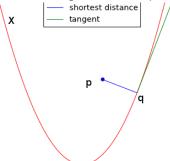
Remarks on SVD

Giorgio Ottaviani, Università di Firenze

Let $X \subset \mathbb{A}^n_{\mathbb{R}}$ be an algebraic variety, let $p \in \mathbb{A}^n_{\mathbb{R}}$. We look for the points $q \in X$ which minimize the euclidean distance d(p,q). A necessary condition, assuming q is a smooth point of X, is that the tangent space T_qX be orthogonal to p - q, this is the condition to get a critical point for the distance function d(p,-).



There is one important case when this problem is solved.

Consider the affine space of $n \times m$ matrices, and let X_k be the variety of matrices of rank $\leq k$. We consider this case as a model.

 X_1 is the cone over the Segre variety $\mathbb{P}^{n-1} \times \mathbb{P}^{m-1}$. X_k is the *k*-secant variety of X_1 , denoted as $\sigma_k X_1$. The matrices in X_k which minimize the distance from A are called the *best rank k* approximations of A.

If M is a (real) $m \times n$ matrix, the SVD of M is

 $M = U\Sigma V^t$

where

U is a $m \times m$ orthogonal matrix,

V is a $n \times n$ orthogonal matrix,

 $\Sigma = D(\sigma_1, \ldots, \sigma_r)$ is a $m \times n$ diagonal matrix ,with its only nonzero values appearing on the diagonal $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r$, which are called the singular values of M. They are the square roots of the eigenvalues of $M^t M$. r coincides with the rank of M. If *M* is symmetric then U = V and *SVD* reduces to the spectral theorem $M = UDU^t$.

If u_i are the columns of U and v_i are the columns of V we get $Mv_i = \sigma_i u_i$, $M^t u_i = \sigma_i v_i$. u_i are just eigenvectors of MM^t , v_i are just eigenvectors of M^tM .

SVD of perturbed matrix

 $\begin{bmatrix} .105 & .14 & .07 & .035 & .35 \\ .03 & .04 & .02 & .01 & .1 \\ .03 & .04 & .02 & .01 & .1 \\ .135 & .18 & .09 & .045 & .45 \\ \hline .3 & .4 & .2 & .1 \end{bmatrix}$ The 4 × 4 block A has rk = 1, has singular values 0.321714, 0, 0, 0.

 $A + P_{\epsilon} = \begin{bmatrix} .106 & .141 & .068 & .035 \\ .035 & .043 & .012 & .01 \\ .024 & .036 & .03 & .01 \\ .135 & .18 & .09 & .045 \end{bmatrix}$

 $A + P_{\epsilon}$ has singular values 0.32196, 0.01560, 0.00034, 0 Two singular values are small. In the Frobenius norm, the distance of A from rank 2-matrices is .00034. The distance of A from rank 1-matrices is $\sqrt{(.01560)^2 + (.00034)^2} = 0.1561$ First application of SVD is the solution of least square problem. Given M and b, let $M = U\Sigma V^t$ its SVD, then the minimum of ||Mx - b|| is computed by $x = V\Sigma^+ U^t b$ where in Σ^+ appear $\sigma_1^{-1}, \sigma_2^{-1}, \ldots$ (indeed what we wrote is the Moore-Penrose inverse of M).

The *r*-th row of *V* is the vector which minimizes the norm ||Mx|| under the condition ||x|| = 1.

Best rank k approximation

Recall $X_k = \{ \text{matrices of rank } \leq k \}$ so $X_1 \subset X_2 \subset X_3 \subset \dots$ The Frobenius norm is $||A||_F = \sqrt{\sum_{i,j} ||a_{ij}^2||} = \sqrt{\operatorname{tr}(A^t A)}.$

Theorem (Eckart-Young, 1936)

- The best rank k approximation of $A = U\Sigma V^t$, where $\Sigma = D(\sigma_1, \dots, \sigma_r)$, is $U\Sigma_k V^t$ where $\Sigma_k = D(\sigma_1, \dots, \sigma_k, 0, \dots, 0)$.
- The distance of A from X_k in the Frobenius norm is

$$\min_{rkB\leq k} \|A - B\|_F = \sqrt{\sum_{i\geq k+1} \sigma_i^2}$$

Examples of SVD

SVD computes the (orthogonal) decomposition of a matrix as a sum of rank 1 matrices, indeed if u_i are the columns of U, and v_i are the columns of V, we get $M = \sum_{i=1}^r \sigma_i(u_i v_i^t)$. To give an example, let

$$M = \begin{pmatrix} 2 & 10 & 2 \\ 2 & -1 & -3 \\ 1 & 7 & 0 \end{pmatrix}$$
. Then the SVD decomposition of *M* is

$$M = \begin{bmatrix} -.82631 & .0446582 & -.561442 \\ .0883261 & -.974242 & -.207488 \\ -.556246 & -.22104 & .801082 \end{bmatrix} \cdot \begin{bmatrix} 12.5599 & 0 & 0 \\ 0 & 3.66274 & 0 \\ 0 & 0 & .912972 \end{bmatrix} \cdot \begin{bmatrix} -.61802 & -.974941 & -.152676 \\ -.567938 & -.0345247 & .822347 \\ -.807011 & .219768 & -.54812 \end{bmatrix}$$
$$= 12.5599 \begin{bmatrix} -.82631 \\ .0883261 \\ -.556246 \end{bmatrix} \cdot \begin{bmatrix} -.161802 & -.974941 & -.152676 \end{bmatrix} + \\3.66274 \begin{bmatrix} .0446582 \\ -.974242 \\ -.22104 \end{bmatrix} \cdot \begin{bmatrix} -.567938 & -.0345247 & .822347 \end{bmatrix} + \\.912972 \begin{bmatrix} -.561442 \\ -.27488 \\ .801082 \end{bmatrix} \cdot \begin{bmatrix} -.807011 & .219768 & -.54812 \end{bmatrix}$$

Best rank 2 approximation, according to Eckart-Young Theorem.

The best rank 2 approximation forgets the third singular value (and its successors), so forget the blue. It is

$$M' = \begin{bmatrix} -.82631 & .0446582 \\ .0883261 & -.974242 \\ -.556246 & -.22104 \end{bmatrix} \cdot \begin{bmatrix} 12.5599 & 0 \\ 0 & 3.66274 \end{bmatrix} \cdot \begin{bmatrix} -.161802 & -.974941 & -.152676 \\ -.567938 & -.0345247 & .822347 \end{bmatrix}$$
$$= 12.5599 \begin{bmatrix} -.82631 \\ .0883261 \\ -.556246 \end{bmatrix} \cdot \begin{bmatrix} -.161802 & -.974941 & -.152676 \end{bmatrix} + \\3.66274 \begin{bmatrix} .0446582 \\ -.974242 \\ -.22104 \end{bmatrix} \cdot \begin{bmatrix} -.567938 & -.0345247 & .822347 \end{bmatrix}$$

M' has rank two and ||M - M'|| = .912972

A random matrix of format $r \times c$ needs rc entries to be known, and you cannot reduce these informations.

For a matrix of format $r \times c$ of rank one, the expression $a_{ij} = x_i y_j$ saves memory and requires just r + c informations. Let's visualize it

$$\begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} y_0 \ y_1 \ y_2 \ y_3 \ y_4 \end{pmatrix} = \begin{pmatrix} x_0y_0 \ x_0y_1 \ x_0y_2 \ x_0y_3 \ x_0y_4 \\ x_1y_0 \ x_1y_1 \ x_1y_2 \ x_1y_3 \ x_1y_4 \\ x_2y_0 \ x_2y_1 \ x_2y_2 \ x_2y_3 \ x_2y_4 \\ x_3y_0 \ x_3y_1 \ x_3y_2 \ x_3y_3 \ x_3y_4 \end{pmatrix}$$

Images created by Emanuele Frandi, Alessandra Papini (Universita' di Firenze).

SVD can be used to compress images. Original image is 256×256

Rk64 SVD Compression

rank 256

rank 64

Images of small rank

Rk16 SVD Compression

rank 16

Pk8 SVD Compression 100 150 200

rank 8

Lemma (SVD revisited)

Let A = XDY be the SVD decomposition of a matrix A. The critical points of the distance function $d_A = d(A, -)$ from A to the variety of rank one matrices are given by $\sigma_i x_i \otimes y_i$, where x_i are the columns of X, y_j are the rows of Y and D has σ_i on the diagonal.

 (x_i, y_i) are called singular pairs of A.

Lemma (SVD revisited, again.)

Let A = XDY be the SVD decomposition of A. The critical points of the distance function $d_A = d(A, -)$ from A to the variety X_k of rank k matrices are given by

$\Sigma_{j \in \{i_1,...,i_k\}} \sigma_j x_j \otimes y_j$

for any subset of indices $\{i_1, \ldots, i_k\}$, where x_i are the columns of X, y_j are the rows of Y and D has σ_i on the diagonal.

Tangent space at $\sum_{j \in \{i_1,...,i_k\}} \sigma_j x_j \otimes y_j$ is the sum of individual tangent spaces, according to Terracini Lemma.

The number of critical points for A of rank $r \ge k$ is $\binom{r}{k}$. For a general $m \times n$ matrix, assuming $m \le n$, it is $\binom{m}{k}$.

• The sums of the critical points on X_1 give all the critical points on the *k*-secant variety $\sigma_k X_1$. This fact does NOT generalize to other varieties X.

If X is a critical point of d_A on σ_kX₁, then A – X is a critical point of d_A on σ_{r-k}X₁. This fact GENERALIZES to other varieties X, in a proper way that we will see.