Winter School in Algebraic Geometry and Applications February 17th-20th, 2014 Konkuk University, Seoul, Korea

Exercise Sheet - Day 1

Exercise 1. You entered at the " $\Diamond \heartsuit$ Gambling Tensors $\clubsuit \spadesuit$ " casino in the worst area of Seoul. In a desk there is a dice game where you can bet on the exits of two dices (not depending on the order of the dice). Before to play you observe a (long) sequence of 96 observations

 $(1,6), (4,2), (3,3), (1,4), (4,1), \ldots$

which is described by the following matrix:

	1	2	3	4	5	6
1	0	0	1	6	5	3)
2	0	0	1	4	1	3
3	1	1	1	3	2	3
4	6	4	1	2	2	7
5	1	3	0	1	1	4
6	6	3	2	6	3	9 /

- i) Using the Algorithm for Statistical inference based on invariants, decide which one of the following models best fits the sequences of observations ?
 - (1) the dice are fair,
 - (2) one die is fair and one die is loaded,
 - (3) the dice are loaded,
 - (4) the gambler, after three times with fair dice, switches once, at a pair of loaded dice.
- ii) I bet for pair (6,1) while you bet for pair (4,2). Who has more chance to win?

Exercise 2. Suppose we have three tetrahedral dice with faces A, C, G and T. Two of the three dice are loaded and one is fair. We know the probabilities of rolling the four letters:

	A	C	G	T			
first die	0.15	0.33	0.36	0.16			
second die	0.27	0.24	0.23	0.24			
third die	0.25	0.25	0.25	0.25			
1							

We generate DNA sequences according to the following process:

- We first pick one of the three dice at random. where the first die is picked with probability θ_1 , the second die is picked with probability θ_2 and the third die is picked with probability $\theta_3 = 1 \theta_1 \theta_2$.
- we then make a roll of the selected die and we record the resulting letter

Write the function expressing this model as a parametric statistical model. Suppose we have the sequence

CTCACGTGATGAGAGCATTCTCAGACCGTGACGCGTGTAGCAGCGGCTC

Is the sequence generated by this process, and, if so, which parameters θ_1 and θ_2 does it use?

Exercise 3.

• Let X be the variety of 3×4 matrices of rank one, let

Which of the following matrices are in the tangent space $T_A X$ at A?

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 6 \\ 5 & 6 & 7 & 8 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 6 \\ 6 & 7 & 8 & 9 \end{pmatrix}$$

Which are cartesian equations for $T_A X$ in the $m \times n$ case ?

• Let X be the variety of 3×4 matrices of rank ≤ 2 , let

Compute the two linear equations of $T_A X$. note that tangent spaces meet

Exercise 4.

This exercise can be executed with the help of Macaulay2 or other computer algebra package.

Let A, B, C be three vector spaces of dimension two, with basis respectively given by $\{a_0, a_1\}$, $\{b_0, b_1\}$, $\{c_0, c_1\}$.

- (1) For any tensor $t = \sum_{i,j,k=0,\dots,1} t_{ijk} a_i b_j c_k$, write it as a 2 × 2 with coefficients linear in c_i , so as a *pencil* of 2 × 2 matrices.
- (2) Compute the condition that the previous matrix is singular, it is quadratic in c_i giving a pair of points.
- (3) Compute the condition that the pair of points consists of a double point, get a polynomial of degree 4 in t_{ijk} , which is called the hyperdeterminant of t and we denote as Det(t).
- (4) Show that the above pair gives the two summands of t, when t has rank two. Conclude that the sign of Det(t) allows to detect if a real $2 \times 2 \times 2$ tensor has rank two or three.
- (5) The following $2 \times 2 \times 2$ tensors t_1 , t_2 , t_3 fill the first column of the following table. Which is which ? Can you decompose them ?

t	$\operatorname{rk}_{\mathbb{R}}(t)$	$\operatorname{rk}_{\mathbb{C}}(t)$
?	2	2
?	3	2
?	3	3

 $t_1 = 4a_0b_0c_0 + 2a_1b_0c_0 - a_0b_1c_0 + 2a_0b_0c_1$

 $t_2 = a_0 b_0 c_0 + 2a_1 b_1 c_0 + 3a_1 b_0 c_1 + 6a_0 b_1 c_1$

 $t_3 = a_0 b_0 c_0 - 2a_1 b_1 c_0 - 3a_1 b_0 c_1 - 6a_0 b_1 c_1$