HÖLDER CONTINUITY OF A BOUNDED WEAK SOLUTION OF A DEGENERATE PARABOLIC EQUATION

LECTURES BY SUKJUNG HWANG

Abstract

These are some notes taken in a lecture series given by Sukjung Hwang at KIAS during the Spring semester of 2019. All errors and inaccuracies are solely due to the notetaker (Sung-Jin Oh).

The content of this lecture series is as follows:
(1) Equations \& References
(2) Hölder continuity \& Two alternatives
(3) Energy estimate \& Intrinsic scaling
(4) De Giorgi iteration
(5) Expansion of positivities
(6) Proof of the two alternatives

1. Equations \& References

Consider the minimization problem

$$
\min \int|\nabla u|^{2} \mathrm{~d} x
$$

Since we wish to consider the parabolic problem, we consider its gradient flow, which is $u_{t}-\Delta u=0$ in this case. Generalizing the above functional to

$$
\min \int|\nabla u|^{p} \mathrm{~d} x
$$

we obtain the parabolic equation

$$
u_{t}-\nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)=0 .
$$

while this equation is linear when $p=2$, it is degenerate (resp. singular) if $p>2$ (resp. $1<p<2$).

Despite great qualitative differences, in all these cases, bounded solutions are Hölder continuous. The motivating question was: Is there a unified framework for showing this? For this purpose, we may consider

$$
\min \int G(|\nabla u|) \mathrm{d} x
$$

where

$$
|\nabla u|^{p_{0}} \sim G(|\nabla u|) \sim|\nabla u|^{p_{1}}, \quad 1<p_{0} \leq p_{1}<\infty .
$$

The corresponding gradient flow is

$$
u_{t}-\nabla \cdot\left(g(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right)=0,
$$

[^0]where $G^{\prime}=g$. Some references are:

- Di Benedetto '93
- Urbano 2008
- Hwang-Lieberman 2015: I - $2 \leq p_{0} \leq p_{1}<\infty$, II - $1<p_{0} \leq p_{1} \leq 2$.

Today, we will consider

$$
\begin{equation*}
u_{t}-\nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)=0, \quad p \geq 2 . \tag{1.1}
\end{equation*}
$$

2. HÖlder continuity \& two alternatives

Our goal is to show the following:
Assume that u is a bounded weak solution to (1.1). Show that

$$
\left|u\left(x_{1}, t_{1}\right)-u\left(x_{2}, t_{2}\right)\right| \leq \gamma\|u\|_{L^{\infty}}\left(\frac{\left|x_{1}-x_{2}\right|+\|u\|_{L^{\infty}}^{1-\frac{2}{p}}\left|t_{1}-t_{2}\right|^{1 / p}}{\operatorname{dist}_{p}\left(\Omega^{\prime}, \partial_{p} \Omega\right)}\right)^{\alpha}
$$

for some $\alpha \in(0,1) ;\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in \Omega^{\prime} \subseteq \Omega$. Here, $\partial_{p} \Omega$ consists of the lateral boundary and the initial domain.
The main lemma is:
Lemma 2.1. Assume that

$$
\operatorname{ess}_{\operatorname{osc}_{Q_{\rho}}} u \leq \omega,
$$

for some parabolic cylinder Q_{ρ} around $(0,0)$. Then there exist $\lambda, \sigma \in(0,1)$ such that

$$
\operatorname{ess}_{\operatorname{osc}_{Q_{\lambda \rho}} u \leq \sigma \omega, ~}^{\text {and }}
$$

The above goal will be achieved by iterating the main lemma; α will be $\log _{\sigma} \lambda$. Here, λ, σ will only depend on the data (i.e., n (dimension), p and the domain Ω_{T}). We leave the precise definition of Q_{λ} for later.

The main lemma will be proved by showing "two alternatives": Consider a nonnegative weak solution u on $Q=K_{2 k} \times\left(-\theta_{0} \Delta, 0\right)$, where $K_{2 k}$ is a cube of sidelength $2 k, \theta_{0}>1$ will be determined later, and $\Delta=\left(\frac{\omega}{2}\right)^{2-p}(2 R)^{p}$, and R is to be chosen according to the data.

- First alternative: If there exists $T_{0} \in\left[-\theta_{0} \Delta,-\Delta\right]$ such that

$$
\left|K_{2 k} \times\left(T_{0}, T_{0}+\Delta\right) \cap\left\{u \leq \frac{\omega}{2}\right\}\right| \leq \nu_{0}\left|K_{2 k}\right| \Delta,
$$

then there exists $\delta_{1}=\delta_{1}($ data $) \in(0,1)$ such that

$$
\underset{Q}{\operatorname{essinf}} u \geq \delta_{1} \omega
$$

with $Q=Q_{\omega / 4, k / 2}=K_{k / 2} \times\left[-\left(\frac{\omega}{4}\right)^{2-p}\left(\frac{R}{2}\right)^{p}, 0\right]$.

- Second alternative: If

$$
\left|K_{2 k} \times\left(T_{0}, T_{0}+\Delta\right) \cap\left\{u>\frac{\omega}{2}\right\}\right| \leq\left(1-\nu_{0}\right)\left|K_{2 k}\right| \Delta
$$

for all $T_{0} \in\left[-\theta_{0} \Delta, \Delta\right]$, then there exists $\delta_{2} \in(0,1)$ such that

$$
\underset{Q}{\operatorname{ess} \sup } u \leq \mu_{+}-\delta_{2} \omega .
$$

3. Energy estimate \& intrinsic scaling

For a test function $u \zeta^{p}$,

$$
\begin{aligned}
0 & =\iint_{Q_{\rho}}\left[u_{t}-\nabla\left(|\nabla u|^{p-2} \nabla u\right)\right] u \zeta^{p} \mathrm{~d} x \mathrm{~d} t \\
& =I+I I,
\end{aligned}
$$

where

$$
\begin{aligned}
I & =\iint \partial_{t}\left(\frac{1}{2} u^{2}\right) \zeta^{p} \mathrm{~d} x \mathrm{~d} t \\
& =\iint \partial_{t}\left(\frac{1}{2} u^{2} \zeta^{p}\right)-\frac{p}{2} u^{2} \zeta^{p-1} \zeta_{t} \mathrm{~d} x \mathrm{~d} t \\
& =\int_{\left\{K_{\rho} \times\left\{t_{1}\right\}\right\}} \frac{1}{2} u^{2} \zeta^{p}+\int_{\left\{K_{\rho} \times\left\{t_{0}\right\}\right\}} \frac{1}{2} u^{2} \zeta^{p}-\iint \frac{p}{2} u^{2} \zeta^{p-1} \zeta_{t} \mathrm{~d} x \mathrm{~d} t .
\end{aligned}
$$

We will set ζ to vanish at the initial time t_{0}, so that the second term vanishes.

$$
\begin{aligned}
I I & =\iint_{Q_{\rho}}|\nabla u|^{p-2} \nabla u \cdot \nabla\left(u \zeta^{p}\right) \mathrm{d} x \mathrm{~d} t \\
& =\underbrace{\iint_{Q_{\rho}}|\nabla u|^{p} \zeta^{p} \mathrm{~d} x \mathrm{~d} t}_{I I_{1}}+\underbrace{\iint_{Q_{\rho}}|\nabla u|^{p-2} \nabla u \cdot u p \zeta^{p-1} \nabla \zeta \mathrm{~d} x \mathrm{~d} t}_{I I_{2}} .
\end{aligned}
$$

We estimate

$$
\begin{aligned}
\left|I I_{2}\right| & \leq \iint|\nabla u|^{p-2}|\nabla u| u p \zeta^{p-1}|\nabla \zeta| \mathrm{d} x \mathrm{~d} t \\
& \leq \epsilon I I_{1}+p^{p} \epsilon^{-1} \iint u^{p}|\nabla \zeta|^{p} \mathrm{~d} x \mathrm{~d} t .
\end{aligned}
$$

The first term may be absorbed into I_{1}. In conclusion,

$$
\underset{t}{\operatorname{ess} \sup } \int u^{2} \zeta^{p} \mathrm{~d} x+\iint|\nabla u|^{p} \zeta^{p} \mathrm{~d} x \mathrm{~d} t \leq C \iint u^{2} \zeta^{p-1} \zeta_{t}+C \iint u^{p}|\nabla \zeta|^{p}
$$

When $p=2$ and $Q_{\rho}=K_{\rho} \times\left[-\rho^{2}, 0\right]$, then a cutoff adapted to Q_{ρ} obeys

$$
\left|\zeta_{t}\right| \leq \frac{1}{\rho^{2}}, \quad|\nabla \zeta| \leq \frac{1}{\rho}
$$

and the two terms on the RHS have the same strength.
Trying to balancing the two terms also in the case $p>2$ motivate the notion of intrinsic scaling. Writing ω for $\|u\|_{L^{\infty}}$, the two terms are roughly of size, respectively,

$$
\frac{1}{T} \omega^{2}, \quad \omega^{p} \frac{1}{\rho^{p}} .
$$

Making these two terms equal, we are motivated to choose $T \simeq \omega^{2-p} \rho^{p}$.

4. De Giorgi iteration

Let $Q_{k, \rho}(\theta)=K_{\rho} \times\left[-\theta k^{2-p} \rho^{p}, 0\right]$
Proposition 4.1. For a given θ, k, ρ, there exists $\nu_{0}=\nu_{0}(\theta$, data $) \in(0,1)$ such that, if

$$
\left|Q_{k, 2 \rho}(\theta) \cap\{u \leq k\}\right| \leq \nu_{0}\left|Q_{k, 2 \rho}(\theta)\right|
$$

then

$$
\underset{Q_{k, \rho}(\theta)}{\operatorname{ess} \inf } u(x, t) \geq k / 2
$$

Proof. Construct the sequences

$$
\rho_{n}=\rho+\frac{\rho}{2^{n}}
$$

so that $\rho_{0}=2 \rho$ and $\rho_{\infty}=\rho$;

$$
k_{n}=\frac{k}{2}+\frac{k}{2^{n+1}}
$$

so that $k_{0}=k$ and $k_{\infty}=k / 2$; let

$$
Q_{n}=K_{\rho_{n}} \times\left[-\theta k^{2-p} \rho_{n}^{p}, 0\right], \quad \zeta_{n}= \begin{cases}1 & \text { in } Q_{n+1} \\ 0 & \text { on } \partial_{p} Q_{n}\end{cases}
$$

We use the energy estimate with $\left(u-k_{n}\right)_{-}=\max \left\{0, k_{n}-u\right\}$ instead of u, and with a cutoff ζ adapted to Q_{n+1}. Then

$$
\begin{aligned}
& \underset{-\theta k^{2-p} \rho_{\rho_{n}^{p}<t<0}}{\operatorname{ess} \sup _{K_{\rho_{n}}}} \int_{K_{n}}\left(u-k_{n}\right)^{2} \zeta_{n}^{p}+\iint_{Q_{n}}\left|\nabla\left(u-k_{n}\right)_{-}\right|^{p} \\
& \leq C \iint_{Q_{n}}\left(u-k_{n}\right)_{-} \zeta_{n}^{p-1}\left(\zeta_{n}\right)_{t}+\iint_{Q_{n}}\left(u-k_{n}\right)_{-}^{p}\left|\nabla \zeta_{n}\right|^{p}
\end{aligned}
$$

Note that

$$
\left|\nabla \zeta_{n}\right| \leq \frac{2^{n}}{\rho}, \quad\left(\zeta_{n}\right)_{t} \leq \frac{2^{n p}}{\theta k^{2-p} \rho^{p}}
$$

Since u is nonnegative, $\left(u-k_{n}\right)_{-} \leq k_{n} \leq k$. Thus, the RHS is bounded by

$$
\left(k^{p} \frac{2^{n p}}{\rho^{p}}+k^{2} \frac{2^{n p}}{\theta k^{2-p} \rho^{p}}\right) A_{n}
$$

where

$$
A_{n}:=\left|Q_{n} \cap\left\{u<k_{n}\right\}\right| .
$$

Observe that

$$
\left(u-k_{n}\right)_{-}^{2}=\left(u-k_{n}\right)_{-}^{p}\left(u-k_{n}\right)_{-}^{2-p} \geq k^{2-p}\left(u-k_{n}\right)_{-}^{p}
$$

so

$$
\operatorname{ess}_{-\theta k^{2-p} \rho_{n}^{p}<t<0} \int_{K_{\rho_{n}}}\left(u-k_{n}\right)^{2} \zeta_{n}^{p} \geq \underset{-\theta k^{2-p} \rho_{n}^{p}<t<0}{\operatorname{ess} \sup } k^{2-p} \int_{K_{\rho_{n}}}\left(u-k_{n}\right)^{p} \zeta_{n}^{p} .
$$

We now make a change of variable

$$
\bar{t}=k^{p-2} t \in\left[-\theta \rho_{n}^{p}, 0\right] .
$$

Then $\mathrm{d} \bar{t}=k^{p-2} \mathrm{~d} t$. Denoting all variables in the new coordinates by putting a bar,

$$
\leq C\left(k^{p} \frac{2^{n p}}{\rho^{p}}+k^{2} \frac{2^{n p}}{\theta k^{2-p} \rho^{p}}\right)\left|\bar{A}_{n}\right|
$$

We now apply the (parabolic) Sobolev embedding

$$
\iint_{\bar{Q}_{n}}\left|\left(\bar{u}-k_{n}\right)-\bar{\zeta}_{n}\right|^{p \cdot N+p N} \leq\left(\iint_{\bar{Q}_{n}}\left|\nabla\left(\bar{u}-k_{n}\right)-\bar{\zeta}_{n}\right|^{p}\right)\left(\underset{t}{\operatorname{ess} \sup } \int\left(\left(\bar{u}-k_{n}\right)_{n} \bar{\zeta}_{n}\right)^{p}\right)^{\frac{p}{N}}
$$

Then

$$
\iint_{\bar{Q}_{n+1}}\left(\bar{u}-k_{n}\right)_{-}^{p} \lesssim \iint_{\bar{Q}_{n}}\left(\bar{u}-k_{n}\right)_{-}^{p} \zeta^{p} \leq\left|\bar{A}_{n}\right|^{\frac{p}{N+p}+1}\left(\frac{2^{n p} k_{p}}{\rho_{p}}+\frac{k^{p} 2^{n p}}{\theta \rho^{p}}\right) .
$$

In the set $\bar{u}>k_{n+1}$,

$$
\left(\bar{u}-k_{n}\right)_{-}=k_{n}-\bar{u} \geq k_{n}-k_{n+1}=\frac{k}{2^{n+1}} .
$$

Thus, by Chebyshev,

$$
\left(\frac{k}{2^{n+1}}\right)^{p}\left|\bar{Q}_{n+1} \cap\left\{\bar{u} \leq k_{n+1}\right\}\right| \leq \frac{k^{p} 2^{n p}}{\theta \rho^{p}}\left|\bar{A}_{n}\right|^{1+\frac{p}{N+p}} .
$$

Thus

$$
\left|\bar{A}_{n+1}\right| \leq \frac{2^{2 n p}}{\theta \rho^{p}}\left|\bar{A}_{n}\right|^{1+\frac{p}{N+p}} .
$$

Dividing by $\left|\bar{Q}_{n}\right|$, and recalling that $\rho^{p} \simeq\left|\bar{Q}_{n}\right|^{\frac{p}{N+p}}$ etc.,

$$
\frac{\left|\bar{A}_{n+1}\right|}{\left|\bar{Q}_{n+1}\right|} \leq C 2^{2 n p}\left(\frac{\left|\bar{A}_{n}\right|}{\left|\bar{Q}_{n}\right|}\right)^{1+\frac{p}{N+p}}
$$

Scaling back to t,

$$
\frac{\left|A_{n+1}\right|}{\left|Q_{n+1}\right|} \leq C 2^{2 n p}\left(\frac{\left|A_{n}\right|}{\left|Q_{n}\right|}\right)^{1+\frac{p}{N+p}}
$$

We now use the following convergence lemma: If $\left\{Y_{n}\right\}$ satisfies $Y_{n+1} \leq C b^{n} Y_{n}^{1+\alpha}$ and $Y_{0} \leq$ $C^{-1 / \alpha} b^{-1 / \alpha^{2}}$, then $Y_{n} \rightarrow 0$ as $n \rightarrow \infty$. Now the proposition follows by taking

$$
\nu_{0}=C^{-\frac{N+p}{p}}\left(2^{2 p}\right)^{-\left(\frac{N+p}{p}\right)^{2}},
$$

making the iteration, and noting that at the end $\left|A_{\infty}\right|=0$, where $A_{\infty}=Q_{\infty} \cap\left\{u<k_{\infty}\right\}=$ $Q_{k, \rho} \cap\left\{u<\frac{k}{2}\right\}$.

For a later step, we need the following variant of Proposition 4.1: If

$$
\left|\left\{(x, t) \in Q_{k, 2 \rho}(\theta): u(x, t)<k\right\}\right|<\frac{\nu_{0}}{\theta}\left|Q_{k, 2 \rho}(\theta)\right|
$$

and

$$
u\left(x,-T_{k, 2 \rho}(\theta)\right) \geq k
$$

then

$$
\underset{Q_{k, p}(\theta)}{\operatorname{ess} \inf } u \geq k / 2
$$

The idea is now to choose ζ that does not depend on time.
TO BE CONTINUED.

[^0]: Notes taken by Sung-Jin Oh (sjoh@kias.re.kr).

