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The minimum distance problem

Let X ⊂ An
R be an algebraic variety, let p ∈ An

R. We look for the
points q ∈ X which minimize the euclidean distance d(p, q).
A necessary condition, assuming q is a smooth point of X , is that
the tangent space TqX be orthogonal to p − q, this is the
condition to get a critical point for the distance function d(p.−).
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The case of matrices of bounded rank

There is one important case when this problem is solved.

Consider the affine space of n ×m matrices, and let Xk be the
variety of matrices of rank ≤ k. We consider this case as a model.

X1 is the cone over the Segre variety Pn−1 × Pm−1. Xk is the
k-secant variety of X1, denoted as σkX1. The matrices in Xk

which minimize the distance from A are called the best rank k
approximations of A.
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Singular Value Decomposition

If M is a (real) m × n matrix, the SVD of M is

M = UΣV t

where
U is a m ×m orthogonal matrix,
V is a n × n orthogonal matrix,
Σ = D(σ1, . . . , σr ) is a m × n diagonal matrix ,with its only
nonzero values appearing on the diagonal σ1 ≥ σ2 ≥ . . . ≥ σr ,
which are called the singular values of M. They are the square
roots of the eigenvalues of MtM. r coincides with the rank of M.
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how SVD can be computed

If M is symmetric then U = V and SVD reduces to the spectral
theorem M = UDUt .
If ui are the columns of U and vi are the columns of V we get
Mvi = σiui , M

tui = σivi . ui are just eigenvectors of MMt , vi are
just eigenvectors of MtM.
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SVD of perturbed matrix


.105 .14 .07 .035 .35
.03 .04 .02 .01 .1
.03 .04 .02 .01 .1
.135 .18 .09 .045 .45

.3 .4 .2 .1


The 4× 4 block A has rk = 1, has singular values 0.321714, 0, 0, 0.

A + Pε =


.106 .141 .068 .035
.035 .043 .012 .01
.024 .036 .03 .01
.135 .18 .09 .045


A + Pε has singular values 0.32196, 0.01560, 0.00034, 0
Two singular values are small. In the Frobenius norm, the distance
of A from rank 2-matrices is .00034. The distance of A from rank
1-matrices is

√
(.01560)2 + (.00034)2 = 0.1561
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Least square

First application of SVD is the solution of least square problem.
Given M and b, let M = UΣV t its SVD, then the minimum of
||Mx − b|| is computed by x = VΣ+Utb where in Σ+ appear
σ−1

1 , σ−1
2 , . . . (indeed what we wrote is the Moore-Penrose inverse

of M).
The r -th row of V is the vector which minimizes the norm ||Mx ||
under the condition ||x || = 1.
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Best rank k approximation

Recall Xk = {matrices of rank ≤ k}
so X1 ⊂ X2 ⊂ X3 ⊂ . . .
The Frobenius norm is ‖A‖F =

√∑
i ,j ‖a2

ij‖ =
√

tr(AtA).

Theorem (Eckart-Young, 1936)

The best rank k approximation of A = UΣV t , where
Σ = D(σ1, . . . , σr ), is UΣkV

t where
Σk = D(σ1, . . . , σk , 0, . . . , 0).

The distance of A from Xk in the Frobenius norm is

min
rkB≤k

‖A− B‖F =

√ ∑
i≥k+1

σ2
i
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Examples of SVD

SVD computes the (orthogonal) decomposition of a matrix as a
sum of rank 1 matrices, indeed if ui are the columns of U, and vi
are the columns of V , we get M =

∑r
i=1 σi (uiv

t
i ). To give an

example, let

M =

2 10 2
2 −1 −3
1 7 0

. Then the SVD decomposition of M is

M =

 −.82631 .0446582 −.561442
.0883261 −.974242 −.207488
−.556246 −.22104 .801082

·
 12.5599 0 0

0 3.66274 0
0 0 .912972

·
 −.161802 −.974941 −.152676

−.567938 −.0345247 .822347
−.807011 .219768 −.54812



= 12.5599

 −.82631
.0883261
−.556246

 ·
[
−.161802 −.974941 −.152676

]
+

3.66274

 .0446582
−.974242
−.22104

 ·
[
−.567938 −.0345247 .822347

]
+

.912972

 −.561442
−.207488
.801082

 ·
[
−.807011 .219768 −.54812

]
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Best rank 2 approximation, according to Eckart-Young
Theorem.

The best rank 2 approximation forgets the third singular value
(and its successors), so forget the blue.
It is

M′ =

 −.82631 .0446582
.0883261 −.974242
−.556246 −.22104

 ·
[

12.5599 0
0 3.66274

]
·
[
−.161802 −.974941 −.152676
−.567938 −.0345247 .822347

]

= 12.5599

 −.82631
.0883261
−.556246

 ·
[
−.161802 −.974941 −.152676

]
+

3.66274

 .0446582
−.974242
−.22104

 ·
[
−.567938 −.0345247 .822347

]

M ′ has rank two and ||M −M ′|| = .912972
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Knowledge of rank saves informations collecting data

A random matrix of format r × c needs rc entries to be known,
and you cannot reduce these informations.
For a matrix of format r × c of rank one, the expression
aij = xiyj saves memory and requires just r + c informations.
Let’s visualize it
x0

x1

x2

x3

 · (y0 y1 y2 y3 y4

)
=


x0y0 x0y1 x0y2 x0y3 x0y4

x1y0 x1y1 x1y2 x1y3 x1y4

x2y0 x2y1 x2y2 x2y3 x2y4

x3y0 x3y1 x3y2 x3y3 x3y4
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Images created by Emanuele Frandi, Alessandra Papini
(Universita’ di Firenze).

SVD can be used to compress images.
Original image is 256× 256

rank 256

rank 64
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Images of small rank

rank 32

rank 16 rank 8
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SVD and critical points, the geometric point of view.

Lemma (SVD revisited)

Let A = XDY be the SVD decomposition of a matrix A. The
critical points of the distance function dA = d(A,−) from A to the
variety of rank one matrices are given by σixi ⊗ yi , where xi are the
columns of X , yj are the rows of Y and D has σi on the diagonal.

(xi , yi ) are called singular pairs of A.
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Critical points in any rank.

Lemma (SVD revisited, again.)

Let A = XDY be the SVD decomposition of A. The critical points
of the distance function dA = d(A,−) from A to the variety Xk of
rank k matrices are given by

Σj∈{i1,...,ik}σjxj ⊗ yj

for any subset of indices {i1, . . . , ik}, where xi are the columns of
X , yj are the rows of Y and D has σi on the diagonal.

Tangent space at Σj∈{i1,...,ik}σjxj ⊗ yj is the sum of individual
tangent spaces, according to Terracini Lemma.

The number of critical points for A of rank r ≥ k is
(r
k

)
. For a

general m × n matrix, assuming m ≤ n, it is
(m
k

)
.
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General conclusions.

The sums of the critical points on X1 give all the critical
points on the k-secant variety σkX1. This fact does NOT
generalize to other varieties X .

If X is a critical point of dA on σkX1, then A− X is a critical
point of dA on σr−kX1. This fact GENERALIZES to other
varieties X , in a proper way that we will see.
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