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Analytic torsions for hyperbolic manifolds with cusps
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Abstract: In this paper, we announce a result on the relation of the analytic torsion
with the Laurent expansion of the Ruelle zeta function at s = 0 for odd dimensional noncompact
hyperbolic manifolds with cusps.
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1. Introduction In his seminal paper [1],
Fried derived a formula relating the analytic torsion
to the Laurent expansion of the Ruelle zeta func-
tion at s = 0 for compact hyperbolic manifold of
odd dimension. The corresponding formula for the
eta invariant and the value of the odd type Selberg
zeta function at s = 0 had been proved by Millson
in [6]. Recently in [7] the formula of Millson has
been generalized to the case of noncompact hyper-
bolic manifolds with cusps. Here the eta invariant
is defined by certain regularized trace of odd heat
operator, which is essentially the same as the b-trace
of Melrose introduced in [5]. We also applied the
result for the weighted unipotent orbital integral in
[4] to compute the contribution from cusps. Hence
it is a natural question whether a generalization of
the formula of Fried for analytic torsion could be
obtained employing these methods. In this paper,
we announce such a generalization of the formula of
Fried, the relationship of the analytic torsion with
the Laurent expansion of the Ruelle zeta function
at s = 0 for noncompact hyperbolic manifolds with
cusps. First we follow the idea of Melrose in [5] to
define the analytic torsion for this noncompact case,
which is explained in Section 3. Recently in [2, 3] it
is also shown that the Ruelle zeta function has the
meromorphic extension over C for odd dimensional
hyperbolic manifolds with cusps. This is briefly re-
viewed in Proposition 4.1. The detailed proofs of
results announced in this paper will be given in [8].

2. Laplacians over hyperbolic manifolds
with cusps Let us recall that a (2n + 1)-
dimensional noncompact hyperbolic manifold with
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cusps is given by

XΓ = Γ\SO0(2n + 1, 1)/SO(2n + 1)

where Γ is a cofinite discrete subgroup of G =
SO0(2n + 1, 1) and K = SO(2n + 1) is a maximal
compact subgroup of SO0(2n + 1, 1). Throughout
this paper, we assume that the group generated by
the eigenvalues of Γ contains no root of unity. Its
consequences are that Γ is torsion free and

(1) Γ ∩ P = Γ ∩N

for a Γ-cuspidal minimal parabolic subgroup P and
a Langlands decomposition P = MAN where M =
SO(2n) ⊂ K = SO(2n + 1).

Let (ρ, Vρ) be a finite-dimensional unitary rep-
resentation of π1(XΓ) = Γ. The vector bundle Ek

ρ

over XΓ of k-forms twisted by ρ is given by

Ek
ρ = Vρ ×ρ G×τk

Vτk

where τk denotes the fundamental representation of
K = SO(2n+1) acting on Vτk

= ∧kR2n+1⊗C. Then
the Laplacian acting on C∞0 (XΓ, Ek

ρ ) has the unique
self adjoint extension to L2(XΓ, Ek

ρ ) denoted by ∆k.
In general, the operator ∆k on L2(XΓ, Ek

ρ ) has the
discrete spectrum σp(∆k) as well as the continuous
spectrum [(n−k)2,∞). The continuous spectrum of
∆k is mainly controlled by the scattering operators
Ck

ρ (σk, s) and Ck
ρ (σk−1, s) for purely imaginary num-

bers s = iλ ∈ C. Here σk denotes the fundamental
representation of M = SO(2n) acting on ∧kR2n ⊗C
for k = 0, 1, . . . , (n− 1) and σn = σ+ ⊕ σ− with the
half spin representations σ+, σ− acting on ∧nR2n ⊗
C. These scattering operators have the matrix forms
of size dc(ρ) where
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dc(ρ) =
κ∑

j=1

dj(ρ).

Here κ denotes the number of cusps and dj(ρ) de-
notes the dimension of the maximal subspace of Vρ

over which ρ|Pj∩Γ acts trivially for Pj ∈ P where
P := {P1, . . . , Pκ} denotes the set of representa-
tives of Γ-conjugacy classes of Γ-cuspidal minimal
parabolic subgroups corresponding to the cusps of
XΓ. The scattering operator Cn

ρ (σn, s) has the size
2 dc(ρ) since σ± is un-ramified.

3. Analytic torsions for hyperbolic man-
ifolds with cusps Now let us recall that the heat
operator e−t∆k is not of trace class for noncompact
hyperbolic manifold with cusps, so that we could not
take the usual trace of it. To overcome this, we fol-
low the idea of Melrose in [5] as follows. First let us
observe that each cusp corresponds to a Γ-cuspidal
parabolic subgroup P = MAN and each cuspidal
end is modelled on A · ΓN\N where ΓN := Γ ∩ P =
Γ ∩ N by (1). The standard Haar measure on G

(for instance given in [9]) induces naturally a metric
over XΓ, which has the form du2 + e−2udn2 over a
cuspidal end where dn2 is the induced metric over
ΓN\N . For sufficiently large a À 0, we put Xa

Γ to
be the complement in XΓ of the cuspidal ends whose
u-coordinates are larger than a. Now, by the Maass-
Selberg relation, we could remove the diverging term
of the expansion of

∫

Xa
Γ

tr e−t∆k(x, x) dx as a →∞

and define the regularized trace Trr(·) of e−t∆k to be
the remaining finite part of it. Then we have

Trr
(
e−t∆k

)
=

∑

λj∈σp(∆k)

e−tλj

+
∑

`=k,k−1

(d(σ`)
4

e−td2
` Tr

(
Ck

ρ (σ`, 0)
)

− d(σ`)
4π

∫ ∞

−∞
e−t(λ2+d2

`)Tr
(
Ck(`, λ)

)
dλ

)

where d` = (n− `), d(σ`) = dim (Vσ`
) and

Ck(`, λ) = Ck
ρ (σ`, s)−1 d

ds
Ck

ρ (σ`, s)
∣∣∣
s=iλ

.

Actually this trace is the same as the geometric side
of the Selberg trace formula applied to the test func-
tion given by the lifted heat kernel of ∆k to G.

Now we define the spectral zeta function of ∆k

by

ζ∆k
(s) :=

1
Γ(s)

(∫ 1

0

+
∫ ∞

1

)
ts−1Trr

(
e−t∆k − Pk

)
dt

where Pk denotes the orthogonal projection onto
kerL2(∆k). Here the small, large time integrals

∫ 1

0
,∫∞

1
are defined for <(s) À 0 and <(s) ¿ 0 respec-

tively. The first result in this paper is
Theorem 3.1. For 0 ≤ k ≤ (2n+1), the spec-

tral zeta function ζ∆k
(s) has the meromorphic exten-

sion over C and is regular at s = 0.
The proof of Theorem 3.1 is an application of

the Selberg trace formula in [10] with complete com-
putation of the weighted unipotent orbital integral
applied to the test function given by the lifted heat
kernel of ∆k to G. The detail of proof will be given
in [8].

By Theorem 3.1, we can define the regularized
determinant of ∆k by

detζ∆k := exp
(
− d

ds

∣∣∣
s=0

ζ∆k
(s)

)

and the analytic torsion T (XΓ, ρ) by

T (XΓ, ρ) :=
detζ∆1

(detζ∆2)
2 ·

(detζ∆3)
3

(detζ∆4)
4 . . .

. . .
(detζ∆2n−1)

2n−1

(detζ∆2n)2n · (detζ∆2n+1)
2n+1

.

Note that our definition of analytic torsion is
reduced to the square of the one given in [1] when
XΓ is compact.

4. Expansion of Ruelle zeta function at
s = 0 Let us recall that the Ruelle zeta function
Rρ(s) is defined by

Rρ(s) :=
∏
γ

det
(
Id− ρ(γ)e−s lγ

)−1

for <(s) > 2n. Here γ runs over the Γ-conjugacy
classes of the primitive hyperbolic elements in Γ, the
determinant denoted by det is taken over the repre-
sentation space Vρ of ρ, and lγ denotes the length
of the prime geodesic determined by γ. Note that
the above definition of the Ruelle zeta function is
the inverse of the one in [1]. In [2, 3], the following
fundamental properties of Rρ(s) are proved,

Proposition 4.1.
(a) The Ruelle zeta function Rρ(s) defined a priori

for <(s) > 2n has the meromorphic extension
over C.

(b) Let N0 denote the order of the singularity of
Rρ(s) at s = 0 such that lims→0 sN0Rρ(s) is



No. 5] Analytic torsion 3

a nonzero finite value. Then the integer N0 is
given by

2
n∑

k=0

(−1)k(n + 1− k)βk +
n−1∑

k=0

(−1)k+1d(σk)bk

+ dc(ρ)
n∑

k=1

(−1)k k d(σk)

where βk := dim kerL2(∆k) and bk is the order
of singularity of detCk

ρ (σk, s) at s = n− k.
By Proposition 4.1, we can see that the behav-

ior of the Ruelle zeta function Rρ(s) at s = 0 is
related to the spectral data of the Laplacians ∆k’s.
Hence it is a natural question whether the nonzero
constant lims→0 sN0Rρ(s) may have a relationship
with certain spectral data. It turned out that this
is given by the analytic torsion (up to a constant)
for compact case, which is the formula of Fried in
[1]. The second result in this paper states that the
essentially same formula holds for hyperbolic man-
ifolds with cusps when we use the analytic torsion
defined in Section 3. To state this, we need to intro-
duce some notation. Let us recall that detCk

ρ (σk, s)
is a meromorphic function over C and Ck

ρ (σk, s) sat-
isfies the following functional equation

Ck
ρ (σk, s)Ck

ρ (σk,−s) = Id.

Hence the order of the singularity of detCk
ρ (σk, s) at

s = −(n− k) is −bk. Now we put

Sρ(k) = lim
s→−(n−k)

(s + n− k)−bk detCk
ρ (σk, s)

=(−1)bk lim
s→(n−k)

(
(s− n + k)bk detCk

ρ (σk, s)
)−1

.

Theorem 4.2. The following equality holds
up to sign,

lim
s→0

(
sN0Rρ(s)

)−1
= C1 · Cdc(ρ)

2 · C3 · T (XΓ, ρ).

Here

C1 :=
n−1∏

k=0

(−4(n− k)2
)(−1)kαk

C2 :=
n−1∏

k=0

2(−1)k+1d(n,k)(n− k)(−1)k(d(n,k)+2d(σk)(n−k))

where

αk := βk − βk−1 + βk−2 − . . .± β0,

d(n, k) :=
(

2n

k

)
−

(
2n− 1

k

)

and

C3 :=
n−1∏

k=0

Sρ(k)(−1)k+1d(σk).

When XΓ is compact, the equality in Theorem
4.2 is reduced to the formula of Fried in [1]. Actually
we can see that the same formula holds under a more
general condition that dc(ρ) = 0. In fact, if dc(ρ) =
0, then C

dc(ρ)
2 = C3 = 1 and N0 is given only by βk’s.

Moreover the sign ambiguity in Theorem 4.2 disap-
pear since this comes from the scattering operators.
The proof of Theorem 4.2 is mainly a complete anal-
ysis of the geometric side of the Selberg trace formula
in [10], in particular, of the weighted unipotent or-
bital integral. The detail of proof will be given in
[8].
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