.

The claim now follows directly from the Main Lemma 3.2.1. ⇤

Remark 3.4.3. The assumption n � 6 is motivated by the fact that for 5 copies of P1, X is k-identifiable if

and only if k  4, while the general tensor of rank 5 has exactly two decompositions We recall that for 4

copies of P1, X is k-identifiable if and only if k  2, while it is a result of Strassen that the general tensor of

rank 3 has infinitely many decompositions.

For 3 copies of P1, X is k-identifiable if and only if k  2, 2 being the general rank.

As a corollary, we get

Theorem 3.4.4 (C. Bocci, L. Chiantini, G. Ottaviani, [13]). For n � 12, let X be the product of n copies of

P1, naturally embedded in PN, with N = 2n � 1. Then for k  (2n � 2n�12)/(n + 1), X is k-identifiable.

3.4.1 Results for Bernoulli models

Let we finish with a short account of the status of the art, for the identifiability of Bernoulli models, i.e.

tensors in the span of P1 ⇥ · · · ⇥ P1. After the paper of Strassen [51], and using methods of Algebraic

Geometry, Elmore, Hall and Neeman proved in [37] the following asymptotic result: when the number n of

factors is “very large” with respect to k, a, then the Segre product Pa ⇥ · · · ⇥ Pa is k-identifiable. A much

more precise bound for identifiability of binary products was obtained by Allman, Matias and Rhodes. In

[3] (Corollary 5) they proved that the product of n copies of P1 is k-identifiable when n > 2dlog2(k+1)e+1.

Successively, using Geometric methods as well as a result by Catalisano, Gimigliano and Geramita ([14]),

Bocci and Chiantini, in [11] improved the bound, showing that a product of n > 5 copies of P1 is k-

identifiable for all k such that k + 1  2n�1/n. The case of 5 copies of P1 was shown to be exceptional. The

bound, which happened to be the best known up to now, is substantially improved by Theorem 3.4.4. Let

us compare the results of Allman-Matias-Rhodes and Bocci-Chiantini with the ones of Theorem 3.4.4 for

some values of n with respect also to the critical value kc.

n kc AMR BC BCO

6 9 5 5 9

10 92 22 50 92

20 49932 724 26214 49920

The results of Allman, Matias and Rhodes gave a lower bound for 2m which is quadratic with respect
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to k + 1. The main result of Bocci-Chiantini, in [11], proves that X is k-identifiable for k < 2n�1/n, which

is a little better than half way from the critical (maximal) value kc. Finally Theorem 3.4.4 shows that X is

k-identifiable for

k  2n

n + 1
(1 � 1

212 ) =
4095
4096

2n

n + 1
= 0, 9997 . . . · kc

a sensible improvement, as n grows.

3.5 Many copies of P2
and P3

Let us see what happens with the Segre product of many projective planes.

Proposition 3.5.1 (C. Bocci, L. Chiantini, G. Ottaviani, [13]). Let X be the product of n copies of P2,

4  n  6, naturally embedded in P3n�1. Then for k < kc =
2n

n+1 the linear span of k general tangent spaces

at X, is not tangent to X elsewhere. In particular X is k-identifiable for all k < kc.

Proof. Just a computer-aided computation, following the algorithm presented in Section 3.8. ⇤

Remark 3.5.2. The assumption n � 4 is motivated by the fact that for 3 copies of P2, X is k-identifiable

if and only if k  3, while it is a result of Strassen ([51] §4) that the general tensor of rank 4 has infinitely

many decompositions.

Theorem 3.5.3 (C. Bocci, L. Chiantini, G. Ottaviani, [13]). For n � 6, let X be the product of n copies of

P2, naturally embedded in PN, with N = 3n � 1. Then for r < 3n � 3n�6 and for k  (r + 1)/(2n + 1), a

general linear subspace of dimension r which is tangent to X at k points, is not tangent to X elsewhere.

Proof. The proof goes by induction on n � 6. If n = 6, the claim follows from the previous proposition and

Remark 3.2.2.

Assume n � 7 and the claim holds for n � 1. Again by Remark 3.2.2, it su�ces to prove the claim for

r + 1 = 3n � 3n�6. Fix k as above. Notice that k0 := dk/3e is at most (3n�1 � 3n�7)/(2n + 1) + 1, which is

smaller than (3n�1 � 3n�7)/(2n � 1) for n � 5. Thus we may apply induction: the general linear subspace

of PN0 , N0 := 3n�1 � 1, of dimension (3n�1 � 3n�7) � 1, which is tangent to X0 := (P2)n�1 at k0 points, is not

tangent to X0 elsewhere. The claim now follows directly from the Main Lemma 3.2.1. ⇤

As a corollary, we get

Theorem 3.5.4 (C. Bocci, L. Chiantini, G. Ottaviani, [13]). For n � 6, let X be the product of n copies of

P2, naturally embedded in PN, with N = 3n � 1. Then for k  (3n � 3n�6)/(2n + 1), X is k-identifiable.
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The previous result shows that X is k-identifiable for

k  3n

2n + 1
(1 � 1

36 ) =
728
729

3n

2n + 1
,

i.e. up to 728/729 = 0.998 . . . of the critical (maximal) value kc.

And now the reader can see how the trick goes, at least for cubic tensors. Once one determines a starting

point, for few copies of given projective spaces (e.g. by using a computer-aided computation), then the Main

Lemma 3.2.1 provides an extension to the product of an arbitrary number of copies of projective spaces, in

which the bound is expressed as a constant fraction of the critical value kc.

We end the list of particular cases with the product of many copies of P3, which is relevant because of

its connection with the Algebraic Statistics of DNA chains.

Theorem 3.5.5 (C. Bocci, L. Chiantini, G. Ottaviani, [13]). Let X be the product of n � 5 copies of P3,

naturally embedded in PN, with N = 4n � 1.

(i) for n = 5, a general linear subspace of dimension r = 1007 which is tangent to X at k  63 points,

is not tangent to X elsewhere.

(ii) For n > 5 and k  (4n � 4n�3)/(3n + 1), a general linear subspace of dimension r = 4n � 4n�3 � 1

which is tangent to X at k points, is not tangent to X elsewhere.

(iii) For k  (4n � 4n�3)/(3n + 1), then X is k-identifiable. In other words, X is k-identifiable up to

63/64 = 0.98 . . . of the critical (maximal) value kc.

Proof. (i) follows from a computer-aided computation, following the the algorithm presented in Section

3.8. (ii) is a consequence of (i) and the inductive Lemma 3.2.1. (iii) follows from (ii) and Proposition

3.1.8. ⇤

3.6 Products of three projective spaces

For the general case, in which we have projective spaces of arbitrary dimension, in order to produce exam-

ples similar to the ones of the previous section, we need a starting point for the induction.

We obtain a starting point, for the case of the product of three projective spaces X = Pa ⇥ Pb ⇥ Pc,

2 < a  b  c, from the following Theorem, which is due to Strassen in the case c odd (see [51], Corollary

3.7), and we generalize to any c.

The proof in [13] is apparently independent from the argument given by Strassen. Indeed, following

correctly the details of the steps, one realizes that the two arguments are essentially equivalent.
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Theorem 3.6.1 (V. Strassen, [51]; C. Bocci, L. Chiantini, G. Ottaviani, [13]). Let X be the product of three

projective spaces X = Pa⇥Pb⇥Pc, 2 < a  b  c, naturally embedded in PN, with N = (a+1)(b+1)(c+1)�1.

Then a general linear subspace L of codimension a+b+2 in PN, that contains the span of the tangent spaces

to X at k general points, with:

k (a + 1)(b + 1)(c + 1)
a + b + c + 1

� c � 1,

is not tangent to X elsewhere.

Proof. Let Pc = P(C), where C is a vector space of dimension c + 1. Fix one vector v0 2 C and split C in a

direct sum C = hv0i �C0, where C0 is a supplementary subspace of dimension c. From the geometric point

of view, this is equivalent to split the product X in two products

X0 = Pa ⇥ Pb ⇥ Pc�1 and X00 = Pa ⇥ Pb ⇥ {P0} = Pa ⇥ Pb.

Fix general points P1, . . . , Pk 2 X0, with Pi = vi⌦wi⌦ui and let Q1, . . . ,Qk, Qi = vi⌦wi, be the corresponding

points of X00. The linear span of the Qi’s is a space of dimension k � 1 in PN00 , where N00 = ab + a + b.

By assumption k � 1N00 � dim(X00) = N00 � a � b. Indeed if c + 1 � a + b then

k � 1  (a + 1)(b + 1)(c + 1)
a + b + c + 1

� a � b � 1  (a + 1)(b + 1) � a � b � 1.

If c + 1 < a + b then k < (a + 1)(b + 1)/2 and (a + 1)(b + 1)/2 > a + b.

Fix a linear space L00 of codimension a + b + 1 in PN00 , which contains the span of the Qi’s. Since the

points Qi’s are general in X00, it follows from the Theorem 2.6 in [17] (it is a generalization of the “trisecant

lemma”) that the linear space L00 does not meet X00 in other points. Moreover L00 is not tangent to X00 at any

of the points Qi’s.

Let L0 be a hyperplane in PN0 , N0 = (a + 1)(b + 1)c � 1, which is tangent to X0 at the points Pi’s. The

hyperplane L0 exists, since by assumption

k(dim(X0) + 1) < (a + 1)(b + 1)(c + 1) � c(a + b + c) < N � 1.

Let L be the linear span of L0 and L00. L has codimension a + b + 2 and it is tangent to X at the k points

P1, . . . , Pk, since it contains the tangent spaces to X0 at the Pi’s, moreover it contains the points Qi’s, so it

contains the fiber Pc passing through each Pi.

We want to exclude that L is tangent to X at any other point P , Pi. Call Q the projection of P to X00.

If L is tangent to X at P, then it must contain the fiber Pc passing through P, thus it contains Q. This proves

that Q is one of the Qi’s (say Q = Q1), since L does not meet X00 elsewhere. But then L contains the fibers

Pa and Pb at two points P, P1 with the same projection to X00. Thus it contains these fibers at any point of
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the line ` joining P, P1. As ` contains Q1, we get a contradiction, since L00 = L \ PN00 is not tangent to X00

at Q1. ⇤

Corollary 3.6.2. Let X be the product of three projective spaces X = Pa ⇥ Pb ⇥ Pc, 2 < a  b  c, naturally

embedded in PN, with N = (a + 1)(b + 1)(c + 1) � 1. Then for

k (a + 1)(b + 1)(c + 1)
a + b + c + 1

� c � 1,

X is k-identifiable.

Proof. Follows immediately from the previous Theorem and [19]. ⇤

The identifiability of products of three projective spaces has been studied by a long list of authors,

who refined the celebrated Kruskal’s bound for arbitrary tensors. We mention De Lauthawer’s results for

unbalanced tensor ([24]), and the general bounds found by the Chiantini and Ottaviani in [19].

It is reasonable to believe that the bound of Corollary 3.6.2, at least for some balanced case, is the best

known result for tensors of type a, b, c.

3.7 Inductive bounds for the identifiability of general tensors

The same procedure we used for products of many projective lines and planes, based on the bound found

in Corollary 3.6.2, can produce results for cubic tensors, which, in some cases, are far beyond any known

result on the identifiability problem.

Then, with the above notation, we have:

Theorem 3.7.1 (C. Bocci, L. Chiantini, G. Ottaviani, [13]). For n � 3, let X be the product of n copies

of Pa, naturally embedded in PN, with N = (a + 1)n � 1. Then for r < (a + 1)n � (3a + 1)(a + 1)n�2 and

for k  (r + 1)/(an + 1), a general linear subspace of dimension r which is tangent to X at k points, is not

tangent to X elsewhere.

As a consequence, we get that X is k-identifiable, for

k  (a + 1)n � (3a + 1)(a + 1)n�2

an + 1
.

Proof. The proof is absolutely similar to the ones of the cases a = 1, 2, 3 given above. We may assume

a � 4. It goes by induction on n � 3, and uses Theorem 3.6.1 as a starting point.

We leave the straightforward details to the reader. ⇤
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We recall that we defined, in the introduction, the critical value

kc =

Qq
i=1(ai + 1)

1 +
Pq

i=1 ai

which is essentially the maximum for which k-identifiability can hold. Then the previous bound proves that

X is k-identifiable, for

ka(a � 1)
(a + 1)2 kc.

Even for the case of rectangular tensors, we are able to prove some results, using the same procedure.

Theorem 3.7.2 (C. Bocci, L. Chiantini, G. Ottaviani, [13]). Let X be the product of q � 3 projective spaces

X = Pa1 ⇥ · · · ⇥ Paq , naturally embedded in PN, with N = �1 + ⇧q
i=1(ai + 1). Then for

r < ⇧q
i=1(ai + 1) � (a1 + a2 + a3 + 1)⇧q

i=3(ai + 1)

and for k  (r+ 1)/(1+
Pq

i=1 ai), a general linear subspace of dimension r which is tangent to X at k points,

is not tangent to X elsewhere.

As a consequence, we get that X is k-identifiable, for

k  ⇧
q
i=1(ai + 1) � (a1 + a2 + a3 + 1)⇧q

i=3(ai + 1)
1 +

Pq
i=1 ai

=
a1a2 � a3

(a1 + 1)(a2 + 1)
kc.

Of course, the previous bound changes if one reorders the ai suitably. Notice that the previous thereom

requires a1a2 > a3 in order to give a an e↵ective range of values for k. Moreover, one of the conditions

among a1 � a3, a2 � a3 and a1a2 � a3 is strongly preferable to have a larger range of values for k.

We strongly believe that some ad hoc procedure, as well as the improvements of our computational

facilities, for the starting point of the induction, are suitable to produce advancement in the inequalities of

the previous results.

Let us stress that the previous bounds provide also some answers to the problem of finding the dimension

of secant varieties to Segre varieties (i.e. to the dimension of paces of tensors of given rank).

Corollary 3.7.3. Let X be the product of q � 3 projective spaces X = Pa1 ⇥ · · · ⇥ Paq . If

k  ⇧
q
i=1(ai + 1) � (a1 + a2 + a3 + 1)⇧q

i=3(ai + 1)
1 +

Pq
i=1 ai

then the dimension of the k-secant variety S k(X) is the expected one, namely it is equal to k(1+
Pq

i=1 ai)� 1.

We show now a list known cases when aq  Qq�1
i=1 (ai + 1) �

⇣
1 +

Pq�1
i=1 ai

⌘
and the decomposition of the

general tensor of rank k < kc is not unique.We refer to Section 5 of [19] for further details.
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(a1, . . . , aq) k number of decompositions

(2, 3, 3) 5 11

(2, b, b) b even 3b+2
2 1 b

2 +1

(1, 1, n, n) 2n + 1 11

(3, 3, 3) 6 2

(2, 5, 5) 8 finite,� 6

(1, 1, 1, 1, 1) 5 2

A straightforward application of the algorithm presented in the last section shows the following

Theorem 3.7.4. The previous list is complete for all (a1, . . . , aq) such that
Qq

i=1(ai + 1)  100.

Let us conclude this lecture by proving the non identifiability of (P1)5.

Proposition 3.7.5. The product X of 5 copies of P1 is not 5-identifiable. Through a general point of S 5(X)

one finds exactly two 5-secant, 4-spaces.

Proof. Indeed, we prove that through 5 general points of X one can find an irreducible elliptic normal curve

C ⇢ P9, contained in X. Since a general point of the P9, spanned by C, sits in exactly two subspaces of

dimension 4, 5-secant to an irreducible elliptic normal curve (by [18] Proposition 5.2), it follows that the

5-th secant order of X is at least 2. In particular, X is 4-weakly defective, by [18], proposition 2.7, and

the 4-th contact locus contains an elliptic normal curve as C. A computer aided computation, at 5 specific

points of X, proves that indeed the 5-contact locus of X is exactly an irreducible elliptic normal curve of

degree 12. The computation has been performed with the Macaulay2 Computer Algebra package [34], with

the script described in [12]. Thus 5-th secant order of X is 2 (by Theorem 3.1.5) and the claim is proved.

To prove the existence of the curve C passing through 5 general points P1, . . . , P5 of X, we start with

the product of three lines X0 = P1 ⇥ P1 ⇥ P1. Through the 5 points P01, . . . , P
0
5 2 X0, projection of the Pi’s,

one can find a 2-dimensional family F of elliptic normal curves C0 of degree 6. Indeed X0 ⇢ P5 is a sestic

threefold with elliptic curve sections, and there is a 2-dimensional family of hyperplanes passing through 5
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general points of X. F is parametrized by points of some plane ⇧, obtained by projecting P5 from the span

of the P0i’s.

Consider now the product X00 of the two remaining copies of P1, so that X = X0 ⇥ X00. We also

get 5 distinguished general points P001 , . . . , P
00
5 2 X00. For any curve C0 of the family F , we have a 7-

dimensional family of embeddings C0 ! X00. Thus, adding the automorphisms of C0, for C0 2 F general,

we may assume that each P0i , i = 1, . . . , 4, goes to the corresponding P00i . The condition that P05 goes to

P005 determines two algebraic condition on the family, hence two algebraic curves on ⇧. Thus, there is at

least one curve C0 of the family, for which P05 goes to P005 . This determines an elliptic normal curve C in X,

passing through the 5 given general points Pi’s. The fact that C is irreducible, for a general choice of the

points, follows by the computer-aided computation, on a specific example. ⇤

3.8 The algorithm

The algorithm we have used has been implemented in Macaulay2 [34] and it can be found as ancillary file

in the arXiv submission of the paper [13].

The steps are the following.

1. We choose s random points p1, . . . , ps on the Segre variety X, working on an a�ne chart. The point

p1 can be chosen as (1, 0, . . .) on each factor.

2. We compute the equations of the span of tangent spaces < Tp1 , . . . ,Tps >.

3. For any of the cartesian equations we compute its partial derivatives, the common locus is the locus

C of points p such that TpX ⇢ hTp1 , . . . ,Tpsi.

4. We compute the rank of the jacobian matrix of C at p1. If it is equal to the dimension of X then X is

k-identifiable. If it is smaller than the dimension of X then a further analysis is required.



Lecture 4. Quasi-independence models

on matrices and tensors

Let us study now some class of statistical models on contingency tables and its generalization on tensors.

The aim of the lecture is to show combinatorial approaches to the research of model invariants.

4.1 Diagonal-e↵ect models

Diagonal-e↵ect models for square I ⇥ I tables can be defined in at least two ways. In the field of toric

models, one can define these models in monomial form as follows.

Definition 4.1.1. The diagonal-e↵ect model M1 is defined as the set of probability matrices P 2 � such

that:

pi j = ric j for i , j (4.32)

and

pi j = ric j�i for i = j (4.33)

where r, c and � are non-negative vectors with length I.

In literature, such a model is also known as quasi-independence model, see [2]. As the model in Defini-

tion 4.1.1 is a toric model, it is relatively easy to find the invariants. Eliminating the parameters r, c and �

one obtains the following result.

Theorem 4.1.2. The invariants of the modelM1 are the binomials

pi j pi0 j0 � pi j0 pi0 j (4.34)

for i, i0, j, j0 all distinct, and

pii0 pi0i00 pi00i � pii00 pi00i0 pi0i (4.35)

57
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for i, i0, i00 all distinct.

In the framework of the mixture models, the diagonal-e↵ect models have an alternative definition as

follows.

Definition 4.1.3. The diagonal-e↵ect modelM2 is defined as the set of probability matrices P such that

P = ↵crt + (1 � ↵)D (4.36)

where r and c are non-negative vectors with length I and sum 1, D = diag(d1, . . . , dI) is a non-negative

diagonal matrix with sum 1, and ↵ 2 [0, 1].

Remark 4.1.4. Notice that while in Definition 4.1.1 the normalization is applied once, in Definition 4.1.3

the normalization is applied twice as we require that both crt and D are probability matrices. This di↵erence

will be particularly relevant in the study of the geometry of the models.

We study the invariants and some geometrical properties of these models.

Theorem 4.1.5 (C. Bocci, E. Carlini, F. Rapallo, [10]). The modelsM1 andM2 have the same invariants.

Proof. Writing explicitly the polynomials in Equations (4.32) and (4.33) it is easy to check that each �i

appears in only one polynomial. The same for each di in Equations (4.36). Thus, following Theorem 3.4.5

in [41], such polynomials are deleted when we eliminate the indeterminates �i’s and di’s.

As the remaining polynomials, corresponding to o↵-diagonal cells, are the same in both models, the

modelsM1 andM2 have the same invariants. ⇤

In order to study in more details the connections between M1 and M2 we further investigate their

geometric structure. The non-negativity conditions imposed in the definitions imply that M1 , M2 and

neitherM2 ⇢M1 norM1 ⇢M2. We can show this by two easy examples.

First, let r and c respectively the vectors, of length I, ( 1
I ,

1
I , . . . ,

1
I ) and ( 1

I�1 ,
1

I�1 , . . . ,
1

I�1 ) and define �

as the zero vector. Thus, the probability table we obtain in toric form is:

P =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1
I(I�1)

1
I(I�1) . . . 1

I(I�1)
1

I(I�1) 0 1
I(I�1) . . . 1

I(I�1)
1

I(I�1)
1

I(I�1) 0 . . . 1
I(I�1)

...
...

...
...

...

1
I(I�1)

1
I(I�1)

1
I(I�1) . . . 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

Such probability matrix belongs toM1 by constructions, while it does not belong toM2. In fact, p11 = 0

in Equation (4.36) would imply either ↵ = 0 (a contradiction, as P is not a diagonal matrix), or r1 = 0 (a
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contradiction, as P has not the first row with all 0’s), or c1 = 0 (a contradiction, as P has not the first column

with all 0’s).

On the other hand, let P be the diagonal matrix

P =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
I 0 0 . . . 0

0 1
I 0 . . . 0

0 0 1
I . . . 0

...
...
...
...
...

0 0 0 . . . 1
I

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

Such probability matrix belongs toM2 by setting ↵ = 0 and D = diag( 1
I , . . . ,

1
I ), while it does not belong

toM1. To prove this it is enough to note that p12 = 0 would imply either r1 = 0 (a contradiction, as the first

row of P is not zero), or c2 = 0 (a contradiction, as the second column of P is not zero).

Nevertheless, in the open simplex we can prove one of the inclusions.

Proposition 4.1.6 (C. Bocci, E. Carlini, F. Rapallo, [10]). In the open simplex �>0,

M2 ⇢M1 (4.37)

Proof. In fact, let us consider a probability table inM2, given by P = ↵crt + (1 � ↵)D. As P 2 �>0, ↵ , 0,

ri , 0 for all i = 1, . . . , I and c j , 0 for all j = 1, . . . , I. Then we can describe P as an element ofM1 in the

following way. We define ri = ri for all i and c j = ↵c j, for all j. After that, it is enough to find the diagonal

parameters by solving the equations

↵rici�i = ↵rici + (1 � ↵)di

that is, as ↵ , 0, ri , 0, and ci , 0, we have

�i = 1 +
(1 � ↵)di

↵rici
.

⇤

Moreover, in the open simplex �>0, the inclusion in Proposition 4.1.6 is strict. Let us analyze the

probability matrices in the di↵erenceM1 \M2.

Consider three vectors r = (r1, . . . , rI), c = (c1, . . . , cI) and � = (�1, . . . , �I). Using these vectors,

we define the probability table P as in Definition 4.1.1 and then we normalize it, i.e. dividing by NT =
P

i, j ric j +
P

i= j ric j�i. Define also N =
P

i j ric j (which can be seen as the normalization of the toric model

when � is the unit vector, i.e., it is the vector with all components equal to one).
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We want to find three vectors c = (c1, . . . , cI), r = (r1, . . . , rI), d = (d1, . . . , dI), with
P

ri =
P

ci =
P

di = 1 and a scalar 0  ↵  1 such that

1
NT

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

r1c1�1 r1c2 r1c3 . . . r1cI

r2c1 r2c2�2 r2c3 . . . r2cI

r3c1 r3c2 r3c3�3 . . . r3cI
...

...
...

...
...

rIc1 rIc2 rIc3 . . . rIcI�I

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

= ↵

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

r1c1 r1c2 r1c3 . . . r1cI

r2c1 r2c2 r2c3 . . . r2cI

r3c1 r3c2 r3c3 . . . r3cI
...

...
...

...
...

rIc1 rIc2 rIc3 . . . rIcI

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

+ (1 � ↵)

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

d1 0 0 . . . 0

0 d2 0 . . . 0

0 0 d3 . . . 0
...
...
...

...
...

0 0 0 . . . dI

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

(4.38)

We start studying the o↵-diagonal elements. Consider first the case NT > N. Thus we have ric j

NT
<

ric j

N

and N
NT
< 1. In this situation the only possible choice is given by

↵ =
N
NT

ri =
riP
ri
, c j =

c jP
c j
. (4.39)

In fact, recalling the definition of N, we have

↵ric j =
N
NT

riP
ri

c jP
c j
=

N
NT

ric j

N
=

ric j

NT
(4.40)

for all i, j with i , j. Taking the log-probabilities, we obtain a linear system. It is easy to prove, as in

Chapter 6 of [47], that the rank of this system is equal to (2I � 1). Hence, considering the normalizing

equations for r and c, we see that the solution in (4.39) is unique.

Let us consider the generic equation of the i�th diagonal element:

rici�i = ↵rici + (1 � ↵)di .

After substituting the previous values for ri, ci and ↵ we get

rici�i =
N
NT

rici

N
+

NT � N
NT

di .

As we consider matrices in �>0, the quantity rici is di↵erent from zero. Therefore, after multiplying for NT

and dividing by rici we obtain

�i = 1 +
NT � N

rici
di
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that is

di =
rici

NT � N
(�i � 1)

Thus we see that the P 2M1 \M2 when NT > N and there exists at least an index i such that �i < 1.

When NT = N, from Equations (4.40) we obtain ↵ = 1. Therefore in Equation (4.38) the matrix on the

right hand side has rank 1, and this implies that P 2M2 if and only if �i = 1 for all i.

Consider now the case NT < N. Hence we have ric j

NT
>

ric j

N and N
NT
> 1. Again the only possible choice

for the o↵-diagonal elements would be given by

↵ =
N
NT
, ri =

riP
ri
, ci =

ciP
ci
,

but in this case ↵ = N
NT
> 1. Thus we conclude that all P 2M1 with NT < N are inM1 \M2. This leads to

the following result.

Theorem 4.1.7 (C. Bocci, E. Carlini, F. Rapallo, [10]). Let P 2M1 \ �>0 be a strictly positive probability

table given by the vectors r = (r1, . . . , rI), c = (c1, . . . , cI) and � = (�1, . . . , �I). Define NT =
P

i, j ric j +
P

i= j ric j�i and N =
P

i j ric j. Then P 2M1 \M2 if one of the following situations holds:

(i) NT < N;

(ii) NT = N and there exists at least an index i such that �i , 1;

(iii) NT > N and there exists at least an index i such that �i < 1.

4.2 A geometric description of the diagonal-e↵ect models

In this section, we try to describe the models we studied using some geometric flavor. This analysis will

also shed some light on the elements inM1 \M2. We use very basic and classic geometric ideas and facts.

As references, we suggest [35] and [36].

We start with the model M1. The basic object we need is the variety V describing all I ⇥ I matrices

having rank at most one. When we fix �i = 1, i = 1, . . . , I the parametrization in (4.32) and (4.33) is just

describing V . Hence, fixing values for all the ci’s and the ri’s and setting � j = 1, j = 1, . . . , I we obtain

a point M 2 V . Now, if we let �l to vary we are describing a line passing through M and moving in the

direction of the vector (0, . . . , 1, . . . , 0), where the only non zero coordinate is the (l, l)-th; the set of all these

lines is a cylinder. Now we set �l = a⇣ and �m = b⇣ for fixed reals a and b. When we let ⇣ vary, we are now

describing a cylinder with directrix parallel to the line of equations
8>>>>><
>>>>>:

bpll � apmm = 0

pi j = 0
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for (i, j) , (l, l), (m,m). The same argument can be repeated fixing linear relations among the diagonal

elements. In conclusion, we can describeM1 as the intersection of the simplex with the union of cylinders

having base V and directrix parallel to the directions given by diagonal elements.

We now use the join of two varieties, i.e. the closure of the set of all the lines joining a point of any

variety with any point of another variety. In order to do this, we also need to consider W the variety of

diagonal matrices. ThenM2 is the union of the segment joining a point of V \� with a point of W \�, i.e.

a subvariety of the join of V and W. Each of this segment lies on a line contained in one of the cylinder we

used to constructM1. Hence we get again the inclusionM2 ⇢M1 in �.

4.3 Common-diagonal-e↵ect models

A di↵erent version of the diagonal-e↵ect models are the so-called common-diagonal-e↵ect models. The

definitions are as in the models above but:

• The entries of the vector � are all equal in the toric model definition;

• The matrix D is diag( 1
I , . . . ,

1
I ) in the mixture model definition.

This kind of models is much more complicated than the models in Section 4.1. Just to have a first

look at these models, we note that for I = 3 the diagonal-e↵ect models have only one invariant. For the

common-diagonal-e↵ect models, we have computed the invariants with CoCoA, see [20], for I = 3 and we

have obtained the following lists of invariants.

For the toric model we obtain 9 binomials:

p12 p23 p31 � p13 p21 p32 ,

p13 p22 p31 � p11 p23 p32 ,

�p11 p23 p32 + p12 p21 p33 ,

�p22 p23 p2
31 + p2

21 p32 p33 ,

p12 p22 p2
31 � p11 p21 p2

32 ,

�p11 p13 p2
32 + p2

12 p31 p33 ,

�p2
13 p22 p32 + p2

12 p23 p33 ,

�p11 p2
23 p31 + p13 p2

21 p33 ,

p2
13 p21 p22 � p11 p12 p2

23 .

For the mixture model we obtain:
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• 1 binomial

p12 p23 p31 � p13 p21 p32 ;

• 12 polynomials with 4 terms

p13 p21 p22 � p12 p21 p23 + p13 p23 p31 � p13 p21 p33 ,

�p12 p13 p22 + p2
12 p23 � p2

13 p32 + p12 p13 p33 ,

p13 p21 p31 � p11 p23 p31 + p22 p23 p31 � p21 p23 p32 ,

p12 p13 p31 � p11 p13 p32 + p13 p22 p32 � p12 p23 p32 ,

p13 p2
21 � p11 p21 p23 � p2

23 p31 + p21 p23 p33 ,

p2
13 p21 � p11 p13 p23 + p13 p22 p23 � p12 p2

23 ,

p12 p13 p21 � p11 p12 p23 � p13 p23 p32 + p12 p23 p33 ,

�p21 p22 p31 � p23 p2
31 + p2

21 p32 + p21 p31 p33 ,

�p12 p22 p31 + p12 p21 p32 � p13 p31 p32 + p12 p31 p33 ,

p12 p2
31 � p11 p31 p32 � p22 p31 p32 � p21 p2

32 ,

p12 p21 p31 � p11 p21 p32 � p23 p31 p32 + p21 p32 p33 ,

p2
12 p31 � p11 p12 p32 � p13 p2

32 + p12 p32 p33 ;

• 6 polynomials with 8 terms

p11 p13 p22 � p13 p2
22 � p11 p12 p23 + p12 p22 p23+

+ p2
13 p31 � p13 p23 p32 � p11 p13 p33 + p13 p22 p33 ,

p11 p13 p21 � p2
11 p23 � p12 p21 p23 + p11 p22 p23+

+ p2
23 p32 � p13 p21 p33 + p11 p23 p33 � p22 p23 p33 ,

� p11 p22 p31 + p2
22 p31 � p13 p2

31 + p11 p21 p32+

� p21 p22 p32 + p23 p31 p32 + p11 p31 p33 � p22 p31 p33 ,
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p11 p12 p31 � p2
11 p32 � p12 p21 p32 + p11 p22 p32+

+ p23 p2
32 � p12 p31 p33 + p11 p32 p33 � p22 p32 p33 ,

p12 p2
21 � p11 p21 p22 � p11 p23 p31 � p21 p23 p32+

+ p11 p21 p33 + p21 p22 p33 + p23 p31 p33 � p21 p2
33 ,

p2
12 p21 � p11 p12 p22 � p11 p13 p32 � p12 p23 p32+

+ p11 p12 p33 + p12 p22 p33 + p13 p32 p33 � p12 p2
33 ;

• 1 polynomial with 12 terms

p11 p12 p21 � p2
11 p22 � p12 p21 p22 + p11 p2

22+

� p11 p13 p31 + p22 p23 p32 + p2
11 p33 � p2

22 p33+

+ p13 p31 p33 � p23 p32 p33 � p11 p2
33 + p22 p2

33 .

Therefore, as in Theorem 4.1.2, we can easily derive the invariants. We do not write explicitly the

analog of Theorem 4.1.2 for common-diagonal-e↵ect models in order to save space.

The study of the common-diagonal-e↵ect models in mixture form is much more complicated. In fact,

notice that in the computations above, the mixture model present invariants which are not binomials. How-

ever, some partial results can be stated.

Theorem 4.3.1 (C. Bocci, E. Carlini, F. Rapallo, [10]). Define the following polynomials:

(a) For i, j, k, l all distinct we define

bi jkl = pi j pkl � pil pk j ;

(b) For i, j, k, all distinct we define

ti jk = pi j p jk pki � pik pk j p ji ;

(c) For (i, j) and (k, l) two distinct pairs in {1, . . . , I} with i , j, and k , l and m 2 {1, . . . , I} \ {i, j} and

n 2 {1, . . . , I} \ {k, l} with m , n we define

fi jklmn = pi j pkl pnn � pi j pnl pkn � pi j pkl pmm + pkl pm j pim ;

(d) for two distinct indices i and j in {1, . . . , I} and for k 2 {1, . . . , I} \ {i, j} we define

gi jk =pi j pii pkk + pi j p j j pkk � pi j pii p j j + pi j p2
kk+

+ pkk pik pk j � pii pik pk j + p2
i j p ji � pi j pk j p jk ;
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(e) For i, j, k, all distinct we define

hi jk =pii p2
j j + p2

ii pkk + p j j p2
kk � p2

ii p j j � p2
j j pkk � pii p2

kk + pii pi j p ji+

� pii pik pki + p j j p jk pk j � p j j p ji pi j + pkk pki pik � pkk pk j p jk .

Then the previous polynomials are invariants for the common-diagonal-e↵ect models in mixture form.

Proof. Cases (a) and (b) follow from Theorem 4.1.2 since the o↵-diagonal elements of the probability table

are described, up to scalar, in the same monomial form as for the elements ofM1.

For case (c), consider the term g1 = pi j pkl pnn in fi jklmn. This gives two monomials: ↵3ric jrkclrncn and

↵2ric jrkcl(1�↵)d, where d = 1/I. The term �g2 = �pi j pnl pkn of fi jklmn cancels the first monomial of g1. In

fact �pi j pnl pkn = ↵3ric jrnclrkcn. Since in g2 there are not diagonal variables, we need another term in order

to cancel the second monomial of g1. Thus we subtract, to g1 � g2, a term of the form g3 = pi j pkl pmm which

gives the monomials �↵2ric jrkcl(1 � ↵)d and �↵3ric jrkclrmcm. To cancel this last monomial it is enough to

add the term g4 = pkl pm j pim = ↵3rkclrmc jricm. Thus fi jklmn = g1 � g2 � g3 + g4 vanishes on the entries of a

probability table of the mixture model with common diagonal e↵ect.

For case (d), consider first the terms with pairs of variables on the diagonal.

pi j pii pkk =↵
3r2

i rkcic jck + ↵
2r2

i cic jd � ↵3r2
i cic jd + ↵2rirkc jckd +

+ ↵ric jd2 � 2↵2ric jd2 � ↵3rirkc jckd + ↵3ric jd2 ;

pi j p j j pkk =↵
3rir jrkc2

j ck + ↵
2rir jc2

jd � ↵3rir jc2
jd + ↵

2rirkc jckd+

+ ↵ric jd2 � 2↵2ric jd2 � ↵3rirkc jckd + ↵3ric jd2 ;

pi j pii p j j =↵
3r2

i r jcic2
j + ↵

2r2
i cic jd � ↵3r2

i cic jd + ↵2rir jc2
jd+

+ ↵ric jd2 � 2↵2ric jd2 � ↵3rir jc2
jd + ↵

3ric jd2 ;

pi j p2
kk =↵

3rir2
k c jc2

k + 2↵2rirkc jckd � 2↵3rirkc jckd + ↵ric jd2+

� 2↵2ric jd2 + ↵3ric jd2 .

It is easy to see that while some terms, such as ↵3ric jd2, are simply cancelled considering the di↵erence

of two monomials, other terms, such as the boxed ones, appear in di↵erent monomials. However, they

appear with the appropriate coe�cients and considering pi j pii pkk + pi j p j j pkk � pi j pii p j j � pi j p2
kk we cancel

most of them. In fact we obtain

↵3r2
i rkcic jck � ↵3rir2

k c jc2
k � ↵3r2

i r jc2
j ci + ↵

3rir jrkc2
j ck .
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The only possible way to cancel the term �↵3rir2
k c jc2

k is to add the monomial pik pk j pkk = ↵3rir2
k c jc2

k +

↵2rirkc jckd � ↵3rirkc jckd. However this monomial adds two more terms that can be cancelled by using

another monomial with a variable in the diagonal, that is pii pik pk j = ↵3r2
i rkc jc jck+↵2rirkc jckd�↵3rirkc jckd.

After that, the only two missing terms are �↵3r2
i r jc2

j ci + ↵3rir jrkc2
j ck which can be cancelled by adding

p2
i j p ji � pi j pk j p jk.

For the case (e), we omit the complete details of the proof. One has to proceed as in cases (c) and (d)

considering separately pii p2
j j + p2

ii pkk + p j j p2
kk � p2

ii p j j � p2
j j pkk � pii p2

kk and the contributions of pii pi j p ji �
pii pik pki, p j j p jk pk j � p j j p ji pi j and pkk pki pik � pkk pk j p jk. ⇤

With some computations with CoCoA, we have found that the polynomials defined in Theorem 4.3.1

define the modelM2 for I = 3, 4, 5. We conjecture that this fact is true in general.

4.4 Quasi-independence models on tensors

The quasi-independence models studied in the previous sections can be introduced for a bigger number of

random variables. In this case we substitute the probability matrix with a probability tensors. We make the

assumption that the cardinality I of state space for each variable is the same. We use now the lower-scripts

n and I to denote that the model has n variables with state space [I]. The Definitions 4.1.1 and 4.1.3 change

in the following way

Definition 4.4.1. The diagonal-e↵ect modelM1,n,I is defined as the set of probability tensors P 2 � such

that:

pi1i2···in = v1i1 v2i2 · · · vnin for at least two disting indices among i1, i2, . . . in (4.41)

and

pi1i2···in = v1i1 v2i2 · · · vnin�i1 for i1 = i2 = · · · = in (4.42)

where v1, v2, . . . , vn and � are non-negative vectors with length I.

Definition 4.4.2. The diagonal-e↵ect modelM2,n,I is defined as the set of probability matrices P such that

P = ↵v1 ⌦ v2 ⌦ · · · ⌦ vn + (1 � ↵)D (4.43)

where v1, v2, . . . , vn are non-negative vectors with length I and sum 1, D = diag(d1, . . . , dI) is a non-negative

diagonal tensor with sum 1, and ↵ 2 [0, 1].

Again we have the following
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Theorem 4.4.3 (C. Bocci, M. Benedettelli, F. Rapallo, [8]). The models M1,n,I and M2,n,I have the same

invariants.

Proof. left to the reader. ⇤

Example 4.4.4. Let I = 2 and n = 3, then the invariants of M1,3,2 are precisely:

P121P212 � P112P221

P122P211 � P121P212

From Theorem 4.1.5 we know that they are also the invariants for M2,3,2.

For n > 2 we get new invariants which are binomials of degree d built in the following way: we choose

many non-diagonal terms (repetition allowed) as the chosen degree d and we perform d � 1 changes in the

indices in such a way diagonal elements never appear.

Example 4.4.5. For n = 3, and d = 2 we have the following invariant:

P122P131 � P121P132

The monomial have a change in the last index.

For d = 3 we have the following invariant:

P211P233P313 � P2
213P331.

Here we have two consecutive changes: between P211, P313 and between P233, P311 (taking in mind that a

change is already done).

4.5 Common-diagonal-e↵ect models on tensors

We fix our attention in the common-diagonal-e↵ect models. Here we show a way to built, combinatorically,

new invariants, without using Elimination Theory. The definitions for the common-diagonal-e↵ect models

on tensors are the same of the case for matrices:

• The entries of the vector � are all equal in the toric model definition. We denote this model by eM1,n,I .

• The tensor D is diag( 1
I , . . . ,

1
I ) in the mixture model definition. We denote this model by eM2,n,I .
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If we try to compute the invariants for these two models, we see that the list is quite big. However, as

already said, it is possible to compute them using a combinatorial approach. We start with some definitions

and remarks.

Consider an m ⇥ n�matrix A:

A =

0
BBBBBBBBBBBBBBBBBBBBBBBB@

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

1
CCCCCCCCCCCCCCCCCCCCCCCCA

where the columns denote the number of the indices (recall that for each probability pi1i2···in we have n

indices i1, i2, . . . , in) and the number of rows can vary according to the degree of the chosen monomial. For

example, a11 denote the value of the first index (i1 in our case) in the first element of the monomial and so

on.

Denote with ⇢(A) the number of rows with identical entries, i.e.

⇢(A) = ]{t : at1 = at2 = · · · = atn}.

Thus ⇢(A) represents the number of diagonal elements in the monomial.

Example 4.5.1. Consider the monomial p123 p121 p333 (then n = 3). The matrix associated to the monomial

is

A =

0
BBBBBBBBBBBBBBB@

1 2 3

1 2 1

3 3 3

1
CCCCCCCCCCCCCCCA
.

If we consider, instead, the monomial, p3
121 p333 (then n = 3) then its associated matrix

A =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1 2 1

1 2 1

1 2 1

3 3 3

1
CCCCCCCCCCCCCCCCCCCCCCCA

that is, we consider three occurrence of (1 2 1) according to the degree of p121. In both example ⇢(A) = 1.

Consider now an element � = (�1,�2, . . . ,�n) 2 S n
m \ �, where S m is the group of permutation on

m elements. � is composed by n permutation �i 2 S m, i = 1, 2, . . . , n, such that a least two of them are

distinct. We can associate a map to �

F� : Mm⇥n ! Mm⇥n
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which sends A in

F�(A) =

0
BBBBBBBBBBBBBBBBBBBBBBBB@

a�1(1)1 a�2(1)2 . . . a�n(1)n

a�1(2)1 a�2(2)2 . . . a�n(2)n
...

...
...

a�1(m)1 a�2(m)2 . . . a�n(m)n

1
CCCCCCCCCCCCCCCCCCCCCCCCA

.

Let Rts be the m ⇥ m�matrix with enries rts = rst = 1 and 0 otherwise. If we multiply (at right) a

m ⇥ p�matrix M for Rts we get a new m⇥ p�matrix equal to M but with t�th and s�th rows permuted. We

denote by Rt1t2...tr the composition of matrices of the form Rts

Definition 4.5.2. Let A be a m ⇥ n�matrix. We define the two ��sets of A as

⌃(A) = {�(A) : � 2 S n
m \ � : ⇢(�(A)) = ⇢(A) and @Rt1t2...tr with Rt1t2...tr�(A) = A}.

⌃0(A) = {�(A) : � 2 S n
m \ � : ⇢(�(A))  ⇢(A) and @Rt1t2...tr with Rt1t2...tr�(A) = A}.

The idea is clear:

• we consider a monomial P = ⇧{i1,i2,...in}⇢In p↵i1 i2 ...in
i1i2...in

• we associate to P its t ⇥ n�matrix AP, as defined before where t =
P
{i1,i2,...in}⇢In ↵i1i2...in . Each row has

the form (i1 i2 · · · in) repeated for ↵i1i2···in times.

• we build the set ⌃(AP) or ⌃0(AP)

• from each matrix B 2 ⌃(AP) or B 2 ⌃0(AP) , using the inverse construction, we associate a new

monomial QB = ⇧{ j1, j2,... jn}⇢In p↵ j1 j2 ... jn
j1 j2... jn

Definition 4.5.3. Given a monomial P = ⇧{i1,i2,...in}⇢In p↵i1 i2 ...in
i1i2...in , we denote by P = ⇧{i1,i2,...in}⇢In p↵i1 i2 ...in

i1i2...in (respec-

tively by P = ⇧{i1,i2,...in}⇢In p↵i1 i2 ...in
i1i2...in ) any element QB obtained with the previous procedure where B 2 ⌃(AP)

(respectively B 2 ⌃0(AP)).

Example 4.5.4. Consider the first case of Example 4.5.1.

The matrices in ⌃0(A) are of the forms

0
BBBBBBBBBBBBBBB@

1 2 3

1 2 3

3 3 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

1 2 3

1 3 1

3 2 3

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

1 2 3

1 3 3

3 2 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

1 2 1

1 3 3

3 2 3

1
CCCCCCCCCCCCCCCA
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The corresponding monomial are respectively

p2
123 p331

p123 p131 p323

p123 p133 p321

p121 p133 p323

Then, the term p123 p121 p333 denotes any of the previous four monomials.

Let us notice that there are not elements p123 p121 p333 since ⌃(A) = ;. As a matter of fact no one of the

previous matrices satisfies ⇢(�(A)) = ⇢(A).

To see an example with ⌃(A) , ; consider the following matrix

A =

0
BBBBBBBBBBBBBBB@

1 2 2

2 1 1

3 3 3

1
CCCCCCCCCCCCCCCA
.

Then ⌃(A) consists of the following matrices

0
BBBBBBBBBBBBBBB@

1 1 1

2 2 3

3 3 2

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

1 1 1

2 3 2

3 2 3

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

1 1 1

3 2 2

2 3 3

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

1 1 3

2 2 2

3 3 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

1 3 1

2 2 2

3 1 3

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

3 1 1

2 2 2

1 3 3

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

1 1 2

2 2 1

3 3 3

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

1 2 1

2 1 2

3 3 3

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

2 1 1

1 2 2

3 3 3

1
CCCCCCCCCCCCCCCA

We conclude with two results for the case of three random variables.

Theorem 4.5.5 (C. Bocci, M. Benedettelli, F. Rapallo, [8]). The following polynomials are invariants for

eM1,3,I :

i) Pi jkPi0 j0k0 � Pi jkPi0 j0k0 = 0 with (i, j, k), (i0, j0, k0) 2 [n]3 \ �;

ii) PiiiPklmPqrs � PiiiPklmPqrs = 0 with (k, l,m), (q, r, s) 2 [n]3 \ �;



71

iii) Pi jkPi0 j0k0Pi00 j00k00 � Pi jkPi0 j0k0Pi00 j00k00 = 0 with (i, j, k), (i0, j0, k0), (i00, j00, k00) 2 [n]3 \ �;

iv) PiiiPklmPqrsPtnp � PiiiPklmPqrsPtnp = 0 with (k, l,m), (q, r, s), (t, n, p) 2 [n]3 \ �;

v) PiiiPklmPqrsPtnpPzvw � PiiiPklmPqrsPtnpPzvw = 0 with (k, l,m), (q, r, s), (t, n, p), (z, v,w) 2 [n]3 \ �;

Theorem 4.5.6 (C. Bocci, M. Benedettelli, F. Rapallo, [8]). The following polynomials are invariants for

eM1,3,I :

i) Pi jkPi0 j0k0 � Pi jkPi0 j0k0 = 0 with (i, j, k), (i0, j0, k0) 2 [n]3 \ �;

ii) PiiiPklm � Pj j jPklm + Pj j jPklm � PiiiPklm = 0 with (k, l,m) 2 [n]3 \ � and at least two indices among

k, l and m are di↵erent from i and j;

iii) Pi jkPlmnPqrs � Pi jkPlmnPqrs = 0 with (i, j, k), (l,m, n), (q, r, s) 2 [n]3 \ �;

iv) PiiiPklmPk0l0m0 � Pj j jPklmPk0l0m0 � PiiiPklmPk0l0m0 + Pj j jPklmPk0l0m0 = 0 e con

(k, l,m), (k0, l0,m0) 2 [n]3 \ � e with at least two indices among k, l,m and among k0, l0,m0 di↵erent

from i and j;

(v) PiiiP j j jPqrs � PiiiPkkkPqrs + Pj j jPkkkPqrs + Pj j jP j j jPqrs � PiiiP j j jPqrs + PiiiPkkkPqrs � Pj j jPkkkPqrs �
P2

j j jPqrs;

(vi) PiiiP2
j j j � P2

iiiP j j j + P2
iiiPkkk � PiiiP2

kkk + Pj j jP2
kkk � P2

j j jPkkk + PiiiPiiiP j j j � Pj j jPiiiP j j j + PkkkPiiiPkkk �
PiiiPiiiPkkk + Pj j jP j j jPkkk � PkkkP j j jPkkk

(vii) PiiiPklmPk0l0m0Pk00l00m00 � Pj j jPklmPk0l0m0Pk00l00m00 � PiiiPklmPk0l0m0Pk00l00m00 + Pj j jPklmPk0l0m0Pk00l00m00

viii) PiiiP j j jPklm � P2
j j jPklm + Pj j jP j j jPklm � PnnnPiiiPklm � PiiiP j j jPklm + PnnnPiiiPklm
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Appendix A.

A.1 Topics on Commutative Algebra

A.1.1 Rings and ideals

A ring R is an abelian group (R,+) with a multiplication operation (a, b) ! ab and an identity element 1,

satisfying, for all a, b, c 2 R:

1) a(bc) = (ab)c (associativity);

2) a(b + c) = ab + ac and (b + c)a = ba + ca (distributivity);

3) 1a = a1 = a (identity).

A ring R is commutative if, moreover, ab = ba for all a, b 2 R. From now we will consider only commu-

tative rings. An invertible element in a ring R is an element u such that there is an element v 2 R with

uv = 1. It is a simple exercise to prove that such v is unique. We denote it by u�1 and it is called the inverse

of u. A field is a ring in which every nonzero element is invertible. Q, R and C are fields.

Definition A.1.1. An ideal in a commutative ring R is an additive subgroup I such that if r 2 R and s 2 I,

then rs 2 I.

An ideal I is said to be generated by a subset S ⇢ R if every element t ⇢ I can be written in the form

t =
X

i

ri si ri 2 R and si 2 S .

We shall write hS i for the ideal generated by a subset S ⇢ R; if S consists of finitely many elements

s1, . . . , sn then we usually write hs1, . . . , sni in place of (S ). By convention, the ideal generated by the

empty set is (0). An ideal is principal if it can be generated by one element. An ideal I of a commutative

ring R is prime if I , R (we usually say that I is a proper ideal in this case) and if f , g 2 R and f g 2 I

implies f 2 I or g 2 I. The ring R is called a domain if (0) is prime. A maximal ideal of R is a proper ideal

P not contained in any other proper ideal. If P ⇢ R is a maximal ideal, then R/P is a field, so P is prime.

A ring homomorphism, or ring map, from a ring R to a ring S is a homomorphism of abelian groups

that preserves multiplication and takes the identity element of R to the identity element of S .

Definition A.1.2. A ring R is Noetherian if every ideal I of R is finitely generated, that is, there are element

f1, . . . , ft 2 R such that I = h f1, . . . , fti.
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For example, any field is Noetherian (the only ideals are 0 and the whole field) and the ring Z of integers

is Noetherian (each ideal is generated by a single integer, the greatest common divisor of the elements of

the ideal).

A.1.2 Polynomial rings

If k is a commutative ring, then a polynomial ring over k in n variables x1, . . . , xn is denoted k[x1, . . . , xn].

The elements of k are generally referred to as scalars. A monomial is a product of variables; its degree is

the number of these factors (counting repeats) so that, for example, x1x2
3x2

4 has degree 5. By convention the

elements in k are seen as monomials of degree 0. A term is a scalar times a monomial. Every polynomial

can be written uniquely as a finite sum of nonzero terms. If the monomials in the terms of a polynomial f

all have the same degree (or if f = 0), then f is said to be homogeneous. Hilbert originally showed that a

polynomial ring in n variables over a field or over the ring of integers is Noetherian.

Theorem A.1.3 (Hilbert Basis Theorem). If a ring R is Noetherian, then also the polynomial ring R[x] is

Noetherian.

A.1.3 Monomial orderings and Gr¨obner basis

The ring k[x1, . . . , xn] is an infinite-dimensional k-vector space, and it comes with a distinguished basis

which is given by the set of monomials

xa1
1 · xa2 · · · xan

n

where the ai’s run over N. If a = (a1, . . . , an), we denote xa1
1 · xa2 · · · xan

n by x

a. In order to write down a

polynomial in R, it is convenient to fix a monomial order <. By this we mean a total order on the set of

monomials which satisfies

1 < x

a

and

x

a < x

b ) x

a+c < x

b+c for all a,b, c 2 Nn.

We consider now a particular class of ideals, i.e the case of ideals generated by monomials. Such ideals are

called monomial ideals. A monomial m lies in a given monomial ideal M = (xa, xb, xc, . . . ) if and only if

one of the generators of M divides m. By Dickson’s Lemma we obtain the following

Lemma A.1.4. Every monomial ideal M in R is finitely generated.
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Fix a monomial order <. Every polynomial f 2 R has a unique (<)�largest monomial x

a which appears

in f with non-zero coe�cient. This monomial is called the initial monomial of f and it is denoted In<( f ).

If I is any ideal in R then its initial ideal is the monomial ideal

In<(I) = {in<( f ) : f 2 I}.

By Lemma A.1.4, this ideal is finitely generated. Hence there exists a finite subset G of I such that

In<(I) = {In<(g) : g 2 G}.

A subset G with this property is a Gr¨obner basis of I with respect to <. From Lemma A.1.4 one can derive

the following result.

Lemma A.1.5. Every Gröbner basis of I is a generating set of I.

The Gröbner basis G is reduced if, for each g 2 G, the initial monomial of g is a minimal generator of

In<(I) and none of the other monomials of g lies in In<(I). The reduced Gröbner basis of I is unique when <

is fixed. Many computer algebra systems compute the reduced Gröbner basis G from any given generating

set of the ideal. Once G is known, we can read o↵ the monomial ideal In<(I) and from this many invariants

of I can be determined.

A.1.4 Elimination Theory

Elimination Theory is a systematic method do eliminate variables in a system of polynomial equations.

Definition A.1.6. Given I = h f1, . . . , fti ⇢ k[x1, . . . , xn], the l�th elimination ideal of Il is the ideal in

k[xl+1, . . . , xn] defined as

Il = I \ k[xl+1, . . . , xn].

It is easy to prove that Il is an ideal in k[xl+1, . . . , xn]. Obviously the ideal I0 coincide with I. It is

important to remark that di↵erent monomial ordering will produce di↵erent elimination ideals.

Thus, the elimination of x1, . . . , xl means to find the non-zero polynomials contained in the l�th elimi-

nation ideal. This can be done easily by Gröbner basis (once the monomial ordering is fixed).

Theorem A.1.7 (of elimination). Let I ⇢ k[x1, . . . , xn] be an ideal and G a Gröbner basis for I with respect

to the lexicographical ordering with x1 > x2 > · · · > xn. Then, for any 0  l  n, the set

Gl = G \ k[xl+1, . . . , xn]

is a Gröbner basis for the l’l�th elimination ideal Il.
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Example A.1.8. Consider an parametric algebraic statistical model

f : ⇥ ✓ Rd ! Rm

✓ = (✓1, . . . , ✓d) 7!
⇣

f1(✓), . . . , fm(✓)
⌘

If we want to find the invariant ideal ofM f we can use Elimination Theory in the following way: we define

the ideal I = hp1 � f1(✓1, . . . , ✓d), . . . , pm � fm(✓1, . . . , ✓d)i in R[✓1, . . . , ✓d, p1, . . . , pm] and we eliminate,

from I, the variables ✓1, . . . , ✓d. The obtain elimination ideal is the invariant ideal ofM f .

A.2 Topics on Algebraic Geometry

A.2.1 A�ne geometry

Let k be a fixed algebraically closed field. We define a�ne n-space over k, denoted An
k or simply An

k , to be

the set of all n�tuples of elements of k. An element P 2 An will be called a point, and if P = (a1, . . . , an)

with ai 2 k, then the ai will be called the coordinates of P.

Let R = k[x1, . . . , xn] be the polynomial ring in n variables over k. We will interpret the elements of A

as functions from the a�ne n-space to k, by defining

f (P) = f (a1, . . . , an)

i.e, by making the substitution ai ! xi, where f 2 R and P 2 An, P = (a1, . . . , an). Thus if f 2 R is a

polynomial, we can talk about the zero set of f , namely

Z( f ) = {P 2 An : f (P) = 0}.

More generally, if T is any subset of R, we define the zero set of T to be the common zeros of all the

elements of T , namely

Z(T ) = {P 2 An : f (P) = 0 for all T }.
Clearly if I is the ideal of R generated by T , then Z(T ) = Z(I). Furthermore, since R is a noetherian ring,

by Theorem A.1.3, any ideal I has a finite set of generators f1, . . . , fr. Thus Z(T ) can be expressed as the

common zeros of the finite set of polynomials f1, . . . , fr.

Definition A.2.1. A subset Y of An is an algebraic set if there exists a subset T ⇢ R such that Y = Z(T ).

It is possible to define a topology on An by taking the open subsets to be the complements of the alge-

braic sets ([36] Proposition 1.1). This topology is called the Zarisky topology. We recall that a nonempty

subset Y of a topological space X is irreducible if it cannot be expressed as the union Y = Y1 [ Y2 of two

proper subsets, each one of which is closed in Y
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Definition A.2.2. An a�ne algebraic variety (or simply a�ne variety) is an irreducible closed subset of

An (with the induced topology). An open subset of an a�ne variety is a quasi-a�ne variety.

We pass now to explore the relationship between subsets of An and ideals in R more deeply. For any

subset Y ⇢ An, let us define the ideal of Y in R by

I(Y) = { f 2 R : f (P) = 0 for all P 2 Y}.

Thus we have a way to obtain ideals of R starting from algebraic sets in An, and, viceversa, algebraic sets

in An starting from ideals of R. In particular one has

Proposition A.2.3.

(a) If T1 ✓ T2 are subsets of R, then Z(T1) ◆ Z(T2).

(b) if Y1 ✓ Y2 are subsets of An, then I(Y1) ◆ I(Y2).

(c) For any two subsets Y1,Y2 of An, we have I(Y1,[Y2) = I(Y1) \ I(Y2).

(d) For any ideal a ⇢ R, I(Z(a)) =
p

a, the radical of a (Hilbert’s Nullstellensatz).

(e) For any subset Y ✓ An, Z(I(Y)) = Y, the closure of Y.

Proof. See [36], Proposition 1.2. ⇤

Thus we finally state the following

Proposition A.2.4. There is a one-to-one inclusion-reversing correspondence between algebraic sets in An

and radical ideals (i.e., ideals which are equal to their own radical) in R, given by Y ! I(Y) and a! Z(a).

Furthermore, an algebraic set is irreducible if and only if its ideal is a prime ideal.

Proof. [36] Corollary 1.4. ⇤

Example A.2.5. Let f be an irreducible polynomial in A = k[x, y]. Then f generates a prime ideal in A,

since A is a unique factorization domain ([26]) so the zero set Y = Z( f ) is irreducible. We call it the a�ne

curve defined by the equation f = 0. More generally, if f is an irreducible polynomial in A = k[x1, . . . , xn],

we obtain an a�ne variety Y = Z( f ), which is called a surface if n = 3, or a hypersurface if n > 3.

Remark A.2.6. Let T and I be respectively a set and an ideal of polynomials in R. T defines a variety V

set–theoretically if V is the zero set of T , i.e. V = Z(T ). Instead I defines V ideal-theoretically if I = I(V).

In general one has T ⇢ I(Z(T )).
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A.2.2 Projective geometry

To define projective varieties, we proceed in a manner analogous to the definition of a�ne varieties, except

that we work in projective space. Let k be an algebraically closed field.The projective n�space over k,

denoted Pn
k , or simply Pn, is defined as the set of equivalence classes of (n + 1)�tuples [x0, . . . , xn] of

elements of k, not all zero, under the equivalence relation given by [x0, . . . , xn] ⇠ [�x0, . . . , �xn] for all

� 2 k \ {0}. Equivalently we can say that Pn, as a set, is the quotient of the set An+1 \ {0, . . . , 0} under the

equivalence relation which identifies points lying on the same line through the origin. If P = [x0, . . . , xn] is

a point in Pn, then any (n + 1)�tuple [y0, . . . , yn] in the equivalence class P is called a set of homogeneous

coordinates for P. Let S be the polynomial ring k[x0, . . . , xn]. If f 2 S is a polynomial, we cannot use it to

define a function on Pn because of the nonuniqueness of the homogeneous coordinates. However, if f is a

homogeneous polynomial of degree d, then

f (�a0, . . . , �an) = �d f (a0, . . . , an)

so that the property of f being zero or not depends only on the equivalence class of [a0, . . . , an]. Thus we

can talk about the zeros of a homogeneous polynomial, namely

Z( f ) = {P 2 Pn : f (P) = 0}.

Hence in the projective case we are interested only in polynomials f which are homogeneous. An ideal

I ⇢ S is homogeneous if and only if it can be generated by homogeneous elements. The sum, product,

intersection, and radical of homogeneous ideals are homogeneous. As in the a�ne case, we can define

Z(T ) and Z(I) where T and I are respectively any set of homogeneous elements of S and a homogeneous

ideal of S .

Definition A.2.7. A subset Y of Pn is an algebraic set if there exists a set T of homogeneous elements of S

such that Y = Z(T ).

Again, we can define the Zarisky topology on Pn taking the algebraic sets as closed sets. Moreover, if

Y ⇢ Pn, then we can define

I(Y) = { f 2 S : f homogeneous and f (p) = 0, 8p 2 Y}

Definition A.2.8. A projective variety is an irreducible algebraic set in Pn.

Remark A.2.9. We point out that the projective n�space has an open covering by a�ne n�spaces, and

hence that every projective (respectively, quasi-projective) variety has an open covering by a�ne (respec-

tively, quasi-a�ne) varieties.
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Remark A.2.10. Also in the projective case, as in the a�ne one, we can speak of set-theoretically and

ideal-theoretically description of a variety (Remark A.2.6).

A.2.3 Veronese embeddings

Fix non-negative integers n, d and N =
⇣

n+d
d

⌘
� 1. Let ⌫n,d : Pn ! PN be the map defined by sending

[x0, . . . , xn] to the set of monomials of degree d in x0, . . . , xn

[xd
0, x

d�1
0 x1, xd�1

0 x2, . . . , xd
n]

ordered in lexicographic order. The map ⌫n,d is well-defined and injective for all n and d and is called the

d�Veronese embedding of Pn. The image of ⌫n,d is a subvariety of PN called the d-Veronese of Pn.

For example, the 3�Veronese embedding of P1 is the map

P1 ⌫1,3�! P3

[x0, x1] 7! [z0, z1, z2, z3]
.

given by the parameterization 8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

z0 = x3
0

z1 = x2
0x1

z2 = x0x2
1

z3 = x3
1

.

The 3-Veronese of P1, i.e. ⌫1,3(P1), is a curve in P3 known as twisted cubic curve.

A.2.4 Segre embeddings

Let  : Pr ⇥ Ps ! PN be the map defined by sending the ordered pair [a0, . . . , ar] ⇥ [b0, . . . , bs] to

(. . . , aib j, . . . ) in lexicographic order, where N = rs + r + s. The map  is well-defined and injective

and is called the Segre embedding of Pr ⇥ Ps. The image of  is a subvariety of PN called Segre Variety.

The Segre embedding can be defined for an arbitrary number of factors

 : Pr1 ⇥ · · · ⇥ Prt ! PN

where N =
Qt

i=1(ri + 1) � 1. For example, the Segre embedding of P1 ⇥ P1 ⇥ P2 is the map

P1 ⇥ P1 ⇥ P2  ! P11

[a0, a1] [b0, b1] [c0, c1, c2] 7! [z0, z1, . . . , z11]
.
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given by the parameterization 8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

z0 = a0b0c0

z1 = a0b0c1

z2 = a0b0c2

z3 = a0b1c0

z4 = a0b1c1

z5 = a0b1c2

z6 = a1b0c0

z7 = a1b0c1

z8 = a1b0c2

z9 = a1b1c0

z10 = a1b1c1

z11 = a1b1c2

.

A.2.5 Secant varieties

Due to their importance in our lecture, we collect here some known results on secant varieties.

We refer to [18], for details and proofs. We work over the complex field and we consider the projective

space Pr = Pr
C, equipped with the tautological line bundle OPr (1).

If Y is a subset of Pr, we denote by hYi the linear span of Y . We say that Y is non–degenerate if

hYi = Pr. A linear subspace of dimension n of Pr will be called a n–subspace of Pr.

Let X be an irreducible projective variety X of dimension m, we denote by S k(X) the k-th secant variety

of X, which is the Zariski closure of the set
S

P1,...,Pk2XhP1, . . . , Pki. In other words, S k(X) is the Zariski

closure of the set of elements having X-rank equal to k.

S k(X) can be seen as the closure of the image, under the second projection, of the abstract secant

variety, i.e. the incidence subvariety AbS k(X) ⇢ X(k) ⇥ Pr,

AbS k(X) = {((P1, . . . , Pk), P) : P 2 hP1, . . . , Pki, independent Pi’s}.

Notice that AbS k(X) is always a variety of dimension k(m + 1) � 1. When X ⇢ Pr is reducible, the same

definition of secant variety holds, except that we only consider linear spaces meeting every component of

X. In particular, when X has k components, the secant variety coincides with the join of the components.
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Definition A.2.11. We say that X has k-th secant order µ if for a general point P 2 S k(X), there are exactly

µ unordered k-uples P1, . . . , Pk of points of X such that P 2 hP1, . . . , Pki.

From the definition of secant varieties, it follows that:

S (k)(X) := dim(S k(X))  min{r, k(m + 1) � 1}. (A.44)

The right hand side is called the expected dimension of S k(X).

Definition A.2.12. We say that X is k–defective when a strict inequality holds in (A.44).

Let X ⇢ Pr be a variety. We denote by Sing(X) the Zariski-closed subset of singular points of X. Let

P 2 X \ Sing(X) be a smooth point. We denote by TX,P the embedded tangent space to X at P, which is a

m–subspace of Pr. More generally, if P1, . . . , Pk are smooth points of X, we will set

TX,P1,...,Pk = h
n[

i=1

TX,Pii.

The relations between secant varieties and tangent spaces to X are enlightened by the celebrated Terracini’s

Lemma:

Lemma A.2.13 ([53] or, for modern versions, [1], [23], [54]). Given a general point P 2 S k(X), lying in

the subspace hP1, . . . , Pki spanned by k + 1 general points on X, then the tangent space TS k(X),P to S k(X) at

P is the span TX,P1,...,Pk of the tangent spaces TX,P1 , . . . ,TX,Pk .

Using the correspondence between the abstract secant variety and S k(X), one obtains from Terracini’s

Lemma, a condition for the defectivity of X:

Theorem A.2.14 (L. Chiantini, C. Ciliberto [18], Theorem 2.5). Let P1, . . . , Pk be general points of X. If H

is a general hyperplane tangent to X at P1, . . . , Pk, we can consider the contact variety of H, i.e. the union

⌃ of the irreducible components of Sing(X \ H). If X is k-defective, then ⌃ is positive dimensional.

The previous Theorem suggests a refinement of the notion of defective variety.

Definition A.2.15. An irreducible, non–degenerate variety X ⇢ Pr such that S (k)(X) < r is k–weakly

defective if for P1, ..., Pk 2 X general points, the general hyperplane H containing TX,P1,...,Pk is tangent to X

along a variety ⌃(H) of positive dimension. ⌃(H) is called the k–contact variety of H.

It turns out that k-defective implies k–weakly defective, but the converse is false. We refer to [16] and [18]

for a discussion on the subject.

The second cornerstone in our theory links k-defectivity and k-weakly defectivity with the existence

of degenerate subvarieties, passing through k general points in X. Namely, if X is k-defective or k-weakly

defective, then it turns out that the general contact variety is highly degenerate.
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Theorem A.2.16 (L. Chiantini, C. Ciliberto, [18], Theorem 2.4 and Theorem 2.5). Assume k(m+1)�1 < r.

If X is k-weakly defective, then a general contact variety ⌃ spans a linear space of dimension  k(n+1)�1,

where n = dim(⌃). Moreover, X is k-defective if and only if ⌃ spans a space of dimension < k(n + 1) � 1.

In conclusion, we obtain:

Corollary A.2.17. Assume r > k(m + 1) � 1. Assume that for all n = 1, . . . ,m � 1, there are no families of

n-dimensional subvarieties of X, whose general element spans a linear space of dimension  k(n + 1) � 1

and passes through k + 1 general points of X. Then X is not k-weakly defective..
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