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Abstract. In this paper we compute half density volumes of the irreducible SU(2)-
representation spaces for Seifert fibred manifolds and graph manifolds. These rep-
resentation spaces are not discrete so that the half density derived from the Rei-
demeister torsion is used as a measure. As an application of our result we get the
exact value of the Jeffrey-Weitsman-Witten invariant of a Seifert fibred manifold
with non-discrete irreducible SU(2)-representation space.

§1 Introduction

In this paper we compute half density volumes of the irreducible SU(2)-rep-
resentation spaces of Seifert fibred manifolds and graph manifolds. The half density
over the irreducible SU(2)-representation space of a 3-manifold comes from the
Reidemeister torsion for Ad-SU(2)-representation. More precisely the determinant
term of the first homology of the Reidemeister torsion gives the half density of
the irreducible representation space. This is because the tangent space of the
irreducible representation space can be identified with the first cohomology of the
twisted cochain complex.

The motivation of this paper is given by two sources. The first is the E.Witten’s
method to compute the symplectic volume of the irreducible SU(2)-representation
space of a Riemann surface. In [W2] Witten suggested an useful method to com-
pute the symplectic volume of this space using the Reidemeister torsion and the
character theory of the Lie group SU(2). The second is the invariant defined
by L.C.Jeffrey and J.Weitsman in [J,W1]. This invariant is motivated by the
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asymptotic expansion of the Witten invariant of a 3-manifold. They define this in-
variant using the Reidemeister torsion as a half density measure of the irreducible
SU(2)-representation space. Hence to compute this invariant we must compute the
Reidemeister torsion completely including the determinant term of the homology
which is the half density measure of the SU(2)-representation space. In this paper
we call this invariant as the Jeffrey-Weitsman-Witten invariant. From the above
motivations we could consider naturally that this invariant might be computed by
the method of [W2]. The examples to which we apply the method of Witten are
Seifert fibred manifolds and graph manifolds. This is because these manifolds are
made from the trivial circle bundle over the Riemann surfaces by twisting finite
fibers. So the method of Witten is applicable with some modification.

To compute the half density derived from the Reidemeister torsion, we must
compute both the scalar part and the determinant part of the Reidemeister tor-
sion. The method to compute the scalar part comes from [F]. For Seifert fibred
manifolds and graph manifolds this value gives the weight of the half density to
each connected component of the irreducible SU(2)-representation space. So we
combine two methods of [F] and [W2] to compute the half density volumes of
the irreducible SU(2)-representation spaces for Seifert fibred manifolds and graph
manifolds.

Our computing method is ‘to cut and to paste’ with a topological view point.
This can be comparable to the method of P.Kirk and E.Klassen to compute the
Chern-Simons invariants for 3-manifolds [K,K]. We decompose the given manifolds
into simple pieces which we can deal easily and then we glue the data of the
decomposed pieces and investigate the gluing maps. The data of the pieces and
the gluing maps gives the result that we want to get.

Now we explain how this paper is organized. In the section 2 we study basic
examples which are the building blocks of Seifert fibred manifolds and graph man-
ifolds. We study the Reidemeister torsions and the SU(2)-representation spaces
of these basic examples. In the section 3 we compute the scalar part of the Rei-
demeister torsions of Seifert fibred manifolds and graph manifolds for Ad-SU(2)-
representations. The computing method of the section 3 comes from [F]. This
method is exactly ‘to cut and to paste’ so that we can apply the result of the
section 2. In the section 4 we integrate the determinant term of the first homology
part of the Reidemeister torsion over the irreducible SU(2)-representation space.
The integration process of this section is also ‘to cut and to paste’. We get the half
density volume of the irreducible SU(2)-representation space by investigation of
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the pasting process for the half densities of the representation spaces of the decom-
posed pieces. In the section 5 we apply the result that we get in the section 4 to
compute the Jeffrey-Weitsman-Witten invariant for Seifert fibred manifold whose
irreducible SU(2)-representation space is non-discrete. This gives the exact value
of the Jeffrey-Weitsman-Witten invariant for a Seifert fibred manifold with the
non-discrete SU(2)-representation space combined with the result of D.R.Auckly
for the Chern-Simons invariant for this manifold.

§2 Basic Examples

In this section we study some basic examples which we will use in section 3 and
4. We study the Reidemeister torsions and SU(2)-representation spaces of S1, T 2

and pants P . These examples are the building blocks of some 3-manifolds which
we will deal later. From now on R-torsion means the Reidemeister torsion always.
For the definition and the basic property of the R-torsion, see [F].

Our first example is the circle S1. Every SU(2)-representation of π1(S1) is
reducible since π1(S1) is abelian. Hence the representation is determined by the
holonomy parameter u so that the SU(2)-representation ρu has the following form
up to conjugation

ρu(1) =
(

e2πiu 0
0 e−2πiu

)

for the generator 1 ∈ π1(S1) = Z. Hence the SU(2)-representation space for π1(S1)
is S1 which can be identified with the maximal torus T 1 of SU(2). We denote
this space by L. This representation space will be used importantly later. The R-
torsion of S1 for Ad-SU(2)-representation is denoted by τ(S1, Ad(ρu)). R-torsion
is given by the torsion of the following chain complex C.(S1, Ad(ρu)):

0 → C1(R1)⊗π su(2) → C0(R1)⊗π su(2) → 0

where R1 is the universal covering space of S1 and the tensor product is taken
over the π = π1(S1). Then the homology of C.(S1, Ad(ρu)) is

H0(S1, su(2)ρ) = R[e⊗ v],

H1(S1, su(2)ρ) = R[x⊗ v]
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where R is the real number field, e, x are the 0,1-cells of S1 respectively and v is
the Ad(ρ)-invariant vector in su(2). Then we have that

(2.1) τ(S1, Ad(ρu)) = 4 sin2(2πu)D−1
H∗(S1) ∈ detH∗(S1, su(2)ρ)−1

where DH∗(S1) = (e⊗v)⊗ (x⊗v)−1 and detH∗(S1, su(2)ρ) = detH0(S1, su(2)ρ)⊗
detH1(S1, su(2)ρ)−1. For the notation about the determinant line, we follow the
notation of [F].

The next example is the torus T 2. Since π1(T 2) is also abelian, every SU(2)-
representation of π1(T 2) is reducible with a following form

ρα,β((1, 0)) =
(

e2πiα 0
0 e−2πiα

)
, ρα,β((0, 1)) =

(
e2πiβ 0

0 e−2πiβ

)

for a basis (1, 0), (0, 1) of π1(T 2). We know that SU(2)-representation space
R(T 2, SU(2)) is an object which is called as the ‘pillow case’. The R-torsion
τ(T 2, Ad(ρα,β)) is the torsion of the following chain complex C.(T 2, Ad(ρα,β)):

0 → C2(R2)⊗π su(2) → C1(R2)⊗π su(2) → C0(R2)⊗π su(2) → 0.

Then we have
H0(T 2, su(2)ρ) = R[e⊗ v],

H1(T 2, su(2)ρ) = R[x⊗ v, y ⊗ v],

H2(T 2, su(2)ρ) = R[x ∪ y ⊗ v]

where R is the real number field, v is the Ad(ρ)-invariant vector in su(2) and
e, x, y, x ∪ y are the 0,1,2 cells of T 2 respectively. From the Poincare duality,

(2.2)
τ(T 2, Ad(ρ)) = (e⊗ v)−1 ⊗ (x⊗ v ∧ y ⊗ v)⊗ (x ∪ y ⊗ v)−1

= D−1
H∗(T 2) ∈ detH∗(T 2, su(2)ρ)−1

where detH∗(T 2, su(2)ρ) = ⊗2
i=0Hi(T 2, su(2)ρ)(−1)i

.
Our third example is the pants P . Contrary to above examples with abelian fun-

damental groups, π1(P ) is the free group with two generators. Hence there are irre-
ducible SU(2)-representations of π1(P ). We can see that the SU(2)-representation
space R(P, SU(2)) is the quotient space of SU(2) × SU(2) by SO(3) since P is
homotopy equivalent to the figure eight simplex P ′. We denote the irreducible
SU(2)-representation space of π1(P ) by R(P, SU(2))− ⊂ R(P, SU(2)). Since P is
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homotopy equivalent to P ′, we consider a chain complex C.(P ′, Ad(ρ)) instead of
the chain complex C.(P,Ad(ρ)) for an irreducible SU(2)-representation ρ

0 → C1(P̃ ′)⊗π su(2) → C0(P̃ ′)⊗π su(2) → 0

where P̃ ′ is the universal covering space of P ′. Then we have

H0(P, su(2)ρ) = H2(P, su(2)ρ) = 0,

H1(P, su(2)ρ) = R[x1 ⊗ v1, x2 ⊗ v2, x3 ⊗ v3]

where R is the real number field, xi’s are the three boundaries of P and vi’s are
the Ad(ρ(xi))- invariant vectors in su(2). The R-torsion τ(P, Ad(ρ)) is the scalar
multiple of

(2.3) (x1 ⊗ v1) ∧ (x2 ⊗ v2) ∧ (x3 ⊗ v3) ∈ detH∗(P, su(2)ρ)−1

where detH∗(P, su(2)ρ) = detH1(P, su(2)ρ) because the representation ρ is irre-
ducible.

In fact τ(P,Ad(ρ)) is a volume form of R(P, SU(2))−. Now we consider more
closely the volume form τ(P, Ad(ρ)). Let

σ : R(P, SU(2))− → L1 × L2 × L3

be the map induced by the restriction from P to ∂P = {x1, x2, x3} where Li is
the SU(2)-representation space for a circle xi defined by the same way as L for
S1. Recall that Li can be identified with the maximal torus T 1 of SU(2). By the
definition, σ takes the conjugacy class of an irreducible representation ρ to the
holonomies of ρ(x1), ρ(x2), ρ(x3). Since σ is injective map, there exists an object
on L1 ×L2 ×L3 whose pull back is the volume form τ(P,Ad(ρ)). We denote this
by σ∗τ(P, Ad(ρ)). Since we can identify Li with the maximal torus T 1, we have
that

σ∗τ(P, Ad(ρ)) = fν1ν2ν3

for some f ∈ L2(L1×L2×L3) where νi is a natural volume form on the maximal
torus T 1 with

∫
T 1 νi = 1. From now on V ol(G) is the volume of the compact Lie

group G. Then we have the following formula

(2.4) σ∗τ(P, Ad(ρ)) =
2

V ol(SU(2))2
∑
α

1
nα

3∏

i=1

χα(ρ(xi))ν1ν2ν3

where the above sum is taken over all the irreducible representations of SU(2),
nα is the dimension of the representation space of an irreducible representation α.
Note that the equality in (2.4) holds in L2-sense. The proof of (2.4) is given in
[W2].

If we assume that one boundary x3 of P has a fixed holonomy, we must modify
(2.4). The following formula for a boundary with the fixed holonomy is also used
in [W2] without the explicit derivation. So we derive it here. In the following
proposition we use the character theory of SU(2). For the detailed fact, see [B,tD].
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Proposition 2.5. If the trace of ρ(x3) is fixed so that tr(ρ(x3)) = 2 cos(θ) for
some fixed θ, then σ∗τ(P, Ad(ρ)) is

2V ol(S2)
V ol(SU(2))2

∑
α

1
nα

sin(nαθ)
sin(θ)

χα(ρ(x1))χα(ρ(x2))ν1ν2

where the above sum is taken over all the irreducible representations of SU(2) and
nα is the dimension of the representation space of an irreducible representation α.
V ol(S2) is the volume of S2 induced from a volume form of SU(2).

Proof. We can consider the set of conjugacy classes of representations satisfying
the given condition as the inverse image of the following map

p3 ◦ σ : R(P, SU(2))− → L1 × L2 × L3 → L3

for e(2πiθ) ∈ L3 where p3 is the natural projection. We denote this inverse image
by R(P, SU(2), θ)−. And let S2(θ) be the subset of SU(2) with fixed trace 2 cos(θ).
Then there exists the natural projection map p : SU(2)×S2(θ) → R(P, SU(2), θ)−

with a fiber SU(2)/Z2. As above we have a map

σ′ : R(P, SU(2), θ)− → L1 × L2

which sends [ρ] in R(P, SU(2), θ)− to the holonomies ρ(x1), ρ(x2).
We push τ(P, Ad(ρ)) by σ′ so that we get a volume form σ′∗τ(P, Ad(ρ)) on

L1×L2. Then this volume can be written by fν1ν2 for some f ∈ L2(L1×L2). To
find f exactly, we integrate the character χα of ρ(x1), ρ(x2) for an the irreducible
representation α of SU(2). This is because the set of characters {χα} for all the
irreducible representations of SU(2) is the uniformly dense subset of the continuous
function space of L1 × L2. So we have the following equalities;

Wα1,α2 =
∫

L1×L2

χα1(ρ(x1))χα2(ρ(x2))σ′∗τ(P, Ad(ρ))

=
2

V ol(SU(2))

∫

SU(2)×S2(θ)

p∗σ′∗(χα1(ρ(x1))χα2(ρ(x2)))dU2dg(θ)

=
2

V ol(SU(2))

∫

SU(2)×S2(θ)

χα1(g(θ)−1ρ(x2)−1)χα2(ρ(x2))dU2dg(θ)

= 2
δα1,α2

nα1

∫

S2(θ)

χα1(g(θ)−1)dg(θ)

= 2δα1,α2

χα1(g(θ)−1)
nα1

V ol(S2(θ)).
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So we have that

σ′∗τ(P,Ad(ρ)) =
2V ol(S2(θ))
V ol(SU(2))2

∑
α

1
nα

χα(g(θ)−1)χα(ρ(x1))χα(ρ(x2))ν1ν2.

On the other hand, χα(g(θ)−1) = sin(nαθ)
sin(θ) and V ol(S2(θ)) = V ol(S2). So we get

the formula in the proposition. ¤

§3 R-torsion of Seifert fibred manifolds and graph manifolds

In this section we compute the scalar part of the R-torsion of Seifert fibred
manifolds and graph manifolds for the Ad-SU(2)-representation. This quantity
gives the weight of the half density for each connected component of the irre-
ducible SU(2)-representation space of Seifert fibred manifold or graph manifold.
Our computing method in this section comes from [F].

First we consider the manifolds whose R-torsion we will compute. We denote
the Seifert fibred manifold with the Seifert invariant {g; (α1, β1), . . . , (αm, βm)} by
M = M(g; (α1, β1), . . . , (αm, βm)). We have that π1(M) is

{ai, bi, qj , h : [h, ai] = [h, bi] = [h, qj ] = 1, q
αj

j hβj = 1,

m∏

j=1

qj

g∏

i=1

[ai, bi] = 1}.

We assume that g = 2 from now on. The irreducible SU(2)-representation of
π1(M) is well known. See [A],[F,S],[K,K] for the irreducible SU(2)-representation
of π1(M). We review some facts that we need.

Since h is central in π1(M), an irreducible representation ρ takes h to ±1 in
SU(2). So the trace of ρ(qj) is 2 cos(πnj

αj
). The set of numbers {n1, . . . , nm}

which are called as ‘rotation numbers’ determines a connected component of the
irreducible SU(2)-representation space R(M,SU(2))−. The rotation number nj

is even(odd) if βj is even(odd).
Next we consider a graph manifold which is made from two Seifert fibred mani-

folds M1,M2 which have a torus boundary each. We review some materials about
graph manifolds of [K,K]. M1 is given by deleting a solid torus D2 × S1 from M

where a disk D2 lies in the base surface Σg and a circle S1 is the fiber component
of the Seifert fibration. Then π1(M1) is

π1(M1) = {ai, bi, qj , h : [h, ai] = [h, bi] = [h, qj ] = 1, q
αj

j hβj = 1}.
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The other manifold M2 can be constructed by the same way from the another
Seifert manifold M(g′; (α′1, β

′
1), . . . , (α

′
n, β′n)). Then π1(M2) is

π1(M2) = {a′i′ , b′i′ , rj′ , k : [k, a′i′ ] = [k, b′i′ ] = [k, rj′ ] = 1, r
α′

j′
j′ kβ′

j′ = 1}.

Since ∂M1 = ∂M2 = T 2, we can glue two manifolds M1,M2 by an automor-
phism φ of T 2. We assume that the meridian, the longitude pairs of ∂M1, ∂M2 is
given by

{µ1, λ1} = {
m∏

j=1

qj

g∏

i=1

[ai, bi], h},

{µ2, λ2} = {
n∏

j′=1

rj′

g′∏

i′=1

[a′i′ , b
′
i′ ], k}.

Define φ : ∂M1 → ∂M2 by

(3.1)
φ(µ1) = αµ2 + βλ2,

φ(λ1) = γµ2 + δλ2

where αδ − βγ = −1. Then we have a glued manifold N = M1 ∪φ M2 and
we call this manifold as graph manifold. Later we need distinguish two cases
when γ = 0,γ 6= 0. When we need clarify the dependence of γ, we denote graph
manifold by Nγ to express the dependence of γ. The natural question is how we
glue the irreducible SU(2)-representations ρ1, ρ2 of the manifolds M1, M2 to get
an irreducible SU(2)-representation of graph manifold N . In fact, there are a
condition of gluing of representations. Since π1(∂Mi) is abelian, we have

ρ1(µ1) =
(

e2πiφ1 0
0 e−2πiφ1

)
, ρ1(λ1) =

(
e2πiψ1 0

0 e−2πiψ1

)
,

ρ2(µ2) =
(

e2πiφ2 0
0 e−2πiφ2

)
, ρ2(λ2) =

(
e2πiψ2 0

0 e−2πiψ2

)
.

We can see that ψ1, ψ2 ∈ Z[ 12 ] since h, k are central. Then the condition that a
glued representation ρ exists is that

(3.2) φ1 = αφ2 + βψ2, ψ1 = γφ2 + δψ2.

This condition comes from (3.1).
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To compute the R-torsions of Seifert fibred manifolds and graph manifolds we

decompose these manifolds into simple pieces which we considered in section 2.

For the Seifert fibred manifold M(g; (α1, β1), . . . , (αm, βm)), we can decompose M

into

m-solid tori Aj = D2
j × S1 and (2(g − 1) + m)-copies of Xi = Pi × S1

where a disk D2
j lies the base surface Σg, S1 is the fiber component and Pi’s are

the pairs of pants. The decomposition is the inverse process of construction of M

and the pants decomposition of Σg −∪m
j=1D

2
j . We can assume that each Xi meets

only one Aj or does not meet Aj by the isotopic moves of the exceptional fibers.

For graph manifolds N = M1 ∪φ M2, we decompose N into M1, M2 and then

apply the same process to Mi as above. So we have

m-solid tori Aj , n-solid tori Bj′ ,

and (2g + m− 1)-copies of Xi, (2g′ + n− 1)-copies of Yi′

where Xi, Yi′ are homeomorphic to P × S1 and

M1 = ∪2g+m−1
i=1 Xi ∪m

j=1 Aj and M2 = ∪2g′+n−1
i′=1 Yi′ ∪n

j′=1 Bj′ .

We can assume that X1 meets M2, Y1 meets M1 and that Xi (Yi′) meets only one

Aj (Bj′) or does not meet Aj (Bj′) as above.

We consider SU(2)-representations of π1(M) or π1(N) such that the induced

representations by restriction to each pieces Xi or Xi, Yi′ are irreducible. We call

such a representation as totally irreducible representation for M or N with respect

to above fixed decomposition.

As the previous section we denote the highest wedge product of a basis of

Hi(X, su(2)ρX
) by DHi(X,su(2)ρX

) and ⊗d
i=0(DHi(X,su(2)ρX

))(−1)i

by DH∗(X) for a

manifold X of d-dimension. We denote the dimension of Hi(X, su(2)ρX
) by hi(X)

in the following proposition.
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Proposition 3.3. Let ρM , ρNγ
be irreducible SU(2)-representations of π1(M),

π1(Nγ) with rotation numbers {nj}, {nj , n
′
j′}. We assume that ρM ,ρNγ

are totally
irreducible for M , Nγ . The R-torsion of the Seifert fibred manifold M(g; (αj , βj))
and the graph manifold Nγ = M1(g; (αj , βj)) ∪φγ

M2(g′; (α′j′ , β
′
j′)) is given by

τ(M, Ad(ρM )) = 4m
m∏

j=1

sin2(πnjβ∗j
αj

)

αj
D−1

H∗(M) ∈ detH∗(M, su(2)ρM
)−1,

τ(Nγ , Ad(ρNγ
)) = 4m+nf(γ)

m∏

j=1

sin2(πnjβ∗j
αj

)

αj

n∏

j′=1

sin2(
πn′

j′β
′
j
∗

α′
j′

)

α′j′
D−1

H∗(Nγ)

∈ detH∗(Nγ , su(2)ρN )−1

where
βjβ

∗
j = 1 mod αj , β′j′β

′
j′
∗ = 1 mod α′j′ ,

f(γ) =

{
1 if γ = 0
1
|γ| if γ 6= 0

.

h1(M) = h2(M) is 6(g−1)+2m and h1(Nγ) = h2(Nγ) is 6(g+g′−1)+2(m+n),
6(g + g′) + 2(m + n)− 7 if γ = 0, γ 6= 0.

Before we prove the proposition, we remark some facts. We can see that
the R-torsion depends on the gluing torus automorphisms of the decomposed
pieces by (αj , βj), (α′j′ , β

′
j′) and the representation ρM ,ρN by rotation numbers

(nj), (nj , n
′
j′). Since Ad-SU(2)-representation is unimodular, the highest wedge

product of DHi(M,su(2)M ) does not depend on the basis change of Ci(M̃) when a ba-
sis of su(2) is fixed. In the above proposition we have that D−1

H∗(·) = DH1(·,su(2))⊗
D−1

H2(·,su(2)) since we assume that the representations are irreducible.

Proof. We shall compute the R-torsion of graph manifold Nγ for the totally irre-
ducible SU(2)-representation with respect to the given decomposition. For Seifert
fibred manifolds we get the result in the process of computation of graph manifold.

First we define some tori from the decomposed pieces such that

Tj = ∂Aj , T ′j′ = ∂Bj′ ,

Ti1i2 = Xi1 ∩Xi2 , T ′i′1i′2
= Yi′1 ∩ Yi′2 , T = M1 ∩M2.

We have a following formula about the R-torsions of each pieces and the given
manifold Nγ such that
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(3.4)
τ(Nγ) = ⊗{i,i′,j,j′}τ(Xi) · τ(Aj) · τ(Yi′) · τ(Bj′)

(⊗{i,i′,j,j′}τ(Tj) · τ(T ′j′) · τ(Ti1i2) · τ(T ′i′1i′2
) · τ(T ))−1 ⊗∞r=1 τ(Er

. )−1

where · denotes the tensor product and the last term τ(Er
. ) is the torsion of

the spectral sequence of the generalized Meyer-Vietoris sequence. For the proof
of (3.4), see [F]. In the above formula we omit the representation notation for
convenience.

Since Aj , Bj′ are homotopy equivalent to S1, we can consider S1 instead of
Aj , Bj′ for the R-torsion. Let e be 0-cell of each pieces, aj , bj′ be 1-cells of
S1’s which are homotopy equivalent to Aj , Bj′ . Then we have that DH∗(Aj) =
e ⊗ a−1

j and DH∗(Bj′ ) = e ⊗ b−1
j′ . We omit the notation of invariant vectors of

Ad(ρ)(aj), Ad(ρ)(bj′) for convenience. Then we have following formulas from the
construction of Nγ and (2.1)

(3.5)

τ(Aj) = 4 sin2(
πnjγj

αj
)D−1

H∗(Aj)

τ(Bj′) = 4 sin2(
πn′j′γ

′
j′

α′j′
)D−1

H∗(Bj′ )

where βjγj = 1 mod αj , β′j′γ
′
j′ = 1 mod α′j′ and γj , γ

′
j′ are given by the twists of

the exceptional fibers.
For Xi, Yi′ which are homeomorphic to Pi × S1, P ′i′ × S1, we can see that the

S1-component has the trivial holonomy since the given representations take h, k

into ±1 ∈ SU(2). Hence we have that

(3.6)

τ(Xi) = (x1
i ⊗ x2

i ⊗ x3
i )⊗ ((x1

i ∪ h)⊗ (x2
i ∪ h)⊗ (x3

i ∪ h))−1

= D−1
H∗(Xi)

,

τ(Yi′) = (y1
i′ ⊗ y2

i′ ⊗ y3
i′)⊗ ((y1

i′ ∪ k)⊗ (y2
i′ ∪ k)⊗ (y3

i′ ∪ k))−1

= D−1
H∗(Yi′ )

where ∂Pi = {x1
i , x

2
i , x

3
i } and ∂P ′i′ = {y1

i′ , y
2
i′ , y

3
i′}. We omit the notation of invari-

ant vectors under Ad(ρ(x·i)), Ad(ρ(y·j′)) for convenience. For the tori Ti, T ′i′ , Ti.i.. ,
T ′i′.i′.. , T , we have the value of R-torsion for these tori from (2.2).
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Now we compute the spectral sequence terms Er
· . First E1

· is given by

0 ←− ⊕l1
i=1H2(Zi)

δ2←− ⊕l2
i=1H2(T 2

i ) ←− 0

0 ←− ⊕l1
i=1H1(Zi)⊕m+n

i=1 H1(Ci)
δ1←− ⊕l2

i=1H1(T 2
i ) ←− 0

0 ←− ⊕m+n
i=1 H0(Ci)

δ0←− ⊕l2
i=1H0(T 2

i ) ←− 0

where l1 = 2(g + g′ − 1) + (m + n), l2 = 3(g + g′ − 1) + 2(m + n) and

∪l1
i Zi = ∪2g−1+m

i Xi ∪2g′−1+n
i′ Yi′ ,

∪m+n
i Ci = ∪m

j Aj ∪n
j′ Bj′ ,

∪l2
i=1 T 2

i = ∪m
j=1Tj ∪n

j′=1 T ′j′ ∪{i·i··} Ti·i·· ∪{i′·i′··} T ′i′·i′·· ∪ T.

We can see that

(3.7)
δ0(e) = e for e ∈ ⊕iH0(Ti)⊕i′ H0(T ′i′),

δ0(e) = 0 for e ∈ ⊕{i·i··}H0(Ti·i··)⊕{i′·i′··} H0(T ′i′·i′··)⊕H0(T ).

Hence the dimension of kernel of δ0 is 3(g + g′ − 1) + (m + n).
Since every gluing is made from the torus automorphism, we have that

δ2(l ∪m) = l ∪m for a basis of l ∪m ∈ ⊕l2
i H2(T 2

i ).

Hence the dimension of cokernel of δ2 is 3(g + g′ − 1) + (m + n).
The map δ1 depends on the gluing-torus automorphism more explicitly. To

describe this map we introduce a natural basis of ⊕l2
i=1H1(T 2

i ) such that

H1(Tj) = R[lj ,mj ], H1(T ′j′) = R[l′j′ ,m
′
j′ ],

H1(Ti·i··) = R[li·i·· , mi·i·· ], H1(T ′i′·i′··) = R[l′i′·i′·· ,m
′
i′·i′··

],

H1(T ) = R[l, m]

where R is the real number field. Then we have that

(3.8)
δ1(mj) = αjx

·
i ⊕ 0 ∈ H1(Xi)⊕H1(Aj),

δ1(lj) = γjx
·
i ⊕ aj ∈ H1(Xi)⊕H1(Aj) for some i

where i is given such that Aj meets Xi and γj is given by the gluing torus auto-
morphism as (3.5). For other intersection tori we have that

(3.9)
δ1(mi·i··) = x·i· ⊕ x·i·· ∈ H1(Xi·)⊕H1(Xi··),

δ1(li·i··) = 0 ∈ H1(Xi·)⊕H1(Xi··).
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similar formulas hold in the gluing of the part of M2. And finally we have that

δ1(m) = x·1 ⊕ αy·1 ∈ H1(X1)⊕H1(Y1),

δ1(l) = 0⊕ γy·1 ∈ H1(X1)⊕H1(Y1).

The kernel of δ1 is generated by

(3.10)
{li·i·· , l′i′·i′··} if γ 6= 0

{li·i·· , l′i′·i′·· , l} if γ = 0.

Hence the dimension of the kernel of δ1 which is same as the dimension of the
cokernel of δ1 is 3(g + g′−1)+(m+n) or 3(g + g′)+(m+n)−4 if γ = 0 or γ 6= 0.

From above we can see how E2
. is given. In fact E2

. is the H∗(N). If we gather
(3.5)∼(3.10) and apply these to (3.4), then we get the result about R-torsion in
the proposition. Moreover we can see that h1(Nγ) is the sum of the dimension of
the kernel of δ0 and the dimension of the cokernel of δ1 and that h2(Nγ) is the
sum of the dimension of the kernel of δ1 and the dimension of the cokernel of δ2

in E1
· . ¤

§4 Half Density Volumes of Representation Spaces

In this section we compute the half density volumes of the irreducible SU(2)-
representation spaces of Seifert fibred manifold M and graph manifold N . The
half density volume comes from the R-torsion, more precisely from the determinant
term of the first homology in the R-torsion. The tangent space of R(M, SU(2))− at
[ρM ] can be identified with the first cohomology H1(M, su(2)ρM ). So the determi-
nant of the first homology DH1(M,su(2)ρM

) gives a volume form of R(M, SU(2))−.
As we studied in the section 3, the sets of the rotation numbers {nj}, {nj , n

′
j′}

of the SU(2)-representations ρM , ρN determine a connected component of the ir-
reducible SU(2)-representation spaces R(M, SU(2))−, R(N, SU(2))−. We denote
the connected component of irreducible SU(2)-representation spaces determined
by {nj}, {nj , n

′
j′} by R(M, (nj)), R(N, (nj , n

′
j′)). Hence we have the following

equalities about the volume of R(M, SU(2))−, V ol(R(M, SU(2))−) for the Seifert
fibred manifold M ;
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V ol(R(M, SU(2))−) =
∫

R(M,SU(2))−
τ(M, Ad(ρM ))

1
2

=
∑

{nj}

∫

R(M,(nj))

τ(M, Ad(ρM ))
1
2

= 2m
∑

{nj}

m∏

j=1

| sin(2πnjβ∗j
αj

)|
|αj | 12

∫

R(M,(nj))

DH1(M,su(2)ρM
).

The similar formula holds for the graph manifold N . Hence we restrict our concern
to the connected component R(M, (nj)), R(N, (nj , n

′
j′)).

Before we compute the term
∫

R(M,(nj))
DH1(M,su(2)ρM

), we remark some facts.
The spaces over which we integrate are non-compact open manifolds. We will use
only the totally irreducible representations in the process of the integration to get
the half density volume of the representation space. This is possible because the
complement of the totally irreducible representations are lower dimensional so that
the complement can be considered as the measure zero set. Hence we can get the
volume if we use only the totally irreducible representations with respect to the
given decomposition in the section 3.

We shall use the generic fibration structure of R(M, (nj)), R(N, (nj , n
′
j′)) in

order to integrate the half density volume form. So we introduce the generic
fibration structures of R(M, (nj)), R(N, (nj , nj′)).

Recall the base surface Σg of M . We delete the m-disks D2
j ’s in Σg where ∂D2

j

is free homotopic to qj . We denote this by Σg,m. From the condition q
αj

j hβj = 1
we can give the holonomy conditions on ∂Σg,m. We denote the space of the irre-
ducible SU(2)-representations of π1(Σg,m) satisfying above holonomy conditions
by R(Σg,m, (nj)) where (nj) can be determined as the rotation numbers which
determine the connected component of R(M, SU(2))−. In fact, we see easily that
R(Σg,m, (nj)) can be identified with R(M, (nj)). So we use this identification from
now on.

We decompose Σg,m into the 2(g− 1) + 2m-pairs of pants Pi with 3(g− 1) + m

intersection circles S1
i between the pair of pants such that Xi = Pi × S1 for the

fiber circle S1. We denote the SU(2)-representation space over S1
i by Li as the

section 2. Then there is a natural map

p : R(Σg,m, (nj)) → L1 × · · · × L3(g−1)+m
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induced by the restriction such that

p([ρ]) = ([ρ|S1
1
], . . . , [ρ|S1

3(g−1)+m
]).

We consider the SU(2)-representation ρΣg,m
of π1(Σg,m) such that the repre-

sentation ρ|P i induced by the restriction to each pieces Pi is irreducible. Such a
representation of π1(Σg,m) corresponds to a totally irreducible representation of
π1(M) with respect to the corresponding decomposition of M . For such a represen-
tation ρΣg,m

, the inverse image of p(ρΣg,m
) can be identified with the 3(g− 1)+m

copies of the maximal torus T 1 divided by (2g + m − 3) copies of the center Z2

of SU(2). The maximal torus T 1 gives the gluing data between the pair of pants
and the center Z2 comes from some symmetry. For the detail of the proof about
this fact, see the proposition 3.8 of [J,W 2], (4.65) of [W2]. So we have a fibration
structure of R(Σg,m, (nj)) = R(M, (nj)) generically such that

(4.1) 0 → ⊕3(g−1)+m
i=1 T 1

i /⊕2g+m−3
i=1 Z2i → R(M, (nj)) → ⊕3(g−1)+m

i=1 Li → 0.

The ‘generic fibration’ means that the fibration exists only for the totally irre-
ducible representations.

By the similar way we can consider a generic fibration for the graph manifold
Nγ . But we need distinguish the cases when γ = 0 and γ 6= 0 for graph manifolds.
We recall (3.2)

(3.2) φ1 = αφ2 + βψ2, ψ1 = γφ2 + δψ2.

where ψi is fixed for each connected component R(N, (nj , n
′
j′)). If γ = 0, we can

see that
ψ1 = ±ψ2 and φ1 = ±φ2 + βψ2

since αδ = −1. So the variables φ1, φ2 are related by

φ1 = ±φ2 + βψ2.

If γ 6= 0, we have that

φ2 =
1
γ

ψ1 − δ

γ
ψ2.

If we combine this with the first equality of (3.2), then we have that

φ1 =
α

γ
ψ1 +

1
γ

ψ2.
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So the variables φ1, φ2 are fixed.
We can consider the base surface Σg,1 of M1 and the base surface Σg′,1 of

M2. We delete m-disks, n-disks from Σg,1, Σg′,1as above. Then we get Σg,m+1,
Σg′,n+1. Note the boundaries of Σg,m+1, Σg′,n+1 consist of m + 1 circles, n + 1
circles respectively. We decompose Σg,m+1, Σg′,n+1 into

(2g + m− 1)-pair of pants Pi and (2g′ + n− 1)-pair of pants P ′i′

such that Xi = Pi × S1, Yi′ = P ′i′ × S1. Recall that X1 = P1 × S1 meets M2 and
Y1 = P ′1 × S1 meets M1.

As above we may have the generic fibration of R(Nγ , SU(2))− from the cor-
respondence of Σg,m+1 and Σg′,n+1 to M1 and M2. But the generic fibration of
R(N0, (nj , n

′
j′)) is not same as the generic fibration of R(Nγ , (nj , n

′
j′)) for γ 6= 0.

If we consider boundaries of P1 and P ′1 around which the holonomies of ρ|P1 ,
ρ|P ′1 are φ1, φ2 respectively, then we know that φi is fixed if γ 6= 0, is free with
the above relation if γ = 0. Hence we have generic fibrations of R(N0, (nj , n

′
j′)),

R(Nγ 6=0, (nj , n
′
j′)) such that

(4.2)
0 → ⊕l3

i=1T
1
i /⊕l4

i=1 Z2i → R(N0, SU(2), (nj , n
′
j′)) → ⊕l5(0)

i=1 Li → 0

0 → ⊕l3
i=1T

1
i /⊕l4

i=1 Z2i → R(Nγ 6=0, SU(2), (nj , n
′
j′)) → ⊕l5(1)

i=1 Li → 0

where l3 = 3(g + g′ − 1) + (m + n), l4 = 2(g + g′) + (m + n) − 3 and l5(0) =
3(g + g′ − 1) + (m + n), l5(1) = 3(g + g′) + (m + n)− 4.

To state our main result we define a function ζk
A(s) defined for s ∈ C with

Re(s) À 0, a finite set A ∈ R− Z and for k = 0, 1. The function ζk
A(s) is defined

by

ζk
A(s) =

∞∑
n=1

(
(−1)(n+1)k

ns

m∏

i=1

| sin(πnai)
sin(πai)

|)

for A = {a1, · · · , am}. For an empty set φ, ζ0
φ(s) is the Riemann-zeta function.

Theorem 4.3. The half density volume of R(M, (nj)) is given by

V ol(R(M, (nj))) = cM

m∏

j=1

| sin(πnjβ∗j
αj

)|
|αj | 12

ζ0
AM

(2(g − 1) + m)

where
cM = 2m−1V ol(S2)mV ol(SU(2))−(g−1+m)

AM = {n1

α1
, · · · ,

nm

αm
}.
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The half density volume of R(Nγ , (nj , n
′
j′)) is given by

V ol(R(N0, (nj , n
′
j′)))

= c0
N

m∏

j=1

| sin(πnjβ∗j
αj

)|
|αj | 12

n∏

j′=1

| sin(
πn′jβ∗

j′
α′

j′
)|

|α′j′ |
1
2

ζk
AN

(2(g + g′ − 1) + (m + n))

where
c0
N = 2m+n+1V ol(S2)m+nV ol(SU(2))−(g+g′+m+n−1),

k =
{

0 if βψ2 ∈ Z

1 if βψ2 ∈ Z[ 12 ]− Z,

AN = {2φ1, 2φ2,
n1

α1
, · · · ,

nm

αm
,
n′1
α′1

, · · · ,
n′n
α′n
}

and

V ol(R(Nγ 6=0, (nj , n
′
j′)))

= c1
N

1
|γ| 12

m∏

j=1

| sin(πnjβ∗j
αj

)|
|αj | 12

n∏

j′=1

| sin(
πn′jβ∗

j′
α′

j′
)|

|α′j′ |
1
2

ζ0
AM1

(2g + m− 1)ζ0
AM2

(2g′ + n− 1)

where
c1
N = 2m+n+1V ol(S2)m+n+2V ol(SU(2))−(g+g′+m+n),

AM1 = {2φ1,
n1

α1
, · · · ,

nm

αm
}, AM2 = {2φ2,

n′1
α′1

, · · · ,
n′n
α′n
}.

Proof. We shall compute only the half density volume of R(Nγ , (nj , n
′
j′)). For

R(M, (nj)) we can get the result by the same way.
From the proposition 3.3 and (4.2) we have that

V ol(R(Nγ , (nj , n
′
j′))) =

∫

R(Nγ ,(nj ,n′
j′ ))

τ(Nγ , Ad(ρNγ ))
1
2

= 2m+nf(γ)
1
2

m∏

j=1

| sin(πnjβ∗j
αj

)|
|αj | 12

n∏

j′=1

| sin(
πn′

j′β
′
j
∗

α′
j′

)|
|α′j′ |

1
2

∫

R(Nγ ,(nj ,n′
j′ ))

DH1(Nγ ,su(2)ρN
)

= 2m+nf(γ)
1
2

m∏

j=1

| sin(πnjβ∗j
αj

)|
|αj | 12

n∏

j′=1

| sin(
πn′

j′β
′
j
∗

α′
j′

)|
|α′j′ |

1
2

∫

F

µF ·
∫

Bγ

µBγ
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where F = ⊕l3
i=1T

1
i / ⊕l4

i=1 Z2i
, Bγ = ⊕l5(k)

i=1 Li with k = 0, 1 if γ = 0, γ 6= 0 and
µF , µBγ

are the volume forms of F, Bγ such that DH1(Nγ ,su(2)ρN
) = µF · p∗µBγ

.
We see easily that µF on F is the 3(g + g′ − 1) + (m + n) copies of the natural
volume form ν of the maximal torus T 1 with

∫
T 1 ν = 1. In fact µF is given by the

volume form of the kernel of δ0 in the proof of the proposition 3.3. So we have
∫

F

µF =
1

22(g+g′)+(m+n)−3
.

The volume form µBγ
on Bγ = ⊕l5(k)

i=1 Li is given by the volume form of the
cokernel of δ1 in the proof of the proposition 3.3. So µBγ can be written by
f0ν1 · · · νl5(0) or f1ν0 · · · νl5(1) for some fk ∈ L2(⊕l5(k)

i=1 Li) for k = 0, 1. ¿From
(2.4), the proposition 2.5 and the pants decomposition of Σg,m+1, Σg′,n+1, we can
see that f0 = f · g, f1 = f · h where f is the product of

2(g + g′ − 2)− copies of
2

V ol(SU(2))2
∑
α

1
nα

3∏

i=1

χα(·),

m− copies of
2V ol(S2)

V ol(SU(2))2
∑
α

1
nα

| sin(πnαnj

αj
)|

| sin(πnj

αj
)| χα(·)χα(·),

n− copies of
2V ol(S2)

V ol(SU(2))2
∑
α

1
nα

| sin(
πnαn′

j′
α′

j′
)|

| sin(
πn′

j′
α′

j′
)|

χα(·)χα(·),

and g is the product of

2− copies of
2

V ol(SU(2))2
∑
α

1
nα

3∏

i=1

χα(·),

and h is the product of

2V ol(S2)
V ol(SU(2))2

∑
α

1
nα

| sin(2πnαφ1)|
| sin(2πφ1)| χα(·)χα(·),

2V ol(S2)
V ol(SU(2))2

∑
α

1
nα

| sin(2πnαφ2)|
| sin(2πφ2)| χα(·)χα(·).

where the value of representation ρNγ ([x·i]) or ρNγ ([y·i′ ]) appears at the slot of
χα(·) if x·i or y·i′ is a homotopy class of a boundary of Pi or P ′i′ .



HALF DENSITY VOLUMES OF REPRESENTATION SPACES 19

We use the orthogonal pairing of the characters on each intersection circle be-
tween a pair of pants such that

∫

Li

χα(ρN (·))χβ(ρN (·)−1)νi = δα,βV ol(SU(2)).

These pairings on Li for 1 ≤ i ≤ l5(1) with respect to νi give
∫

Bγ
µBγ

for γ 6= 0
so that we get the volume of R(Nγ , (nj , n

′
j′)) when γ 6= 0. Note that this pairing

does not occur on the intersection circle between P1 and P ′1 since the holonomies
φ1 and φ2 are fixed if γ 6= 0.

When γ = 0 the above pairings on Li with respect to νi give same result except
one Li which comes from the intersection of P1 and P ′1. This is because the
holonomies of ρNγ around a boundary of P1 and P ′1 which give the pairing do not
coincide but have the relation φ1 = ±φ2 +βψ2. So the pairing in this case is given
by

∫

Li

χα(ρN (D(e2πφ1)))χβ(ρN (D(e2πφ2))−1)νi = (−1)kδα,βV ol(SU(2))

where D(e2πφi) is the SU(2)-matrix with the diagonal elements {e2πφi , e−2πφi}
and

k =
{

0 if βψ2 ∈ Z

1 if βψ2 ∈ Z[ 12 ]− Z.

Recall that β is given in (3.1). We have that {nα} is the set of the natural numbers
for the Lie group SU(2). For this see the proposition (5.3) of [B,tD]. The constants
C0

N , C1
N are given by gathering all the constants in the above pairings. ¤

We remark some facts about theorem 4.3. We compute the half density volumes
of R(M, (nj)), R(Nγ , (nj , n

′
j′)) using the fibration structure of the representation

space R(Σg,m, (nj)) which has the symplectic structure. In [W2] Witten computes
the symplectic volume of R(Σg,m, (nj)). We use his method with some modifica-
tion. So we point out two differences between the symplectic volume form - this is
the R-torsion of Σg,m - of R(Σg,m, (nj)) and the half density of R(M, (nj)). The
first comes from two different volume forms of the fiber⊕3(g−1)+m

i=1 T 1
i /⊕2g+m−3

i=1 Z2i .
In our case the volume form over the fiber comes from the natural volume form
ν on the maximal torus T 1 of SU(2), but in [W2] the fiber volume form comes
from the volume form ν0 induced from the volume form of SU(2). Of course the
difference comes from the different constructions of two volume forms. The second
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is the term sin(π nj

αj
). In [W2] this term is necessary to define natural symplectic

volume form of R(Σg,m, (nj)) so that this term cancels out a factor of character

term
sin(

πnnj
αj

)

sin(
πnj
αj

)
in [W2]. But we need not this term to give the cancellation.

§5 Application to Jeffrey-Weitsman-Witten invariant

In this section we apply our result of the previous section to compute the Jeffrey-
Weitsman-Witten invariant of a Seifert fibred manifold M with base surface Σg=2.
In this case the irreducible SU(2)-representation space R(M, SU(2))− is non-
discrete set so that the R-torsion is used as the half density of R(M, SU(2))−

in defining the Jeffrey-Weitsman-Witten invariant.
We review the Chern-Simons gauge theory to understand the definition of the

Jeffrey-Weitsman-Witten invariant. For the detail of the Chern-Simons gauge
theory, see [R,S,W], [J,W1].

Let X be a 2-dimensional manifold and P be a principal SU(2)-bundle over X.
Let A,AF ,G be the affine space of connection one forms of P , the space of flat
connections of P and the gauge transformation group of P respectively. Let M2

be the moduli space of the flat connections of P .
We consider a 3-dimensional manifold Y1 with a boundary X. Moreover we

assume that a neighborhood of X in Y1 is diffeomorphic to X × [0, 1). For A ∈
A, g ∈ G we consider a U(1)-valued function S(A, g) defined by

S(A, g) ≡ exp(2πi(CS(Ãg̃)− CS(Ã)))

where Ã and g̃ are the extensions of A and g into Y1, Ãg̃ is the gauge transformation
of Ã by g̃ and the Chern-Simons invariant CS(Ã) is given by

CS(Ã) =
1

8π2

∫

Y1

tr(dÃ ∧ Ã +
2
3
Ã ∧ Ã ∧ Ã).

Such an extension of g̃ always exists since π1(SU(2)) = π2(SU(2)) = 0. We
choose the extensions so that Ã and g̃ are pull-backs of A and g by the projection
to X over X × [0, 1) respectively. Then S is independent on the extension Y1 and
the extension Ã and g̃. In fact the extensions (Ã1, g̃1) and (Ã2, g̃2) into Y1 and Y2

give a connection B̃ and a gauge transformation h̃ on Y = Y1 ∪ Y2 so that

exp(2πi(CS(Ãg̃
1)− CS(Ã1))) exp(2πi(CS(Ãg̃

2)− CS(Ã2)))−1

= exp(2πi(CS(B̃h̃)− CS(B̃))) = 1.
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The above function S over A× G is a cocycle since

S(Ã, g̃)S(Ãg̃, h̃) = S(Ã, g̃h̃).

We can define a line bundle L over M2 by

L ≡ AF ×S C

where the right side is the quotient space given by the equivalence relation

(A, z) ∼ (Ag,S(A, g)z)

for A ∈ AF , z ∈ C.
We consider a 3-dimensional manifold Y and a principal SU(2)-bundle PY

over Y . We decompose Y into two handle bodies Y1 and Y2. Let X be the
intersection of Y1 and Y2. We apply above construction to 2-dimensional manifold
X and PY |X = P . We consider the restriction of line bundle L to Lagrangian
submanifolds L1, L2 of M2 where L1, L2 are made from the handle bodies Y1, Y2

of Y . Let Li be the restriction of the line bundle L to Li. Then there is section
Si(A) of Li over Li defined by

Si(A) = exp(2πiCS(AYi))

for [A] ∈M2 and AYi is an extension of A to Yi.
Now we consider the intersection of the two Lagrangian submanifolds L1, L2 in

M2. Then we can see that this intersection is the moduli space of flat connections
of PY over Y which we denote by M3. By the correspondence between the flat
connection A and the SU(2)-representation ρY of π1(Y ), M3 can be identified
with R(Y, SU(2)). There may occur singularities of M2 within M3. But the set
of singularities is a measure zero set in M3. So we may not care these singular-
ities in the following construction since we shall integrate over the dense subset
R(Y, SU(2))− of M3 = R(Y, SU(2)).

We consider the k-tensor power of L, L⊗k

over M2 and their restrictions to two
Lagrangian submanifolds L1, L2. We denote these by L⊗k

1 ,L⊗k

2 . Then we can pair
two sections Sk

i = S⊗k

i of L⊗k

i in M3 by the hermitian product of the complex
line C. We denote this pairing by 〈Sk

1 ,Sk
2 〉. Then this can be considered as an

U(1) valued function on M3 = R(Y, SU(2)). We can see easily that 〈Sk
1 ,Sk

2 〉 at
a connection A is the exponential of the Chern-Simons invariant of Y , that is,
exp(2kπiCS(A)).

We recall that the half density derived from the R-torsion- τ(Y, Ad(ρY ))
1
2 can

be considered as a measure of R(Y, SU(2))−. The Jeffrey-Weitsman-Witten in-
variant is defined by integrating the pairing 〈Sk

1 ,Sk
2 〉 with respect to half density

τ(Y,Ad(ρY ))
1
2 over R(Y, SU(2))− using the correspondence between the flat con-

nection A of P and the SU(2)-representation ρY of π1(Y ). We formulate this
construction as the following definition.
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Definition 5.1. For integer k, the Jeffrey-Weitsman-Witten invariant Z(Y, k) is
defined by

Z(Y, k) =
∫

R(Y,SU(2))−
〈Sk

1 ,Sk
2 〉τ(Y,Ad(ρY ))

1
2 .

This definition is given in [J,W1]. This definition is motivated from the asymp-
totic expansion of the Witten invariant ZY (k) of 3-dimensional manifold Y [W1].
The asymptotic expansion of ZY (k) is given by

ZY (k) ' 1
2

∑

i

(τ(Y, Ai))
1
2 exp(−3πi + 2πiSF (Ai)

4
) exp(2(k + 2)πiCS(Ai))

where the sum is taken over the finite set of flat connections Ai, τ(Y, Ai) is the
Reidemeister torsion for Ai of Y and SF (Ai) is the spectral flow from trivial
connection to the flat connection Ai. The above formula is given in [F,G]. We can
see that if the moduli space of flat connections is a discrete set, then definition 5.1
is almost same as the leading term of the above asymptotic expansion since the
square root of the R-torsion becomes a point mass in this case.

Now we compute the Jeffrey-Weitsman-Witten invariant Z(M, k) of Seifert fi-
bred manifold M with the non-discrete irreducible SU(2)-representation space
R(M, SU(2))− by applying the previous result. To compute Z(Y, k), we must in-
tegrate the pairing < Sk

1 ,Sk
2 > with respect to the half density of the R-torsion

over R(M, SU(2))−. We know that the value < Sk
1 ,Sk

2 > at the flat connection
A is simply the Chern-Simons invariant of A. This invariant is constant in each
connected component R(M, (nj)). By the result of [A], the value for the fixed
connected component R(M, (nj)) is given by

(5.2) exp[2kπi(−
m∑

j=1

(
β∗j n2

j

αj
+

2εnj

αj
) + ε2

m∑

j=1

βj

αj
)]

where ε = 1
2 , 1 if ρM (h) = −1, 1 and βjβ

∗
j = 1 (mod) αj as above.

So the value of the Jeffrey-Weitsman-Witten invariant Z(Y, k) over the con-
nected component R(M, (ni)) is given by

∫

R(M,(nj))

< Sk
1 ,Sk

2 > (τ(M, Ad(ρM )))
1
2

= 2m < Sk
1 ,Sk

2 >

m∏

j=1

| sin(πnjβ∗j
αj

)|
|αj | 12

∫

R(M,(nj))

DH1(M,su(2)ρM
).

So we have the following theorem from the theorem 4.3 and (5.2).
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Theorem 5.3. For the integer k, the Jeffrey-Weitsman-Witten invariant Z(M, k)
of the Seifert fibred manifold M(g, (α1, β1, . . . , αm, βm)) is given by

cM

∑

{(nj)}
exp[2kπi(−

m∑

j=1

(
β∗j n2

j

αj
+

2εnj

αj
) + ε2

m∑

j=1

βj

αj
)]

×
m∏

j=1

| sin(πnjβ∗j
αj

)|
|αj | 12

∞∑
n=1

(
1

n2(g−1)+m

m∏

j=1

| sin(πnnj

αj
)|

| sin(πnj

αj
)| )

where the above sum is taken over the finite set of the rotation numbers {(nj)},
cM = 2m−1V ol(S2)mV ol(SU(2))g+m−1 and ε = 1

2 or 1 if ρM (h) = −1 or 1.

We can see that Z(M, k) depends only on the manifold M via the Seifert in-
variant (g; (αi, βi)) since the set of all the rotation numbers (nj) is determined by
π1(M).
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