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ON THE ISOSPECTRA AND THE ISOMETRIES
OF THE ALOFF-WALLACH SPACES

Dosang Joe, Yoonweon Lee
∗
,

Jinsung Park, and Jeong Seog Ryu

Abstract. We use the branching rules on SU(3) to show that if
two Aloff-Wallach spaces Mk,l and Mk′,l′ are isospectral for the

Laplacian acting on smooth functions, they are isometric. We also
show that 1 is the non-zero smallest eigenvalue among all Aloff-
Wallach spaces and compute the multiplicities.

1. Introduction

The Aloff-Wallach space Mk,l is a 7-dimensional homogeneous space
obtained from an S1-action on SU(3) for a pair of coprime integers (k, l).
This family of homogeneous spaces gives an example of infinitely many
non-homotopic spaces with the positive sectional curvature. In early
1990’s, Kreck and Stolz discovered some pairs of the Aloff-Wallach spaces
that are homeomorphic but not diffeomorphic (see [7]). To distinguish
the homeomorphism types and diffeomorphism types, they used some
invariants which are closely related to the eta invariants of some Dirac
operators (see [6]). Recently Kruggel classified the homotopy types of
this family of spaces (see [8]).

Since the Aloff-Wallach space is obtained from an S1-action on SU(3),
this space admits the metric induced from the Killing form of SU(3).
In this case, the spectrum of the Laplacian can be computed from the
action of the Casimir operator of SU(3) on the irreducible representation
spaces by the branching rules. The branching rule is the method which
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is used commonly on the calculation of the spectrum of the Laplacian on
homogeneous spaces (c.f. [2], [4], [9]). Throughout this paper, we assume
that each Aloff-Wallach space is equipped with this metric. We also
mean by the Laplacian the Hodge Laplacian acting on smooth functions.

The purpose of this paper is to show that there is no pair of Aloff-
Wallach spaces which are isospectral but not isometric. In other words,
we show that if two Aloff-Wallach spaces are isospectral for the Laplacian
acting on smooth functions, they are isometric.

The definition of the Aloff-Wallach space and the elementary facts of
the homogeneous vector bundles are given in Section 2. In Section 3, we
discuss the multiplicity function d(k, l;m,n) and in Section 4, we prove
the following theorem by considering the small eigenvalues of Mk,l.

Theorem 1.1. For two Aloff-Wallach spaces Mk,l and Mk′,l′ , the
following three statements are equivalent to each other.

(1) Mk,l and Mk′,l′ are isospectral for the Laplacian acting on smooth
functions.

(2) Mk,l is isometric to Mk′,l′ .
(3) (k′, l′) is the one of

± (k, l), ±(l, k), ±(k,−(k + l)), ±(−(k + l), k),

± (l,−(k + l)), ±(−(k + l), l).

In the above theorem, the implications of (2) to (1) and of (3) to (2)
are trivial. The implication of (1) to (3) is the main part of this theorem.

Remark. Kreck and Stolz showed in [7] that M−4638661,582656 and
M−2594149,5052965 are diffeomorphic. The above theorem tells that these
two spaces are not isometric with respect to the metrics induced from
the Killing form.

2. The Aloff-Wallach spaces and the homogeneous vector
bundles

In this section we explain the basic facts of the homogeneous vector
bundles and introduce the Aloff-Wallach spaces.

Let G be a compact connected Lie group and H be a compact con-
nected subgroup of G. We denoted by g, h the Lie algebras of G,H,
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respectively. Then M = G/H is a compact homogeneous space and the
tangent bundle TM is a homogeneous vector bundle, which is given by

TM = G×H g/h,

where the Lie group H acts on g/h by the adjoint representation. TM
also inherits an inner product induced from the killing form on g.

The space of smooth p-forms Γ(∧pT ∗M) is an infinite dimensional
G-representation space. Let Ĝ denote the set of all equivalence classes
of irreducible representations of G. For each γ in Ĝ, let (πγ , Vγ) be a
representative of γ. Then by the Peter-Weyl theorem we get

(2.1) Γ(∧pT ∗M) ⊃ ⊕γ∈ĜVγ ⊗HomG(Vγ ,Γ(∧pT ∗M)),

where the right hand side is dense in the left hand side.
By the Frobenious law, there is an isomorphism

(2.2) HomG(Vγ ,Γ(∧pT ∗M)) ∼= HomH(Vγ ,∧p(g/h)∗).

Let ∆p denote the Bochner Laplacian on Γ(∧pT ∗M) for 0 ≤ p ≤ n.
With respect to an orthonormal frame {ei} on TM |U for some open
subset U of M

∆p =
∑
i

(52
ei −55eiei),

where5 is the Levi-Civita connection with respect to the metric induced
from the Killing form.

Let {Xi} be an orthonormal basis of the Lie algebra g with respect to
the inner product induced from the Killing form. The Casimir operator
CasG is defined as the element of the universal enveloping algebra of g
such that

CasG = −
∑
i

Xi ·Xi.

Similarly CasH is defined on H as above.
Then it is well-known (c.f. [3], [4]) that

∆p = CasG + CasH ,

and that the Casimir operator CasG acts on the irreducible representa-
tion space Vγ as the scalar multiplication given by

CasG|Vγ = 〈ρG + Λγ , ρG + Λγ〉 − 〈ρG, ρG〉,
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where ρG is the half sum of the positive roots of G, Λγ is the highest
weight of γ and the inner product 〈, 〉 is induced from the Killing form.

The Casimir operator CasH acts as an endomorphism of ∧p(g/h)∗

via the adjoint action of H.
In particular, if p = 0, CasH acts as a zero endomorphism.
By the Weitzenböck formula we can decompose the Hodge Laplacian

(d+ d∗)2 by
(d+ d∗)2 = ∆p + Ep,

where Ep is the zero order operator which vanishes for p = 0.
Hence if p = 0, we get

(d+ d∗)2 = CasG.

Now we introduce the Aloff-Wallach spaces.
Define an embedding ik,l : S1 → SU(3) for k, l ∈ Z by

exp(2πiθ) −→

 exp(2πikθ) 0 0
0 exp(2πilθ) 0
0 0 exp(−2πi(k + l)θ)

 .

Then the Aloff-Wallach space Mk,l is defined by SU(3)/ik,l(S1), where
(k, l) = 1 and kl(k + l) 6= 0.

It is shown in [1] that

H4(Mk,l, Z) ∼= Z/rZ,

where r = |k2 + kl + l2|.
Thus there are infinitely many different homotopy types amongMk,l’s.
Moreover, there are pairs (k, l), (k′, l′) such that Mk,l is homeomor-

phic but not diffeomorphic to Mk′,l′ .
For example (−56788, 5227) and (−42652, 61213) are such pairs, which

were discovered by Kreck and Stolz in [7].
By the definition of the Aloff-Wallach spaces, we can see easily that

Mk,l is isometric to Ml,k,Mk,−(k+l),M−(k+l),l by the orientation pre-
serving isometry which are given from the permutation of the diagonal
elements.

Similarly Mk,l is isometric to M−k,−l by the orientation reversing
isometry induced from the complex conjugation.

Thus it is enough to consider Mk,l for 1 ≤ k ≤ l.
Now we consider the homogeneous vector bundle structure on Mk,l.
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Let α, β, ρ denote the positive roots of the adjoint representation of
the Cartan subalgebra tSU(3).

Every irreducible representation of SU(3) is determined by the high-
est weightmσ + nτ , wherem,n are nonnegative integers and σ = 1

3 (2α+
β), τ = 1

3 (α + 2β) (c.f. [3]). We denote by Vmσ+nτ the representation
space determined by the highest weight mσ + nτ .

Then CasSU(3) acts on Vmσ+nτ as the multiplication of 1
9 (m2 + n2 +

mn+3m+3n) and the dimension of Vmσ+nτ is 1
2 (m+1)(n+1)(m+n+2).

We denote by d(k, l;m,n) the dimension of

Homik,l(S1)(Vmσ+nτ ,∧0(g/h)∗) = Homik,l(S1)(Vmσ+nτ ,C).

Then the dimension of Vmσ+nτ⊗HomG(Vmσ+nτ ,Γ(∧0T ∗M)) is 1
2 (m+

1)(n+ 1)(m+ n+ 2)d(k, l;m,n) and (d+ d∗)2 acts on this space as the
multiplication of 1

9 (m2 + n2 +mn+ 3m+ 3n).
Note that d(k, l;m,n) may be zero. In this case Vmσ+nτ does not

appear in the right hand side of (2.1).

Proposition 2.1. Define φ : (Z+ ∪ {0}) × (Z+ ∪ {0}) → R by
φ(m,n) = 1

9 (m2 + n2 + mn + 3m + 3n). For λ ∈ Imφ, let φ−1(λ) =
{(m1, n1), · · · , (mr, nr)}. Then λ is an eigenvalue of the Laplacian on
Mk,l with the multiplicity

∑r
i=1 d(k, l;mi, ni) · 1

2 (mi + 1)(ni + 1)(mi +
ni + 2) and all the eigenvalues are of this type.

Remark.

(1) φ may have the same value on different pairs of coprime integers. For
example, φ(9, 11) = φ(1, 17) = 361

9 .
(2) d(k, l;m,n) may be 0 for all i. In this case, λ is, in fact, not an

eigenvalue of Mk,l. For instance, if k = l = 1 and m = 1, n = 2, then
λ = 16

9 is not an eigenvalue of M1,1, (i.e. see (3.2)).

3. The multiplication function d(k, l;m,n)

In this section we analyze the multiplication function d(k, l;m,n) for
1 ≤ k ≤ l, m,n ≥ 0 and φ(m,n) ≤ φ(k, l).

First of all, suppose that (m,n) is a pair of nonnegative integers
and denote by χmσ+nτ the character of the irreducible representation
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determined by the highest weight mσ + nτ . Then we have

(3.1)
d(k, l;m,n) = dim Homik,l(S1)(Vmσ+nτ ,C)

=
∫
ik,l(S1)

χmσ+nτ .

By the Weyl character formula, we can express the character χmσ+nτ

(ik,l(exp(2πiθ)) explicitly. Setting e(t) = exp((2πit)θ), we have (c.f. [3])

χmσ+nτ (ik,l(exp(2πiθ))) =
jmσ+nτ (θ)

j(θ)
,

where
jmσ+nτ (θ) = e

(
(m+ n+ 2)k + (m+ 1)l

)
− e
(
(m+ 1)k + (m+ n+ 2)l

)
− e
(
− (m+ n+ 2)k − (n+ 1)l

)
+ e
(
− (n+ 1)k − (m+ n+ 2)l

)
− e
(
(n+ 1)k − (m+ 1)l

)
+ e
(
− (m+ 1)k + (n+ 1)l

)
,

j(θ) = e(2k + l)− e(k + 2l)− e(−2k − l)
+ e(−k − 2l)− e(k − l) + e(−k + l).

Setting z = exp(2πiθ),

j(θ) = z−(2k+l)(z2k+l − 1)(zk−l − 1)(zk+2l − 1)

and

jmσ+nτ (θ) = z−(m+n+2)k−(n+1)l

×
{
z(m+n+2)k−(m−2n−1)l

(z(n+1)(k−l) − 1)(z(m+1)(k+2l) − 1)

− (z(m+1)(k−l) − 1)(z(n+1)(k+2l) − 1)
}
.
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Hence

χmσ+nτ (ik,l(exp(2πiθ)))

=
jmσ+nτ (θ)

j(θ)

=
z−(n+m)k−nl

(z2k+l − 1)(zk−l − 1)(zk+2l − 1)

×
{
z(m+n+2)k−(m−2n−1)l

× (z(n+1)(k−l) − 1)(z(m+1)(k+2l) − 1)

− (z(m+1)(k−l) − 1)(z(n+1)(k+2l) − 1)
}

=
z−(m+n)k−nl

(z2k+l − 1)

{
z(m+1)(k−l)+(n+1)(k+2l)

× (zn(k−l) + · · ·+ zk−l + 1)

× (zm(k+2l) + · · ·+ zk+2l + 1)

− (zm(k−l) + · · ·+ zk−l + 1)

× (zn(k+2l) + · · ·+ zk+2l + 1)
}
.

Setting x = zk+2l and y = z−(k−l), the above equation is

z−(m+n+1)k−(n−1)l

(x− y)

{
xn+1y−(m+1)(xm + · · ·+ x+ 1)

× (y−n + · · ·+ y−1 + 1)

− (xn + · · ·+ x+ 1)(y−m + · · ·+ y−1 + 1)
}

=
z−(m+n+1)k−(n−1)ly−(m+n+1)

x− y

m∑
i=0

n∑
j=0

(xn+1+iyj − xjyn+1+i).
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Finally, the above equation is as follows.

(3.2)

z−(2n+m)l

(x− y)

m∑
i=0

n∑
j=0

(xn+1+iyj − xjyn+1+i)

= z−(2n+m)l
m∑
i=0

n∑
j=0

xjyj

× (xn+i−j + xn+i−j−1y + · · ·+ xyn+i−j−1 + yn+i−j)

=
m∑
i=0

n∑
j=0

(
z(n+i−j)k+(2i+j−m)l + z(n+i−j−2)k+(2i+j−m−1)l

+ · · ·+ z(j−i−n)k+(i+2j−n−m)l
)

=
m∑
i=0

n∑
j=0

i+n−j∑
s=0

z(n+i−j−2s)k+(2i+j−m−s)l.

From (3.1), d(k, l;m,n) is the number of triple pairs of (i, j, s)’s satisfy-
ing (n + i − j − 2s)k + (2i + j −m − s)l = 0 for 0 ≤ i ≤ m, 0 ≤ j ≤ n
and 0 ≤ s ≤ i + n − j. Since (k, l) = 1, there exists an integer u ∈ Z

such that {
m+ s− 2i− j = uk

n+ i− j − 2s = ul.

Adding these two equations, we get

m+ n− (i+ 2j + s) = u(k + l).

From the ranges of i, j, s, one can check easily that

(3.3)

−(m+ n) ≤ m+ n− (i+ 2j + s)

= u(k + l)
≤ m+ n.

Now we assume that for a given pair (k, l) (1 ≤ k ≤ l), (m,n) is
a pair of nonnegative integers satisfying m2 + n2 + mn + 3m + 3n ≤
k2 + l2 + kl + 3k + 3l. If m+ n < k + l, the only possible integer for u
is 0. If m+ n ≥ k + l, (m+ n)2 ≥ u2(k + l)2 and hence

0 ≥ {(m+ n)2 + 3(m+ n)−mn} − {(k + l)2 + 3(k + l)− kl}

≥ (
1
2

(m+ n)2 + 3(m+ n))− (
3
2

(k + l)2 + 3(k + l))

≥ 1
2

(u2 − 3)(k + l)2 + 3(u− 1)(k + l)
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From (3.3) and the fact that k ≥ 1, l ≥ 1, the only possible integers for
u are 0 and ±1.

Now we want to find the number of solutions of

(I)
{
m+ s− 2i− j = 0
n+ i− j − 2s = 0

(II)
{
m+ s− 2i− j = k

n+ i− j − 2s = l

(III)
{
m+ s− 2i− j = −k
n+ i− j − 2s = −l,

where 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ s ≤ i+ n− j.
For given k,l,m,n, denote by f(m,n), g(k, l;m,n) and h(k, l;m,n)

the numbers of solutions of (I), (II), and (III), respectively. Then

d(k, l;m,n) = f(m,n) + g(k, l;m,n) + h(k, l;m,n).

Here f(m,n) does not depend on the pair (k, l). One can also check that
for 1 ≤ k ≤ l, (k, l) = 1

g(k, l; k, l) = 1, g(k, l; l, k) = 0,

h(k, l; k, l) = 0, h(k, l; l, k) = 1.

The following theorem can be shown by Proposition 2.1 and consid-
ering the equations (I), (II), and (III).

Theorem 3.1. Suppose that 1 ≤ k ≤ l and (k, l) = 1. Then the
smallest non-zero eigenvalue of the Laplacian on Mk,l is 1, which is
common for all Aloff-Wallach spaces. If k = l = 1, the multiplicity of 1
is 32 and if 1 ≤ k < l, the multiplicity of 1 is 16. Hence, if 1 ≤ k < l,
Mk,l is not isospectral to M1,1.

4. Proof of Theorem 1.1

In this section, we discuss the eigenvalues with their multiplicities on
Mk,l which are less than or equal to φ(k, l) = 1

9 (k2 + l2 + kl + 3k + 3l).
And then, we are going to prove Theorem 1.1.
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Lemma 4.1. Suppose that for coprime integers k, l with 1 ≤ k ≤ l,
m,n are non-negative integers satisfying (m,n) 6= (k, l), (m,n) 6= (l, k)
and (m2 + n2 + mn + 3m + 3n) ≤ (k2 + l2 + kl + 3k + 3l). Then
g(k, l;m,n) = 0 and h(k, l;m,n) = 0.

Proof. Adding two equations in (II) and in (III), we get m+n− (i+
2j + s) = ±(k + l).

(Case 1) If m+ n < k+ l, obviously there is no (i, j, s) satisfying the
equations (II) and (III). Thus g(k, l;m,n) = h(k, l;m,n) = 0.

(Case 2) Suppose that m+n ≥ k+ l. Then there are four possibilities
for (m,n) as follows.

(i) m < k < l < n, (ii) k < m < n < l,

(iii) n < k < l < m, (iv) k < n < m < l.

We are going to prove the assertion for the case (i) and we can use
the similar argument for other cases.

From the equation (II), we get 2m+ n− 3(i+ j) = 2k+ l, and hence
2m+ n ≥ 2k + l. Then,

0 ≤ (2m+ n)2 − (2k + l)2

= 4(m2 + n2 +mn+ 3m+ 3n)− 3n2 − 12m− 12n

− 4(k2 + l2 + kl + 3k + 3l) + 3l2 + 12k + 12l

≤ 3(l2 − n2) + 6(2k + l − 2m− n) + 6(l − n) < 0.

It is a contradiction and there is no (i, j, s) satisfying the equation (II).
Thus we get g(k, l;m,n) = 0.

Similarly, from the equation (III), we get m+2n−3(j+s) = −2l−k.
Note that

m+ 2n− 3(j + s) ≥ m+ 2n− 3(j + i+ n− j) ≥ −2m− n.

Hence, 2m+ n ≥ 2l + k. Similarly,

0 ≤ (2m+ n)2 − (2l + k)2

≤ 3(k2 − n2) + 6(2l + k − 2m− n) + 6(k − n)
< 0.

It is a contradiction and hence, h(k, l;m,n) = 0. �
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Corollary 4.2. Suppose that k, l are coprime integers with 1 ≤
k < l. Recall that φ : (Z+ ∪ {0}) × (Z+ ∪ {0}) → R by φ(m,n) =
1
9 (m2 + n2 +mn+ 3m+ 3n).

(1) Let λ0 = φ(k, l) and φ−1(λ0) = {(k, l), (l, k), (m1, n1), · · · , (mr, nr)},
where (mi, ni) 6= (k, l) and (mi, ni) 6= (l, k) for 1 ≤ i ≤ r. Then λ0 is
an eigenvalue of the Laplacian on Mk,l with multiplicity

1
2

(k + 1)(l + 1)(k + l + 2)(f(k, l) + f(l, k) + 2)

+
1
2

r∑
i=1

(mi + 1)(ni + 1)(mi + ni + 2)f(mi, ni).

(2) Let λ ∈ Imφ with λ < λ0. If φ−1(λ) = {(m1, n1), · · · , (mp, np)}, λ is
an eigenvalue of the Laplacian on Mk,l with multiplicity 1

2

∑p
i=1(mi+

1)(ni + 1)(mi + ni + 2)f(mi, ni).

Corollary 4.3. Suppose that Mk,l and Mk′,l′ are two Aloff-Wallach
spaces with 1 ≤ k < l, 1 ≤ k′ < l′ and φ(k, l) 6= φ(k′, l′). Then Mk,l and
Mk′,l′ are not isospectral.

Proof. Without loss of generality, we may assume that φ(k, l) <
φ(k′, l′). Set λ0 = φ(k, l) and denote by q, q′ the multiplicities of λ0 on
Mk,l and on Mk′,l′ , respectively. Then by Corollary 4.2,

q − q′ = (k + 1)(l + 1)(k + l + 2) > 0

and Mk,l and Mk′,l′ are not isospectral. �

Now we consider a pair of the Aloff-Wallach spaces Mk,l and Mk′,l′

with φ(k, l) = φ(k′, l′). The following lemma can be shown easily by
direct calculation.

Lemma 4.4. Suppose that k, l, k′, l′ are positive integers satisfying
φ(k, l) = φ(k′, l′), (k, l) 6= (k′, l′) and (k, l) 6= (l′, k′). Then k + l 6=
k′ + l′. Furthermore, if k + l < k′ + l′, then kl < k′l′.
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Corollary 4.5. Suppose that Mk,l and Mk′,l′ are two Aloff-Wallach
spaces with 1 ≤ k < l, 1 ≤ k′ < l′, (k, l) 6= (k′, l′), (k, l) 6= (l′, k′) and
φ(k, l) = φ(k′, l′). Then Mk,l and Mk′,l′ are not isospectral.

Proof. Let us set λ0 = φ(k, l) = φ(k′, l′) and denote by q, q′ the mul-
tiplicities of λ0 on Mk,l and on Mk′,l′ , respectively.. Then by Corollary
4.2,

q − q′ = (k + 1)(l + 1)(k + l + 2)− (k′ + 1)(l′ + 1)(k′ + l′ + 2).

From Lemma 4.4, we may assume that k+l < k′+l′ and hence kl < k′l′.
Then q < q′ and Mk,l and Mk′,l′ are not isospectral. �

Now we are ready to prove Theorem 1.1.

Theorem 1.1. Suppose that Mk,l and Mk′,l′ are two Aloff-Wallach
spaces which are isospectral. Then (k′, l′) is one of ±(k, l), ±(l, k),
±(k,−(k + l)), ±(−(k + l), k), ±(l,−(k + l)), ±(−(k + l), l).

Proof. From Theorem 3.1, we may assume that (k, l) 6= ±(1, 1) and
(k′, l′) 6= ±(1, 1). We may also assume that 1 ≤ k < l and 1 ≤ k′ < l′.
Then from Corollary 4.3 and Corollary 4.5 we get k = k′ and l = l′.
This completes the proof. �

References

[1] S. Aloff and N. R. Wallach, An infinite family of distinct 7-manifolds admitting

positively curved riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93–
97.

[2] C. Bär, The Dirac operator on homogeneous spaces and its spectrum on 3-
dimensional lens spaces, Arch. Math. 59 (1992), 65–79.

[3] H. D. Fegan, Introduction to Compact Lie Groups, Series in Pure Mathematics,
vol. 13, World scientific, 1991.

[4] A. Ikeda and Y. Taniguchi, Spectra and eigenforms of Laplacian on Sn and
P nC, Osaka J. Math. 15 (1978), 515–546.
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