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0. Statement of the Results

Let D:C1�M;S� ! C1�M;S� denote a compatible Dirac operator acting on sec-
tions of a bundle of Clifford modules S over a closed manifold M. Assume that
we have a decomposition of M as M1 [M2, where M1 and M2 are compact man-
ifolds with boundary such that

M �M1 [M2; M1 \M2 � Y � @M1 � @M2 : �0:1�
The z-determinant of the operator D is given by the formula

detzD � e
ip
2 �zD2 �0�ÿZD�0��eÿ

1
2z
0
D2 �0� �0:2�

(see [17]). The value of the function zD2�s� at s � 0 is a local invariant in the sense that
it is given by a formula zD2�0� � RM a�x�dx;where a�x� is a density determined at x by
the coef¢cients of the operator D at the point x (see for instance [6]). This is the
reason why the index of an elliptic differential operator, which can be viewed as
the difference of the values of two different z-functions determined by the operator,
has a nice decomposition corresponding to the decomposition of the manifold.

Another contribution to the phase of detzD is the eta-invariant ZD�0�. This is not a
local invariant (see [2]), hence at ¢rst sight it is dif¢cult to expect a decomposition
formula. It is therefore rather surprising that such a formula actually exists.

In the following, we concentrate on the odd-dimensional case (dim M � 2k� 1).
We further assume that M and the operator D have product structures in a
neighborhood of the boundary Y . More precisely, we assume that there is a bicollar
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neighborhood N � �ÿ1; 1� � Y of Y in M such that both the Riemannian structure
on M and the Hermitian structure on S are products when restricted to N. This
implies that D has the following form when restricted to the submanifold N

D � G�@u � B�: �0:3�
Here u denotes a normal variable,G : SjY ! SjY is a bundle automorphism and B is
a corresponding Dirac operator on Y . Moreover, G and B do not depend on u and
they satisfy

G� � ÿG; G2 � ÿId; B � B� and GB � ÿBG �0:4�
The operator B has a discrete spectrum with in¢nitely many positive and in¢nitely
many negative eigenvalues. In the following we assume that dim ker B � f0g. This
simpli¢es the exposition and allows us to avoid a discussion of technicalities.
Let P> denote the spectral projection onto the subspace spanned by the
eigensections of B corresponding to the positive eigenvalues. Then P> is an elliptic
boundary condition for D2 � DjM2 (see [1]; see [3] for an exposition of the theory
of elliptic boundary problems for Dirac operators). In fact, any orthogonal
projection satisfying

ÿGPG � Idÿ P and P ÿP> is a smoothing operator �0:5�
is a self-adjoint elliptic boundary condition for the operator D2. This means that the
associated operator

�D2�P : dom �D2�P ! L2�M2;SjM2�
with dom �D2�P � fs 2 H1�M2;SjM2�;P�sjY � � 0g is a self-adjoint Fredholm
operator with ker��D2�P� � C1�M2;SjM2� and discrete spectrum (see [16]). We
denote by Gr�1�D2� the space of P satisfying (5).

The existence of the meromorphic extensions of the functions Z�D2�P �s�, z�D2�2P �s� to
the whole complex plane and their nice behaviour in a neighborhood of s � 0
was proved by the second author in late 1994 and announced in the AMS meeting
in San Francisco in January 1995. The reader can ¢nd the full exposition in [21].
The results of [21] were later generalized by Gerd Grubb [7].

Let us observe that Idÿ P 2 Gr�1�D1� if P is an element of Gr�1�D2�. Let
Z�G�@u � B�;P1;P2��s� denote the Z-function of the operator G�@u � B� on
�0; 1� � Y subject to the boundary condition P2 at u � 0 and Id ÿ P1 at u � 1.
We have the following pasting formula proved in [21]

ZD�0� � Z�D1�IdÿP1
�0� � Z�D2�P2 �0� � Z�G�@u � B�;P1;P2��0� mod Z: �0:6�

A similar formula for ¢nite-dimensional perturbations of P> has been discussed
by several authors (see [19, 20] and references therein).

The proof of (0.6) offered by the second author goes as follows.
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First, we replace the bicollar N by NR � �ÿR;R� � Y . Now ZD�0�, which can be
expressed via a suitable heat-kernel formula, splits into contributions coming from
each side, plus the cylinder contribution and error terms. The error terms disappear
as R!1.

Second, though ZD�0� is not local, its variation (for instance with respect to the
parameter R) is local and therefore the value of the contributions do not vary with
R. This fact and the explicit calculation of the invariant Z�G�@u�
B�;P1;P2��0� mod Z proves the formula (0.6).

In this Letter we discuss the corresponding splitting formula for the modulus of the
determinant of the Dirac operator D

detzD2 � eÿ
d
ds�zD2 �s��js�0 :

We follow the strategy employed above. Step number one works as before. We split

z0D2
R
�0� �

Z 1
0

1
t

Tr eÿtD
2
Rdt �0:7�

into contributions coming from different submanifolds plus cylinder contributions
and the error terms. Here DR denotes the operator D on the manifold MR equal
to the manifold M with N replaced by NR.

Step two, however, cannot be repeated in this situation. The variation of the right
side of (0.7) is not local and in fact it is not dif¢cult to see that detzD2

R blows up as
R!1. We therefore study the ratio of the determinants

detzD2
R

detz�D1;R�2IdÿP>
detz�D2;R�2P>

: �0:8�

We use Duhamel's Principle as in [5] (see also [8]) in order to show that the
expression in (8) is convergent as R!1. The main result of this announcement
is the following Theorem.

THEOREM 0.1. Assume that kerB � f0g and that the operator DR is an invertible
operator for R suf¢ciently large. Then the following formula holds:

lim
R!1

detzD2
R

�detz �D1;R�2IdÿP>
��detz �D2;R�2P>

� � 2ÿzB2 �0�: �0:9�

Remark.Related results were discussed by Piazza (see [10, 11]) in the context of the
b-calculus introduced by Melrose. Piazza proved a formula that relates the numer-
ator of the left side in (0.9) to the product of the regularized determinants on
two manifolds with asymptotically cylindrical ends and the determinant of the Dirac
operator on the hypersurface (see (4.11) in [10]). The authors hope to reprove
Piazza's result on the splitting of determinant line bundles for the families of Dirac
operators and on the additivity of the curvature of the determinant line bundle
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without using b-calculus. We also hope to study the relation with the splitting for-
mulas presented in [12].

1. Heat Kernels, Relative z-Determinant and Decomposition Formulas

The Relative z-determinant, as discussed for instance in [15], is an important ingredi-
ent in our approach to the pasting formulas. The operatorD on M is in this Section
understood as a pair fD1;D2g, with Di � DjMi and acting on (the pair of) sections
�s1; s2�, where si 2 C1�Mi;S� satisfy the transmission condition s1jY � s2jY : The
corresponding Atiyah^Patodi^Singer problem is the couple fD1;D2g acting on
�s1; s2� , which now satis¢es

�IdÿP<��s1jY � � 0; P>�s2jY � � 0:

It was explained in [4] that there is a natural interpolation between the
Atiyah^Patodi^Singer condition and the transmission condition given by the for-
mula

sin rP>�s1jY � � cos rP>�s2jY �; cos rP<�s1jY � � sin rP<�s2jY �; �1:1�
where 0W rW p=4.

We follow [4] and combine (1.1) into a single boundary condition. To do that we
consider the manifold X �M n Y . This is a manifold with boundary Z � Y t Y
. The Dirac operator D in the collar W � �0; 1� � Z can be represented as

~D � G�@u � B� 0
0 G�ÿ@u � B�

� �
� G 0

0 ÿG
� �

@u �
B 0
0 ÿB

� �� �
� ~G�@u � ~B�:

To study the cylinder contribution we consider the operator ~D acting on
C1��0;1� � Z; ~S� , where ~S denotes a corresponding bundle of Clifford modules
over �0; 1� � Z extended to the whole unbounded cylinder (we refer to [4] for more
details). The bundle ~S is a direct sum S � S . The condition (1.1) now corresponds
to the boundary condition

cos rP>� ~B��sjY � � sin r ~IP<� ~B��sjY �; �1:2�
where ~I : ~S! ~S is the involution switching the ¢rst and second summand in S � S.
Next let us observe that the condition (1.2) is determined by the projection

Pr � cos2 rP>� ~B� � sin2 rP<� ~B� ÿ 1
2

sin�2r� ~I : �1:3�

This led Bru« ning and Lesch to study a special class of elliptic self-adjoint conditions
in order to obtain a general pasting law for the Z-invariant. We refer to the beautiful
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paper [4] for a full exposition. Here we only present the calculations made in the
special simple case of a Dirac operator on an odd-dimensional manifold, which
we use in order to study adiabatic pasting of the z-determinants. The key for us
(and for Bru« ning and Lesch as well) is that we can explicitly construct the heat kernel
of the corresponding operator exp�ÿt ~D2

Pr
�. More generally we consider the boundary

condition P which satis¢es the following conditions (ful¢lled by Pr in (1.3))

ÿ ~GP ~G � Idÿ P; �P; ~B
2� � 0: �1:4�

We do not require that P commutes with ~B, however we assume that

P ~BP � bj ~BjP; �1:5�
for some constant b > ÿ1. For instance, in the case of Pr de¢ned in (1.3) we have

Pr ~BPr � cos�2r�j ~BjPr: �1:6�

Now assume that we have given a boundary condition P which satis¢es (1.4) and
(1.5). Let us consider the operator ~D on the cylinder �0;1� � Z . Then
EP�t; u; v�, the kernel of the operator exp�ÿt ~D2

P�, is given by the formula (see Section
4 of [4])

EP�t; u; v� � 1�������
4pt
p �eÿ�uÿv�

2

4t � �Idÿ 2P�eÿ�u�v�
2

4t �eÿt ~B
2

�

� 1�����
pt
p �Idÿ P�

Z 1
0

eÿ
�u�v�z�2

4t ~B
?�P�ez ~B

?�P�ÿt ~B
2

dz;

where

~B
?�P� � �Idÿ P� ~B�Idÿ P�:

It follows from (1.7) that the z-function of the operator ~D2
P is not well-de¢ned

because the operator eÿt ~D2
P is not of trace class. However, the difference

eÿt
~D2
P1 ÿ eÿt

~D2
P2 , where P1 and P2 are Bru« ning^Lesch conditions, has a well-de¢ned

trace and we can study the relative z-function

z� ~D2
;P1;P2��s� � 1

G�s�
Z 1
0

tsÿ1Tr�eÿt ~D2
P1 ÿ eÿt

~D2
P2 �dt: �1:8�

This function has a nice meromorphic extension to the whole complex plane, regular
in a neighborhood of s � 0, and we de¢ne a relative z-determinant in the usual way

ÿ ln det z� ~D2
;P1;P2� � d

ds
�z� ~D2

;P1;P2��s��js�0: �1:9�

Now we introduce the functions

er f c�q� � 2���
p
p

Z 1
q

eÿx
2
dx;
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and

F b�w� �
Z 1
0

erfc�v�weÿ2bvwÿw
2
dv:

Let MF b�z� be the Mellin transform of F b�w�. We have

MF b�z� � 1
4b
�1ÿ �1ÿ b2�ÿz

2G
z
2

� �
� 2���

p
p �1ÿ b2�ÿz

2G
z� 1
2

� �Z b

0
�1ÿ t2�z2ÿ1dt

� �
;

for 0 < jbj < 1 and

MF 0�z� � 1
2
���
p
p G

z� 1
2

� �
; MF 1�z� � 1

4
G

z
2

� �
ÿ 2
z
���
p
p G

z� 1
2

� �� �
:

The properties of MF b�z� are summarized in Lemma 3.3 in [4]. The most important
point for us is the fact that MF b�z� is meromorphic in C with simple poles at
the points zk � ÿk for k � 1; 2; 3; . . . . It follows that those functions are
holomorphic in a neighborhood of s � 0 . The straightforward computation shows
that the relative z-function is given by

z� ~D2
;P1;P2��s� � 2

G�s� zB2�s��b2MF b2�2s� ÿ b1MF b1 �2s��; �1:10�

where bi is a constant b from (1.5) corresponding to the projection Pi. The relative
z-function is a well-de¢ned holomorphic function in a neighborhood of s � 0 .
We now differentiate (1.10) at s � 0 in order to obtain the logarithm of the relative
determinant. Let us recall that

1
G�s� �

s
1� sg� s2h�s�

in a neighborhood of s � 0 , where denotes the Euler constant and h�s� is
holomorphic near s � 0 . We obtain the following Proposition giving an explicit
formula for the relative z-determinant of the Bru« ning^Lesch elliptic boundary prob-
lems

PROPOSITION 1.1. The logarithm of the relative z-determinant is equal to

ÿ d

ds
�z� ~D2

;P1;P2��s��js�0 � 2zB2 �0��b1MF b1 �0� ÿ b2MF b2 �0��: �1:11�

It is not dif¢cult to ¢nd the values of MF b�0� we are interested in

MF 0�0� � 1
2
; MF 1�0� � ln 2

2
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and

MF b�0� � 1
2b

ln�1� b� for 0 < jbj < 1:

The smooth transmission condition corresponds to b1 � cos p=2 � 0 and the
Atiyah^Patodi^Singer condition corresponds to b2 � cos 0 � 1 due to (1.6), which
gives the main technical result of the Note.

THEOREM 1.2. Let fPrg0W 1 denote a 1-parameter family of boundary conditions
de¢ned by (1.3). The following formula gives the relative z-determinant of P1

and P0

d

ds
�z� ~D2

;P1;P2��s��js�0 � ln 2�zB2�0� : �1:12�

We employ Duhamel's Principle in order to deduce Theorem 0.1 from Theorem
1.2. The method, based on ideas of Singer [18], was worked out in [5] (see also [8])
and is now fairly standard. The key here is that the kernel EP�t; �u;w�; �v; z�� satis¢es
the estimate

kEP�t; �u;w�; �v; z��kW c1tÿNeÿc2teÿc3
�uÿv�2

t �1:13�
for some natural N and positive constants c1; c2; c3 . Once the estimate (1.13) is
established there is no problem with following [5]. Details can be found in [9].

2. Concluding Remarks

We want to point out that Atiyah^Patodi^Singer conditions can be replaced by ellip-
tic boundary conditions from the Grassmannian Gr�1�D�. Let us discuss the operator
D on the cylinder �0;1� � Y and the boundary condition P 2 Gr�1�D�. Once again
the z-function of the operator D2

P is not well-de¢ned. However, if we consider
two conditions P1;P2 2 Gr�1�D�, then the relative z-function is well-de¢ned and
we may consider the relative z-determinant

ÿ ln det z�D2;P1;P2� � d

ds
�z�D2;P1;P2��s��js�0:

Moreover, it was observed in [15], that we can use the results of [14] (see also [13]) to
express detz�D2;P1;P2� as the Fredholm determinant of an elliptic pseudo-
differential operator of the form Id plus smoothing operator on Y . We denote this
determinant by detCc�D;P1;P2�. The corresponding pasting formula which involves
the boundary condition Idÿ P1 on @M1 and P2 on @M2 contains an additional factor
detCc�D;P1;P2�.

To end this Letter let us discuss one more variant of the adiabatic pasting formula.
The manifoldM is odd-dimensional, hence the spinor bundle splits on the boundary
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as SjY � S� � Sÿ. Let R� denote a boundary condition R��sjY � � 0: To be more
precise, let us point out here that spinors of positive chirality (sections of S�)
on Y � @M2 are spinors of negative chirality on Y � @M1. We also denote by
D� the operator D subject to the boundary condition R� . The operators D� are
not self-adjoint and in fact we have D�� � D�. The following results follow easily
from [8], where the corresponding formula for the splitting of the analytic torsion
was discussed.

THEOREM 2.1.

lim
R!1

detzDR
2

detz�D1;RÿD1;R��� detz�D2;RÿD2;R��
� 1: �2:1�

Once again we refer to [9] for the proof.
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sërie, (1985), 323^340.

18. Singer, I. M.: The Z-invariant and the index, In: S.-T. Yau (ed.),Mathematical Aspects of
String Theory, World Scienti¢c, Singapore, 1988, pp. 239^258.

19. Wojciechowski, K. P.: The additivity of the Z-invariant: The case of an invertible
tangential operator, Houston J. Math. 20 (1994), 603^621.

20. Wojciechowski, K. P.: The additivity of the Z-invariant. The case of a singular tangential
operator, Comm. Math. Phys. 169 (1995), 315^327.

21. Wojciechowski, K. P.: The z-determinant and the additivity of the Z-invariant on the
smooth, self-adjoint Grassmannian, Comm. Math. Phys. 201 (1999), 423^444.

RELATIVE z-DETERMINANT AND ADIABATIC DECOMPOSITION 337


