Remarks on SVD

Giorgio Ottaviani, Università di Firenze

Let $X \subset \mathbb{A}_{\mathbb{R}}^{n}$ be an algebraic variety, let $p \in \mathbb{A}_{\mathbb{R}}^{n}$. We look for the points $q \in X$ which minimize the euclidean distance $d(p, q)$.
A necessary condition, assuming q is a smooth point of X, is that the tangent space $T_{q} X$ be orthogonal to $p-q$, this is the condition to get a critical point for the distance function $d(p .-)$.

There is one important case when this problem is solved.

Consider the affine space of $n \times m$ matrices, and let X_{k} be the variety of matrices of rank $\leq k$. We consider this case as a model.
X_{1} is the cone over the Segre variety $\mathbb{P}^{n-1} \times \mathbb{P}^{m-1} . X_{k}$ is the k-secant variety of X_{1}, denoted as $\sigma_{k} X_{1}$. The matrices in X_{k} which minimize the distance from A are called the best rank k approximations of A.

Singular Value Decomposition

If M is a (real) $m \times n$ matrix, the SVD of M is

$$
M=U \Sigma V^{t}
$$

where
U is a $m \times m$ orthogonal matrix,
V is a $n \times n$ orthogonal matrix,
$\Sigma=D\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ is a $m \times n$ diagonal matrix , with its only nonzero values appearing on the diagonal $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}$, which are called the singular values of M. They are the square roots of the eigenvalues of $M^{t} M$. r coincides with the rank of M.

If M is symmetric then $U=V$ and $S V D$ reduces to the spectral theorem $M=U D U^{t}$.
If u_{i} are the columns of U and v_{i} are the columns of V we get $M v_{i}=\sigma_{i} u_{i}, M^{t} u_{i}=\sigma_{i} v_{i} . u_{i}$ are just eigenvectors of $M M^{t}, v_{i}$ are just eigenvectors of $M^{t} M$.
$\left[\begin{array}{rrrr|r}.105 & .14 & .07 & .035 & .35 \\ .03 & .04 & .02 & .01 & .1 \\ .03 & .04 & .02 & .01 & .1 \\ .135 & .18 & .09 & .045 & .45 \\ \hline .3 & .4 & .2 & .1 & \end{array}\right]$

The 4×4 block A has $r k=1$, has singular values $0.321714,0,0,0$.
$A+P_{\epsilon}=\left[\begin{array}{rrrr}.106 & .141 & .068 & .035 \\ .035 & .043 & .012 & .01 \\ .024 & .036 & .03 & .01 \\ .135 & .18 & .09 & .045\end{array}\right]$
$A+P_{\epsilon}$ has singular values $0.32196,0.01560,0.00034,0$
Two singular values are small. In the Frobenius norm, the distance of A from rank 2-matrices is .00034 . The distance of A from rank 1-matrices is $\sqrt{(.01560)^{2}+(.00034)^{2}}=0.1561$

Least square

First application of SVD is the solution of least square problem. Given M and b, let $M=U \Sigma V^{t}$ its SVD, then the minimum of $\|M x-b\|$ is computed by $x=V \Sigma^{+} U^{t} b$ where in Σ^{+}appear $\sigma_{1}^{-1}, \sigma_{2}^{-1}, \ldots$ (indeed what we wrote is the Moore-Penrose inverse of M).
The r-th row of V is the vector which minimizes the norm $\|M x\|$ under the condition $\|x\|=1$.

Best rank k approximation

Recall $X_{k}=\{$ matrices of rank $\leq k\}$
so $X_{1} \subset X_{2} \subset X_{3} \subset \ldots$
The Frobenius norm is $\|A\|_{F}=\sqrt{\sum_{i, j}\left\|a_{i j}^{2}\right\|}=\sqrt{\operatorname{tr}\left(A^{t} A\right)}$.

Theorem (Eckart-Young, 1936)

- The best rank k approximation of $A=U \Sigma V^{t}$, where

$$
\begin{aligned}
& \Sigma=D\left(\sigma_{1}, \ldots, \sigma_{r}\right), \text { is } U \Sigma_{k} V^{t} \text { where } \\
& \Sigma_{k}=D\left(\sigma_{1}, \ldots, \sigma_{k}, 0, \ldots, 0\right)
\end{aligned}
$$

- The distance of A from X_{k} in the Frobenius norm is

$$
\min _{r k B \leq k}\|A-B\|_{F}=\sqrt{\sum_{i \geq k+1} \sigma_{i}^{2}}
$$

Examples of SVD

SVD computes the (orthogonal) decomposition of a matrix as a sum of rank 1 matrices, indeed if u_{i} are the columns of U, and v_{i} are the columns of V, we get $M=\sum_{i=1}^{r} \sigma_{i}\left(u_{i} v_{i}^{t}\right)$. To give an example, let

$$
\begin{gathered}
M=\left(\begin{array}{ccc}
2 & 10 & 2 \\
2 & -1 & -3 \\
1 & 7 & 0
\end{array}\right) \cdot \text { Then the SVD decomposition of } M \text { is } \\
M=\left[\begin{array}{rrrr}
-.82631 & .0446582 & -.561442 \\
.0883261 & -.974242 & -.207488 \\
-.556246 & -.22104 & .801082
\end{array}\right] \cdot\left[\begin{array}{rrr}
12.5599 & 0 & 0 \\
0 & 3.66274 & 0 \\
0 & 0 & .912972
\end{array}\right] \cdot\left[\begin{array}{rrr}
-.161802 & -.974941 & -.152676 \\
-.567938 & -.0345247 & .822347 \\
-.807011 & .219768 & -.54812
\end{array}\right] \\
=12.5599\left[\begin{array}{r}
-.82631 \\
.088361 \\
-.556246
\end{array}\right] \cdot\left[\begin{array}{rr}
-.161802 & -.974941 \\
\hline
\end{array}\right] \\
3.66274\left[\begin{array}{r}
.0446582 \\
-.974242 \\
-.22104
\end{array}\right] \cdot[-.567938-0676]+ \\
.912972\left[\begin{array}{r}
-.561442 \\
-.207488 \\
.801082
\end{array}\right] \cdot\left[\begin{array}{lll}
-.807011 & .219768 & -.54812
\end{array}\right]
\end{gathered}
$$

Best rank 2 approximation, according to Eckart-Young Theorem.

The best rank 2 approximation forgets the third singular value (and its successors), so forget the blue.
It is

$$
\begin{gathered}
M^{\prime}=\left[\begin{array}{rr}
-.82631 & .0446582 \\
.083261 & -.974242 \\
-.556246 & -.22104
\end{array}\right] \cdot\left[\begin{array}{rr}
12.5599 & 0 \\
0 & 3.66274
\end{array}\right] \cdot\left[\begin{array}{rrr}
-.161802 & -.974941 & -.152676 \\
-.567938 & -.0345247 & .822347
\end{array}\right] \\
=12.5599\left[\begin{array}{r}
-.82631 \\
.083261 \\
-.556246
\end{array}\right] \cdot\left[\begin{array}{lll}
-.161802 & -.974941 & -.152676
\end{array}\right]+ \\
3.66274\left[\begin{array}{r}
.0446582 \\
-.974242 \\
-.22104
\end{array}\right] \cdot\left[\begin{array}{lll}
-.567938 & -.0345247 & .822347
\end{array}\right]
\end{gathered}
$$

M^{\prime} has rank two and $\left\|M-M^{\prime}\right\|=.912972$

Knowledge of rank saves informations collecting data

A random matrix of format $r \times c$ needs $r c$ entries to be known, and you cannot reduce these informations.
For a matrix of format $r \times c$ of rank one, the expression $a_{i j}=x_{i} y_{j}$ saves memory and requires just $r+c$ informations. Let's visualize it

$$
\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \cdot\left(\begin{array}{lllll}
y_{0} & y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right)=\left(\begin{array}{lllll}
x_{0} y_{0} & x_{0} y_{1} & x_{0} y_{2} & x_{0} y_{3} & x_{0} y_{4} \\
x_{1} y_{0} & x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} & x_{1} y_{4} \\
x_{2} y_{0} & x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3} & x_{2} y_{4} \\
x_{3} y_{0} & x_{3} y_{1} & x_{3} y_{2} & x_{3} y_{3} & x_{3} y_{4}
\end{array}\right)
$$

Images created by Emanuele Frandi, Alessandra Papini (Universita' di Firenze).

SVD can be used to compress images.
Original image is 256×256

rank 256

rank 64

Images of small rank

rank 32
rank 16

SVD and critical points, the geometric point of view.

> Lemma (SVD revisited)
> Let $A=X D Y$ be the SVD decomposition of a matrix A. The critical points of the distance function $d_{A}=d(A,-)$ from A to the variety of rank one matrices are given by $\sigma_{i} x_{i} \otimes y_{i}$, where x_{i} are the columns of X, y_{j} are the rows of Y and D has σ_{i} on the diagonal.

$\left(x_{i}, y_{i}\right)$ are called singular pairs of A.

Critical points in any rank.

Lemma (SVD revisited, again.)

Let $A=X D Y$ be the SVD decomposition of A. The critical points of the distance function $d_{A}=d(A,-)$ from A to the variety X_{k} of rank k matrices are given by

$$
\Sigma_{j \in\left\{i_{1}, \ldots, i_{k}\right\}} \sigma_{j} x_{j} \otimes y_{j}
$$

for any subset of indices $\left\{i_{1}, \ldots, i_{k}\right\}$, where x_{i} are the columns of X, y_{j} are the rows of Y and D has σ_{i} on the diagonal.

Tangent space at $\sum_{j \in\left\{i_{1}, \ldots, i_{k}\right\}} \sigma_{j} x_{j} \otimes y_{j}$ is the sum of individual tangent spaces, according to Terracini Lemma.

The number of critical points for A of rank $r \geq k$ is $\binom{r}{k}$. For a general $m \times n$ matrix, assuming $m \leq n$, it is $\binom{m}{k}$.

General conclusions.

- The sums of the critical points on X_{1} give all the critical points on the k-secant variety $\sigma_{k} X_{1}$. This fact does NOT generalize to other varieties X.
- If X is a critical point of d_{A} on $\sigma_{k} X_{1}$, then $A-X$ is a critical point of d_{A} on $\sigma_{r-k} X_{1}$. This fact GENERALIZES to other varieties X, in a proper way that we will see.

