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Abstract. Let ∆ denote a Laplace type operator acting on sections of a bundle S
over a compact manifold M with boundary Y . Let us assume that the Dirichlet to
Neumann operator N is a positive operator. We offer a detailed proof of the equality

(0.1)
detζ∆N

detζ∆D
= detζN ,

where ∆N , ∆D denote the Laplacian with Neumann, Dirichlet boundary conditions
respectively.

Introduction and statement of the result

Let ∆ denote a Laplace type operator acting on sections of a bundle S over a compact
manifold M with boundary Y . In the following we assume that there exists a collar
neighborhood N ∼= [0, 1]× Y of Y in M such that the Riemannian structure on M and
the Hermitian structure on S are products when restricted to N . We also assume that
the operator ∆ restricted to the submanifold N has the following form

(0.2) ∆ = −∂2
u + ∆Y ,

where u denotes the (inward) normal coordinate in N and ∆Y is the corresponding
Laplacian on Y . The operator ∆ : C∞(M ; S) → C∞(M ;S) itself does not have nice
analytical properties. For instance, the kernel of ∆ is infinite dimensional. We have to
put a boundary condition on ∆ in order to obtain a closed Fredholm operator. The two
most classical conditions are the Dirichlet condition and the Neumann condition. We
introduce the operator

∆D = ∆ : dom∆D → L2(M ; S) ,

where
dom∆D = { s ∈ H2(M ; S) ; s|Y = 0 } .

Similarly we define ∆N with

dom∆N = { s ∈ H2(M ; S) ; (∂us)|Y = 0 } .

Both ∆D and ∆N enjoy the standard properties of the Laplacian on a closed manifold.
In particular they have well-defined ζ-determinant (see Ray and Singer [10]).
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The elliptic boundary value problems ∆D and ∆N on M define an elliptic, pseudo-
differential, self-adjoint operator N on Y , the so called Dirichlet to Neumann operator.
In the following we call N the DN operator. We provide the precise description of the
DN operator later on. In this note we assume

(A) N is a positive operator.

We assume (A) in order to prove formula (0.1) without introducing more elaborate tech-
nical tools. This gives us an opportunity to present the technique we are going to use in
our study of the ζ-determinants in one of the simplest possible set-ups. We will discuss
a proof of (0.1) without assuming (A) elsewhere.

Let us explain some consequences of condition (A). First of all, positivity ofN implies
that ∆N is an invertible operator. Then we may use the Dirichlet to Neumann bracketing
to show that ∆D is an invertible operator. We refer to Taylor [14] for an exposition of
the basic results on Neumann and Dirichlet problems.

The purpose of this note is to study

(0.3)
detζ∆N

detζ∆D
.

The adiabatic analysis of this quotient was provided by the authors (see [8]), and now we
briefly describe the main result of their work. Let us introduce a manifold MR obtained
from M by replacing the collar N by NR = [0, R] × Y . We extend the bundle S and
operator ∆ to MR in an obvious way (we use formula (0.2)). We denote this extended
operator by ∆R and the corresponding operators with the Dirichlet, Neumann boundary
conditions by ∆R,D, ∆R,N . Then the following equality holds

(0.4) lim
R→∞

detζ∆R,N

detζ∆R,D
= detζ

√
∆Y

under certain conditions (see Remark 0.2). The analysis of the behavior of the small
eigenvalues (converging to 0 as R →∞) allowed us to prove a similar formula in the case
of non-invertible ∆Y (see Park and Wojciechowski [9] for the detailed formulation). Still,
it is difficult to get excited about this type of results as the adiabatic process (limR→∞)
kills interesting geometric and analytical information.

In this paper the adiabatic analysis is replaced by the argument outlined by Forman
(see [6]). Let us point out, however, that we introduce one important modification to
the Forman method. We regularize the determinants and their variations by introducing
their counterparts which live on the cylinder. This methods works very well in this note
and it simplifies the proofs of the main technical results presented in Section 4. Moreover,
this method is now applied in the analysis of more complicated problems related to the
cutting and pasting of the ζ-determinant (see Loya and Park [7] and future publications).

In this note, we employ our method to prove that (0.1) holds up to a multiplicative
constant. Then a separate argument is used to show that this multiplicative constant is
equal to 1 . This gives the main result of the paper:

Theorem 0.1. The following equality holds
detζ∆N

detζ∆D
= detζN .

Remark 0.2. In [9] we have proved that the DN operator NR (defined by ∆R)
converges to

√
∆Y as R → ∞ . In fact we showed that SR := NR − √

∆Y was a
smoothing operator whose operator norm is bounded by c

R for a positive constant c . It
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follows that if we assume that ∆Y is invertible and that there is no L2-solutions of the
extension of ∆R on a manifold with cylindrical end, then NR is a positive operator for
large R . We refer to [9] for the details.

In Section 1 we introduce the DN operator.
In Section 2 we digress a little and discuss non-positivity of the DN operator for the

Dirac Laplacian.
In Section 3 we show that the difference between the DN operator N of ∆ on M

and the corresponding DN operator on the cylinder is a smoothing operator. This result
is used later to establish the trace class property for various operators appearing in the
proof of Theorem 0.1.

In Section 4 we study the variation of the ζ-determinant and prove (0.1) up to a
multiplicative constant.

In Section 5 we show that the aforementioned constant is equal to 1 , which ends the
proof of Theorem 0.1.

Acknowledgements We want to express our gratitude to the referee for thoughtful
comments, and helpful suggestions which led to the substantial improvements in the
exposition.

1. Dirichlet to Neumann operator

We offer here a brief presentation of part of the theory of the elliptic boundary
value problems, originated in the works of Calderon [5], Agranovich and Dynin [2],
[1], and Seeley [12]. The case of a 1st order Dirac operator was discussed in Section
2 of Scott and Wojciechowski [11] (see also a detailed exposition in Booß-Bavnbek and
Wojciechowski [3]). We concentrate on the case of a particular operator ∆ and we assume
for simplicity that all elliptic boundary conditions P considered here define invertible
operators ∆P : dom∆P → L2(M ; S) .

We start with the trace map

γ(s) = (s|Y, (∂us)|Y ) : C∞(M ; S) → C∞(Y ; S|Y )⊕ C∞(Y ;S|Y ) ,

which extends to a well-defined map

γ = (γ0, γ1) : Hk(M ; S) → Hk− 1
2 (Y ;S|Y )⊕Hk− 3

2 (Y ;S|Y ) ,

where Hk denotes the k-th Sobolev space for k > 3
2 . The operator ∆ determines H(∆) ,

the Cauchy data space on Y ,

{ (f, g) ∈ C∞(Y ; S|Y )⊕ C∞(Y ; S|Y ) ; ∃s ∈ C∞(M ; S) s.t.

∆s = 0 in M \ Y and γ(s) = (f, g) } .

There exists a pseudo-differential projection onto H(∆) , but the construction we use
has a choice involved. We have to pick ∆̃ , the extension of ∆ to an invertible operator of
Laplace type on a closed manifold M̃ which contains M as a submanifold with boundary.
The projection P (∆) on H(∆) is given by the formula

(1.1) P (∆) = γ
(
rM ∆̃−1γ̃∗G)

.

Here γ̃ denotes the trace on Y of the section defined on M̃ , and γ̃∗ is the operator
adjoint to γ̃ (we refer to [12] for a detailed exposition of the necessary material), rM

is the restriction operator (operator which maps section s on M̃ to s|M). Finally, G is
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the Green’s form, which in the product case, is the bundle involution G : S|Y ⊕ S|Y →
S|Y ⊕ S|Y

G =
(

0 −Id
Id 0

)
.

As we mentioned before, the pseudo-differential projection P (∆) depends on the choice
of the operator ∆̃ . This is also the case for the Poisson operator for ∆ ,

K = rM ∆̃−1γ̃∗G ,

which maps the boundary data onto the null-solutions of ∆ in M \ Y .

Now we introduce the operators

PD, PN : C∞(Y ;S|Y )⊕ C∞(Y ; S|Y ) → C∞(Y ; S|Y )⊕ C∞(Y ; S|Y )

determined by the projections of S|Y ⊕ S|Y onto first (resp. second) summand

PD =
(

Id 0
0 0

)
, PN =

(
0 0
0 Id

)
.

These maps provide us with projections onto the 0th and 1st order parts of the Cauchy
data of a section of S . It follows from assumption (A) that

SD =PDP (∆) : H(∆) → range PD
∼= C∞(Y ; S|Y ) ,

SN =PNP (∆) : H(∆) → range PN
∼= C∞(Y ; S|Y )

are invertible bounded operators and that the operators PDP (∆) + PN (Id − P (∆)) ,
PNP (∆) + PD(Id− P (∆)) are invertible. Hence we can define

S−1
D = P (∆)[PDP (∆) + PN (Id− P (∆))]−1PD ,

S−1
N = P (∆)[PNP (∆) + PD(Id− P (∆))]−1PN .

The Poisson operator for Dirichlet boundary condition is given by

(1.2) KD = KS−1
D .

Let us remark that contrary to the operator K , KD does not depend on the choice
of ∆̃ since the restriction of K to H(∆) is independent on the choice of the Calderon
projection. This may be explained in the following way. Let f ∈ C∞(Y ; S|Y ) , then
KDf is a null-solution of ∆ in M \ Y and

PDγ(KDf) = PDγKS−1
D f = SDS−1

D f = f .

Hence s = KDf is the unique solution of Dirichlet problem

∆s = 0 and s|Y = f .

The corresponding DN operator is defined by the formula

(1.3) N = −γ1KD = −SNS−1
D .

The assumption (A) implies that it is an invertible operator and it is not difficult to see
that

(1.4) N−1 = −SDS−1
N = −γ0KN .

Remark 1.1. Let us comment on the sign convention in the definition (1.3). We
follow [12] and use the inward normal derivative in the first order component γ1 . We
introduce the minus sign in the definition of N in order to end-up with positive (in the
general case bounded from below) operator.
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In the following, we also need a formula for the inverse of the operator ∆D ,

(1.5) ∆−1
D = ∆−1 −KS−1

D PDγ∆−1 .

To simplify notation in the formula above, ∆−1 denotes the following operator

(1.6) ∆−1 = rM ∆̃−1e+ ,

where e+ : L2(M ; S) → L2(M̃ ; S̃) is an extension map (by 0) from M to M̃ . The first
term on the right side of (1.5) defines an inverse in M \ Y , the second is a “boundary”
correction term, which makes sure that the result is an element of dom ∆D . The same
formula, with “N” replacing “D”, gives the inverse of ∆N .

2. Remark on the non-positivity of the DN operator

It is not difficult to show that DN operator N is a pseudodifferential, elliptic operator
of order one, with the principal symbol equal to the principal symbol of the square root of
∆Y (see for instance [9]). This shows that N is bounded from below. We have assumed
in Theorem 0.1 that N is positive. This is not the case in general and we would like to
present an example of the situation in which N may have not only non-trivial kernel,
but also true negative eigenvalues.

We consider a compatible Dirac operator D : C∞(M ; S) → C∞(M ; S). We keep up
the assumptions from the Introduction (with the exception of Condition (A)). Hence in
particular we have the product metric structures in the collar N . The operator D has
the following form in N

(2.1) D|N = G(∂u + B) ,

where B : C∞(Y ; S|Y ) → C∞(Y ;S|Y ) is the corresponding Dirac operator on Y and
G : S|Y → S|Y is a unitary bundle isomorphism, such that

G2 = −Id and GB = −BG .

The space H(D) , the Cauchy data space of D , has a different structure from the Cauchy
data space of ∆ . There exists Calderón projector P (D) on C∞(Y ; S|Y ) , which is a
pseudodifferential operator of order 0 (see [3] and [11] for details). In particular H(D)
is a Lagrangian subspace of L2(Y ; S|Y ) meaning that

(2.2) G(H(D)) = H(D)⊥ .

The following result is a straightforward consequence of Green’s formula.

Proposition 2.1. The DN operator N of D2 is equal to B when restricted to H(D),

N|H(D) = B|H(D) .

Proof. Let f ∈ H(D) and let s denote a section of S , such that

Ds = 0 and s|Y = f .

First, we observe that s is the solution of Dirichlet problem. Let us denote by s1 ∈
C∞(M ;S) the solution of

∆s1 = 0 and s1|Y = f .

We put s2 = s1 − s so ∆s2 = D2s2 = 0 and s2|Y = 0 . This gives

0 = (D2s2; s2) = ‖Ds2‖2 −
∫

Y

〈G((Ds2)|Y ); s2|Y 〉 dvol(y) = ‖Ds2‖2 ,

so Ds2 = 0 and s2|Y = 0 . The vanishing of s2 is a consequence of the Unique Continu-
ation Property for Dirac operators (see for instance [3]). Now, for any
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w ∈ C∞(M ; S), we have

0 =(∆s; w)

=(Ds;Dw)−
∫

Y

〈(G(G(∂u + B))s)|Y ; w|Y 〉 dvol(y)

=
∫

Y

〈∂us|Y + Bf ; w|Y 〉 dvol(y)

and N f = −(∂us1)|Y = −(∂us)|Y = Bf for f ∈ H(D). This completes the proof. ¤

Now we use formula (2.1) to extend D to the Dirac operator on a manifold M∞ ,
where M∞ is a manifold with cylindrical end

M∞ = (−∞, 0]× Y ∪M .

It is well-known that the resulting operator has unique closed self-adjoint extension in
the space L2(M∞; S) , which we denote by D∞ . This operator has a finite dimensional
kernel (the space of L2-solutions). More general we may introduce the space of extended
L2-solutions of D∞ . A section s ∈ C∞(M∞; S) is an extended L2-solution of D∞ if
D∞s = 0 and s has the following form on the cylinder (−∞, 0]× Y

(2.3) s(u, y) = sL2(u, y) + slim(y) ,

where sL2 is in L2((−∞, 0]×Y ; S) and slim ∈ kerB . We have the following Proposition

Proposition 2.2. Let f = s|Y where s is an extended L2-solution of D∞ . Then

(N f ; f) < 0.

Proof. By Proposition 2.1,∫

Y

〈N f ; f〉 dvol(y) =
∫

Y

〈Bf ; f〉 dvol(y)

=
∫

Y

〈B(sL2 |y=0 + slim); (sL2 |y=0 + slim)〉 dvol(y)

=
∫

Y

〈B(sL2 |y=0); sL2 |y=0〉 dvol(y) .

Now, we only have to recall a formula for sL2(u, y) (see the discussion around formula
(22.69) in [3])

sL2(u, y) =
∑

λ<0

aλe−λuφλ(y) ,

where {λ, φλ} is the spectral resolution of B. We observe that the summation goes over
negative eigenvalues of the tangential operator B. This completes the proof. ¤

3. Comparison with the cylinder

In this Section, we compare the Calderón projector P (∆) with the corresponding
object on the cylinder.

We introduce {∆(t)} a family of operators defined by

{∆(t) := ∆ + t}t≥0.

In particular the restriction of the operator ∆ to the collar N defines a family of Laplace
type operators over N = [0, 1]× Y ,

∆c(t) := ∆c + t = −∂2
u + ∆Y + t .
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In the following we assume that ∆c(t) is subject to Dirichlet boundary condition at
{1} × Y , so that if we put a self-adjoint, elliptic boundary condition at u = 0 , we
obtain the operator with a well-defined ζ-determinant. The operator ∆c(t) has a well-
defined Calderón projector on Y ∼= {0}×Y and in this Section we compare P (∆(t)) with
P (∆c(t)) .

From now on, we identify L2(N, S) with the image of the natural embedding of this
into L2(M,S). Hence any operator over L2(N, S) can be considered as an operator over
L2(M,S), which is defined to be zero map over the orthogonal complement of L2(N, S)
within L2(M, S). The main result of this Section is the following

Proposition 3.1. The difference P (∆(t))−P (∆c(t)) is a smoothing operator acting
on C∞(Y ; S|Y ).

Proof. We choose the doubled invertible extensions ∆̃(t) over M̃ , ∆̃c(t) over Ñ
of ∆(t), ∆c(t) respectively. The result follows from the fact that, up to a smoothing
operator, we can replace ∆̃(t)

−1
in the formula (1.1) by a suitable parametrix, which

involves the operator ∆̃c(t)−1 . In the following proof we omit the parameter t .
We introduce a smooth, increasing function ρ(a, b) : [0,∞) → [0, 1] equal to 0 for

0 ≤ u ≤ a and equal to 1 for b ≤ u . We use ρ(a, b)(u) to define

φ1 = 1− ρ(
5
7
,
6
7
) , ψ1 = 1− ψ2 ,(3.1)

φ2 = ρ(
1
7
,
2
7
) , ψ2 = ρ(

3
7
,
4
7
)

and then we extend these functions to be the even functions over M̃ and Ñ in an obvious
way. Now, we define Q , a parametrix for the operator ∆̃−1 by

(3.2) Q(x, z) = φ1(x)(∆̃c)−1(x, z)ψ1(z) + φ2(x)∆̃−1(x, z)ψ2(z) .

Then we have

∆̃Q(x, z) = Id + 2
∂φ1(x)

∂u

∂(∆̃c)−1

∂u
(x, z)ψ1(z) + 2

∂φ2(x)
∂u

∂∆̃−1

∂u
(x, z)ψ2(z)

+
∂2φ1

∂u2
(x)(∆̃c)−1(x, z)ψ1(z) +

∂2φ2

∂u2
(x)∆̃−1(x, z)ψ2(z) ,

hence

(3.3) ∆̃Q = Id + S ,

where S is the operator with a smooth kernel S(x, z) equal to 0 if the distance from x
to z is smaller than 1

7 . The equality (3.3) allows us to write

∆̃−1 −Q = −∆̃−1S
where −∆̃−1S is a smoothing operator. We reformulate this equality as follows,

∆̃−1 − (∆̃c)−1 = S ′ + T
where S ′ is a smoothing operator and the Schwartz kernel of T has the following form,

T = φ1(x)(∆̃c)−1(x, z)ψ1(z)− (∆̃c)−1(x, z) + φ2(x)∆̃−1(x, z)ψ2(z)

= − (1− φ1(x))(∆̃c)−1(x, z)(1− ψ1(z))− φ1(x)(∆̃c)−1(x, z)(1− ψ1(z))

− (1− φ1(x))(∆̃c)−1(x, z)ψ1(z) + φ2(x)∆̃−1(x, z)ψ2(z) .

Therefore, we can see that

P (∆)− P (∆c) = γrM ∆̃−1γ̃∗G − γrM (∆̃c)−1γ̃∗G = γrMS ′γ̃∗G
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is a smoothing operator on Y . ¤

We denote by ∆(t)D , ∆(t)N , ∆c(t)D , ∆c(t)N the corresponding operators with
Dirichlet, Neumann boundary conditions at {0}×Y ⊂ M, N . We also denote by KD(t),
KN (t), Kc

D(t), Kc
N (t) the Poisson operators for Dirichlet, Neumann problems of ∆(t),

∆c(t) respectively.

Lemma 3.2. Each of KD(t) − Kc
D(t) , KN (t) − Kc

N (t) has the smoothing Schwartz
kernel K(x, z) for (x, z) ∈ (

M − {1} × Y
)× Y with a jump discontinuity at {1} × Y .

Proof. We have

KD(t)−Kc
D(t) = rM ∆̃(t)−1γ̃∗GSD(t)−1 − rM ∆̃c(t)−1γ̃∗GSc

D(t)−1

(see Section 1 for the definition of SD(t)−1 and Sc
D(t)−1). We follow the proof of Propo-

sition 3.1 and see that rM

(
∆̃(t)−1 − ∆̃c(t)−1

)
γ̃∗G has the following Schwartz kernel,

rM

(− (1− φ1(x))(∆̃c)−1(x, z)ψ1(z) + S ′(x, z)
)
γ̃∗G

where x ∈ M, z ∈ Y . We observe that the second term is smoothing for (x, z) ∈ M × Y
and that the first term is smoothing for (x, z) ∈ N × Y , which is extended to be zero
out of N within M . Hence this Schwartz kernel is smoothing with a jump discontinuity
at {1} × Y . It is immediate from the Proposition 3.1 that SD(t)−1 − Sc

D(t)−1 is also
a smoothing operator, and these implies that the Schwartz kernel of KD(t) − Kc

D(t) is
smoothing with a jump discontinuity at {1} × Y . We work in the same way in the case
of KN (t)−Kc

N (t) . ¤

Let N (t), N c(t) denote the DN operators of ∆(t), ∆c(t) .

Corollary 3.3. The difference of the DN operators N (t) − N c(t) is a smoothing
operator acting on C∞(Y ;S|Y ).

Corollary 3.4. The following operator is of trace class,

(∆(t)−1
N −∆(t)−1

D )− (∆c(t)−1
N −∆c(t)−1

D ) : L2(M ;S) → L2(M ; S).

Proof. We apply the equality (1.5) to get

(∆(t)−1
N −∆(t)−1

D )− (∆c(t)−1
N −∆c(t)−1

D )(3.4)

=−KN (t)γ1∆(t)−1 +KD(t)γ0∆(t)−1 +Kc
N (t)γ1∆c(t)−1 −Kc

D(t)γ0∆c(t)−1 .

Lemma 3.2 implies that KN (t)−Kc
N (t), KD(t)−Kc

D(t) has the smoothing Schwartz kernel
with a jump discontinuity at {1} × Y . We repeat the proof of Proposition 3.1 to show
that γ1(∆(t)−1−∆c(t)−1) has the smoothing Schwartz kernel with a jump discontinuity
at {1} × Y . Therefore, the operator on the left side of (3.4) is of trace class. ¤

4. Variation of the ζ-determinant

In this Section, we study the variation of the ζ-determinant of the family of operators

{∆(t) = ∆ + t}t≥0 .

We begin with the following Lemma:

Lemma 4.1. The variation of N (t) with respect to the parameter t is given by

Ṅ (t) = γ1∆(t)−1
D KD(t) .



AGRANOVICH-DYNIN FORMULA FOR THE ζ-DETERMINANTS 9

Proof. We have
Ṅ (t) = −γ1K̇D(t) .

Now we differentiate with respect to t the following equalities,

∆(t)KD(t)f = 0 , γ0KD(t)f = f ,

where f denote a smooth section of S over Y . The derivative ∆̇(t) is equal to 1 so

(4.1) ∆(t)K̇D(t)f = −KD(t)f , γ0K̇D(t)f = 0 .

The second equality in (4.1) implies that the range of K̇D(t) is in the domain of ∆(t)D

so the first equality gives
K̇D(t) = −∆(t)−1

D KD(t) ,

which leads to the required identity

Ṅ (t) = −γ1K̇D(t) = γ1∆(t)−1
D KD(t) .

¤

Corollary 4.2. The difference Ṅ (t)− Ṅ c(t) is a smoothing operator.

Here is the first crucial technical result

Lemma 4.3. The following equality holds,

(4.2)
d

dt

(
ln detζN (t)− ln detζN c(t)

)
= Tr

( Ṅ (t)N (t)−1 − Ṅ c(t)N c(t)−1
)

.

Proof. We have
d

dt

(
ln detζN (t)− ln detζN c(t)

)

= − d

dt
(ζ ′N (t)(0)− ζ ′N c(t)(0))

= − d

dt

d

ds

∣∣∣∣
s=0

1
Γ(s)

∫ ∞

0

us−1Tr
(
e−uN (t) − e−uN c(t)

)
du

= − d

dt

∫ ∞

0

u−1Tr
(
e−uN (t) − e−uN c(t)

)
du by Corollary 3.3

=
∫ ∞

0

Tr
(Ṅ (t)e−uN (t) − Ṅ c(t)e−uN c(t)

)
du

= − lim
ε→0

Tr
( Ṅ (t)N (t)−1e−uN (t) − Ṅ c(t)N c(t)−1e−uN c(t)

)]ε−1

ε

= lim
ε→0

Tr
( Ṅ (t)N (t)−1e−εN (t) − Ṅ c(t)N c(t)−1e−εN c(t)

)
.

To study this limit as ε → 0, we introduce a family of operators {Ft(u)}u∈[0,∞). The
operator Ft(u) is given by the formula

Ft(u) =
1

2πi

∫

Γ

e−uλ

λ

[ Ṅ (t)
λ−N (t)

− Ṅ c(t)
λ−N c(t)

]
dλ ,

where Γ is a standard counter-clockwise contour around R+. Corollary 3.3 and 4.2
immediately imply that the integrand

e−uλ

λ

[ Ṅ (t)
λ−N (t)

− Ṅ c(t)
λ−N c(t)

]

is a family of smoothing operators with the norm of the size O(λ−2) as |λ| → ∞ for
u ∈ [0,∞). In particular, this is a family of smoothing operator continuous with respect
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to u, even when u = 0. Hence Ft(u) is a family of trace class operators, which is
continuous for u ∈ [0,∞) with respect to the trace norm. Therefore, we obtain

lim
ε→0

Tr
(
Ft(ε)

)
= Tr

(
Ft(0)

)

and by the Cauchy integral formula,

Tr
(
Ft(0)

)
= Tr

( Ṅ (t)N (t)−1 − Ṅ c(t)N c(t)−1
)
.

Finally we conclude

d

dt

(
ln detζN (t)− ln detζN c(t)

)

= lim
ε→0

Tr
( Ṅ (t)N (t)−1e−εN c(t) − Ṅ c(t)N c(t)−1e−εN c(t)

)

= Tr
( Ṅ (t)N (t)−1 − Ṅ c(t)N c(t)−1

)
.

¤

Proposition 4.4. The following equality holds,

d

dt

(
ln detζN (t)− ln detζN c(t)

)
= Tr

(
∆(t)−1

N −∆(t)−1
D −∆c(t)−1

N + ∆c(t)−1
D

)
.

Proof. Formula (1.4) and Lemma 4.1 lead to the expression

Ṅ (t)N (t)−1 = −γ1∆(t)−1
D KD(t)γ0KN (t) .

The similar formula holds also for Ṅ c(t)N c(t)−1. Therefore,

Tr
(Ṅ (t)N (t)−1 − Ṅ c(t)N c(t)−1

)

= Tr
(− γ1∆(t)−1

D KD(t)γ0KN (t) + γ1∆c(t)−1
D Kc

D(t)γ0Kc
N (t)

)
.

Now we observe that

KD(t)γ0KN (t) = KN (t) , KN (t)γ1KD(t) = KD(t).

To prove the first equality, we note that KN (t)f is the unique solution of ∆(t)u = 0 with
the Dirichlet data γ0KN (t)f where f ∈ C∞(Y, S|Y ). On the other hand, KD(t)γ0KN (t)f
satisfies same conditions, so that KD(t)γ0KN (t) = KN (t). The second equality can be
proved in a similar way. Now we have

Tr
(− γ1∆(t)−1

D KD(t)γ0KN (t) + γ1∆c(t)−1
D Kc

D(t)γ0Kc
N (t)

)

= Tr
(− γ1∆(t)−1

D KN (t) + γ1∆c(t)−1
D Kc

N (t)
)

= Tr
(−KN (t)γ1∆(t)−1

D +Kc
N (t)γ1∆c(t)−1

D

)

= Tr
(−KN (t)γ1(∆(t)−1 −KD(t)γ0∆(t)−1) +Kc

N (t)γ1(∆c(t)−1 −Kc
D(t)γ0∆c(t)−1)

)

= Tr
(−KN (t)γ1∆(t)−1 +KD(t)γ0∆(t)−1 +Kc

N (t)γ1∆c(t)−1 −Kc
D(t)γ0∆c(t)−1

)

= Tr
(
∆(t)−1

N −∆(t)−1
D − (∆c(t)−1

N −∆c(t)−1
D )

)

where we used (1.5) and the corresponding equalities for the other operators. Now the
application of Lemma 4.3 completes the proof. ¤

We argue as above to obtain the corresponding statement for the ζ-determinants of
Dirichlet and Neumann problems.
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Proposition 4.5. The following equality holds,
d

dt

(
ln

(
detζ∆(t)N (detζ∆(t)D)−1

)− ln
(
detζ∆c(t)N (detζ∆c(t)D)−1

) )
(4.3)

= Tr
(
∆(t)−1

N −∆(t)−1
D −∆c(t)−1

N + ∆c(t)−1
D

)
.

Proof. We follow the proof of the Lemma 4.3 and obtain
d

dt

(
ln

(
detζ∆(t)N (detζ∆(t)D)−1

)− ln
(
detζ∆c(t)N (detζ∆c(t)D)−1

) )

=− d

dt

d

ds

∣∣∣∣
s=0

1
Γ(s)

∫ ∞

0

us−1Tr
(
e−u∆(t)N − e−u∆(t)D − e−u∆c(t)N + e−u∆c(t)D

)
du

= lim
ε→0

Tr
(
∆(t)−1

N e−ε∆(t)N −∆(t)−1
D e−ε∆(t)D −∆c(t)−1

N e−ε∆c(t)N + ∆c(t)−1
D e−ε∆c(t)D

)
.

To evaluate the limit as ε → 0 in the last line, we consider {Gt(u)} a family of operators
for u ∈ [0,∞) defined by

Gt(u) :=
1

2πi

∫

Γ

e−uλ

λ
[

1
λ−∆(t)N

− 1
λ−∆(t)D

− 1
λ−∆c(t)N

+
1

λ−∆c(t)D
] dλ

where Γ is a contour we use in the proof of Lemma 4.3. Corollary 3.4 implies that the
integrand

e−uλ

λ
[

1
λ−∆(t)N

− 1
λ−∆(t)D

− 1
λ−∆c(t)N

+
1

λ−∆c(t)D
]

is a family of trace class operators with the norm of the size O(λ−2) as |λ| → ∞ for
u ∈ [0,∞). By definition, this family is continuous for u ∈ [0,∞), so that Gt(u) is
a family of trace class operators continuous with respect to the trace class norm for
u ∈ [0,∞) . Therefore we have

lim
ε→0

Tr
(
Gt(ε)

)
= Tr

(
Gt(0)

)
= Tr

(
∆(t)−1

N −∆(t)−1
D −∆c(t)−1

N + ∆c(t)−1
D

)

where we used the Cauchy integral formula in the second equality. Thus, we conclude
d

dt

(
ln

(
detζ∆(t)N (detζ∆(t)D)−1

)− ln
(
detζ∆c(t)N (detζ∆c(t)D)−1

) )

=Tr
(
∆(t)−1

N −∆(t)−1
D −∆c(t)−1

N + ∆c(t)−1
D

)
.

¤

Now, Proposition 4.4 and Proposition 4.5 give the main result of Section 4

Theorem 4.6. If N is positive, we have

d

dt
ln

(
detζ∆(t)N

detζ∆(t)D
· detζ∆c(t)D

detζ∆c(t)N

)
=

d

dt
ln

(
detζN (t)
detζN c(t)

)
(4.4)

for any t ∈ R+.

5. The quotient of the ζ-determinants

Identity (4.4) implies that

detζ∆(t)N

detζ∆(t)D
·(detζN (t))−1 = C

detζ∆c(t)N

detζ∆c(t)D
·(detζN c(t))−1 ,(5.1)

where C is a constant independent of t .
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We have to show that C is 1 . The equality follows from the asymptotic expansion
of ln detζL(t) as the parameter t →∞ , where L(t) is a pseudo-differential operator with
the parameter of weight k

(5.2) ln detζL(t) ∼
∞∑

j=− dim N

ajt
− j

k +
dim N∑

j=0

bjt
j
k ln t as t →∞ .

In formula (5.2) the coefficients aj and bj are determined by the local formulas in terms
of the symbol of the operator L(1) (see Burghelea, Friedlander and Kappeler [4]). The
same formula holds for the elliptic, self-adjoint differential operator with the local elliptic
boundary condition. We apply (5.2) to the families of operators ∆(t)D, ∆(t)N , N (t)
and ∆c(t)D, ∆c(t)N , N c(t). We denote by aD, aN , aN and ac

D, ac
N , ac

N the constant
terms of these expansions. Then the following equality holds

ln C = (aD − aN − aN )− (ac
D − ac

N − ac
N ) .

The constant terms aD, aN , ac
D, ac

N are locally computable from the symbols of ∆(1)D,
∆(1)N , ∆c(1)D , ∆c(1)N so

(aD − aN )− (ac
D − ac

N ) = (aD − ac
D)− (aN − ac

N ) = 0 .

Let us remark that the boundary contributions near u = 0 of aD, ac
D (aN , ac

N ) cancel
each other and the contributions out of u = 0 of aD, aN (ac

D, ac
N ) cancel each other. It

also follows from Corollary 3.3 that the following equality holds

aN − ac
N = 0 .

We conclude that C is equal to 1 . In particular, if we put t = 0 in (5.1) then

(5.3)
detζ∆N

detζ∆D
·(detζN )−1 =

detζ∆c
N

detζ∆c
D

·(detζN c)−1 .

Now the following Proposition completes the proof of Theorem 0.1.

Proposition 5.1. The following equality holds,

detζ∆c
N

detζ∆c
D

= detζN c .

Proof. We can make explicit computations of the ζ-determinants of the Laplace
type operators over the finite cylinder to obtain

detζ∆c
N = 2hY · exp(−(2

√
π)−1(Γ(s)−1Γ(s− 1/2)ζ∆Y

(s− 1/2))′(0)) ·
∞∏

l=hY +1

(1 + e−2µl) ,

detζ∆c
D = 2hY

(
detζ

√
∆Y )−1

· exp(−(2
√

π)−1(Γ(s)−1Γ(s− 1/2)ζ∆Y
(s− 1/2))′(0)) ·

∞∏

l=hY +1

(1− e−2µl) ,

where hY = dim ker(∆Y ) and {µ2
l } is the spectrum of ∆Y . The computations of detζ∆c

D

are performed in section 5 of [7] and detζ∆c
N can be computed in a similar way. We have

detζ∆c
N

detζ∆c
D

= detζ

√
∆Y ·

∞∏

l=hY +1

1 + e−2µl

1− e−2µl
.
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We follow computations from section 5 of [7] to obtain the following formula

detζN c = detζ

√
∆Y ·

∞∏

l=hY +1

1 + e−2µl

1− e−2µl
.

Now the proof is complete. ¤
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