Winter School in Algebraic Geometry and Applications

February 17th-20th, 2014 Konkuk University, Seoul, Korea

Exercise Sheet - Day 3

Exercise 1. Let $X=\mathbb{P}^{3} \times \mathbb{P}^{3} \times \mathbb{P}^{4} \times \mathbb{P}^{9} \times \mathbb{P}^{10} \times \mathbb{P}^{15}$. Compute first
i) the dimension of ambient space of the Segre embedding of X;
ii) the critical value for identifiability k_{c}.

Then, using results introduced in the lectures, compute the best known value k for which X is k-identifiable.

Exercise 2. Let X be the 2 -veronese embedding of \mathbb{P}^{n}. Show that X is k-defective for $2 \leq k \leq n$. Can you give an estimate of the k-defect?

Exercise 3. A tensor $t \in \mathbb{C}^{a} \otimes \mathbb{C}^{b} \otimes \mathbb{C}^{c}$ defines three contractions
$\left(\mathbb{C}^{a}\right)^{\vee} \rightarrow \mathbb{C}^{b} \otimes \mathbb{C}^{c}$
$\left(\mathbb{C}^{b}\right)^{\vee} \rightarrow \mathbb{C}^{a} \otimes \mathbb{C}^{c}$
$\left(\mathbb{C}^{c}\right)^{\vee} \rightarrow \mathbb{C}^{a} \otimes \mathbb{C}^{b}$
and we call their ranks respectively $r_{1}(t), r_{2}(t), r_{3}(t)$.

- Prove that

$$
\operatorname{rk}(t)=1 \Longleftrightarrow\left\{\begin{array}{l}
r_{1}(t)=1 \\
r_{2}(t)=1 \\
r_{3}(t)=1
\end{array}\right.
$$

- Prove that $\left(r_{1}, r_{2}, r_{3}\right)=(1,2,2)$ is admissible, while $\left(r_{1}, r_{2}, r_{3}\right)=(1,1,2)$ is not allowed.
- Prove that $r_{i} \leq \operatorname{brk}(t) \leq \operatorname{rk}(t) \leq r_{j} r_{k} \forall i, j, k$.
- Deduce that $r_{1} \leq r_{2} r_{3}, r_{2} \leq r_{1} r_{3}, r_{3} \leq r_{1} r_{2}$.

