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Ruelle zeta function for odd dimensional hyperbolic manifolds with cusps

By Yasuro Gon∗) and Jinsung Park∗∗)

Abstract: In this paper we announce fundamental results of the Ruelle zeta function for
odd dimensional hyperbolic manifolds with cusps; the meromorphic extension over C, its functional
equation and the singularity at s = 0.
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1. Introduction Let us consider an odd di-
mensional noncompact hyperbolic manifold

XΓ = Γ\SO0(2n + 1, 1)/SO(2n + 1)

where Γ is a cofinite discrete subgroup of G =
SO0(2n + 1, 1) and K = SO(2n + 1) is a maximal
compact subgroup of SO0(2n + 1, 1). Throughout
this paper, we assume that the group generated by
the eigenvalues of Γ contains no root of unity. Its
consequences are that Γ is torsion free and

Γ ∩ P = Γ ∩N

for a Γ-cuspidal minimal parabolic subgroup P and
a Langlands decomposition P = MAN where M =
SO(2n) ⊂ K = SO(2n + 1). Then XΓ has a neg-
ative constant curvature with respect to the metric
induced from the Killing form over the Lie algebra
of G.

Let ρ be a finite-dimensional unitary represen-
tation of π1(XΓ) = Γ. For such a manifold XΓ and
ρ, the Ruelle zeta function Rρ(s) is defined by

Rρ(s) :=
∏
γ

det
(
Id− ρ(γ)e−s lγ

)−1

for <(s) > 2n. Here the product is given over the
Γ-conjugacy classes of the primitive hyperbolic ele-
ment γ in Γ, the determinant denoted by det is taken
over the representation space Vρ of ρ, and lγ denotes
the length of the prime geodesic determined by γ.
The fundamental questions for Rρ(s) are its mero-
morphic extension over C and functional equation.
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These questions could be answered by proving the
corresponding properties of the Selberg zeta func-
tion Zρ(σ, s) where Zρ(σ, s) is attached to a repre-
sentation σ of M = SO(2n). For this, we need to
analyze all the terms in Selberg trace formula and
such a analysis has been available for compact hy-
perbolic manifold XΓ. Hence the above questions
for Rρ(s) can be easily answered and solutions have
been well known now for compact XΓ. For instance,
see [3] for even dimensional case which is more diffi-
cult case than odd dimensional case. In this paper,
we give the answers to these questions for odd di-
mensional hyperbolic manifold with cusps. For this,
we also obtain the meromorphic extension of Zρ(σ, s)
over C with precise information about its zeros and
poles and the functional equation of Zρ(σ, s) for odd
dimensional hyperbolic manifold with cusps.

2. Results for Zρ(σ, s) Let us recall the
definition of the Selberg zeta function Zρ(σ, s),

Zρ(σ, s) := exp
(
−

∑
γ

χρ(γ)χσ(mγ)
jγ D(γ)

e−(s−n)lγ
)

defined for <(s) > 2n. Here the sum is given over
the Γ-conjugacy classes of the hyperbolic element γ

in Γ, lγ denotes the length of the closed geodesic
determined by γ and jγ is the positive integer such
that γ = γ

jγ

0 for a primitive hyperbolic element γ0,

D(γ) = en lγ
∣∣det

(
Ad(mγaγ)−1 − Id|n

)∣∣

for the element mγaγ ∈ MA+ which is conjugate to γ

and χρ, χσ denote the characters of ρ, σ respectively.
When M = SO(2n), the representation ring of M

is generated by the fundamental representation σk

acting on ∧kR2n⊗C for k = 0, 1, . . . , (n−1) and the
half spin representations σ+, σ− acting on ∧nR2n⊗C.
We denote by d(σk) the dimension of representation
space of σk, ∧kR2n ⊗ C for 0 ≤ k ≤ n − 1 and by
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d(σn) the corresponding one of σ±.
To state our results of Zρ(σ, s) for σ = σk and

σ+⊕σ−, we need to introduce some notations. First
let τk be the fundamental representation of K =
SO(2n+1) acting on Vτk

= ∧kR2n+1⊗C and ∆k de-
note the Laplacian acting on the space of the smooth
sections of the locally homogeneous vector bundle
Eρ,τk

= Vρ ×ρ G ×τk
Vτk

. Since XΓ is noncompact,
we have the following decomposition

L2 (XΓ, Eρ,τk
) = L2

d (XΓ, Eρ,τk
)⊕ L2

c (XΓ, Eρ,τk
) .

Now the actions of πσk,iλ (∆k) and πσk−1,iλ (∆k) on
L2

d (XΓ, Eρ,τk
) have the discrete eigenvalues of the

forms λj(k)2 +(n−k)2 and λj(k− 1)2 +(n−k +1)2

respectively. This is also true if (σk, k) is replaced
by (σ±, n). Here πσk,iλ = IndG

MAN (σk ⊗ eiλ+ρ ⊗ 1N )
is a non-unitary principal series representation of G

for σk ∈ M̂ and λ ∈ C ' Lie(A)∗ ⊗C. If λ ∈ R then
πσk,iλ is called a unitary principal series. Besides
if iλ ∈ [−(n − k), n − k] and πσk,iλ is unitarizable
then called a complementary series representation.
The spectral resolution of ∆k over L2

c (XΓ, Eρ,τk
) is

determined by the scattering operators Ck
ρ (σk, s) and

Ck
ρ (σk−1, s). These have the matrix forms of size

dc(ρ) where

dc(ρ) =
κ∑

j=1

dj(ρ).

Here κ denotes the number of cusps and dj(ρ) de-
notes the dimension of the maximal subspace of Vρ

over which ρ|Pj∩Γ acts trivially where P1, . . . , Pκ

denote representatives of Γ-conjugacy classes of Γ-
cuspidal parabolic subgroups. Now for σ = σ±, the
scattering matrix has the size 2 dc(ρ) since σ± is un-
ramified and we denote this by Cn

ρ (σn, s). It is well
known that Ck

ρ (σk, s) has the meromorphic extension
over C with poles for <(s) < 0 and finitely many real
poles in the interval (0, n] and satisfies the functional
equation

Ck
ρ (σk, s)Ck

ρ (σk,−s) = Id.

Now we can state our first result on the Selberg zeta
function.

Theorem 2.1. The Selberg zeta function
Zρ(σk, s) for 0 ≤ k ≤ n − 1 and Zρ(σ+, s)Zρ(σ−, s)
a priori defined for <(s) > 2n have the meromorphic
extensions over C with zeros at

• s = n± iλj(k) of order mj(k) (of order 2mj(k) if

λj(k) = 0), where λj(k)2 + (n− k)2 is an eigenval-

ue of πσk,iλ (∆k) with multiplicity mj(k),

• s = n + qj of order d(σk)bj where detCk
ρ (σk, s)

has a pole at s = qj of order bj with <(qj) < 0,

and poles at

• s = k of order dc(ρ) e(n, k) where

e(n, k) := (−1)k+1
( n∑

j=k+1

(−1)jd(σj)
)

=
(

2n− 1
k

)
> 0

for 0 ≤ k < n and e(n, n) := 0,

• s = n of order
1
2
d(σk)tr

(
n(σk)Id− Ck

ρ (σk, 0)
)
,

where n(σk) = 1 for 0 ≤ k < n and n(σn) = 0.

• s = n− qj of order d(σk)bj where detCk
ρ (σk, s)

has a pole at s = qj of order bj with 0 < qj ≤ n,

• s = n− ` of order dc(ρ) d(σk) for ` ∈ N− {n− k}.
The proof of Theorem 2.1 follows from the in-

variant form of the Selberg trace formula where the
non-invariant two terms combined into one invariant
term,

Sρ(σk, s) = Ck
ρ (σk, s)Cτk

(σk, s)−1

where Cτk
(σk, s) denotes the Harish-Chandra C-

function attached to (τk, σk). The zeros and poles
of Zρ(σk, s) can be stated in terms with Sρ(σk, s)
instead of Ck

ρ (σk, s).
The second result on the Selberg zeta function

is its functional equation stated in the following the-
orem.

Theorem 2.2. For s ∈ C, the following equal-
ities hold for 0 ≤ k ≤ n− 1,

Zρ(σk, s) Γ(s− n + 1)−dc(ρ)d(σk)

· (s− k)−dc(ρ) d(n,k)detCk
ρ (σk, 0)d(σk)

· exp
( ∫ s−k

n−k

2Pn
k,ρ(i(z − n + k)) dz

)

= Zρ(σk, 2n− s) Γ(n− s + 1)−dc(ρ) d(σk)

· (2n− k − s)−dc(ρ) d(n,k) detCk
ρ (σk, n− s)d(σk)

where Pn
k,ρ(z) is an even polynomial of z and

d(n, k) := (−1)k
( n∑

j=k

(−1)jd(σj)
)
≥ 0,

and
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Zρ(σ+, s)Zρ(σ−, s)Γ(s− n + 1)−2dc(ρ) d(σn)

· detCn
ρ (σn, 0)d(σn) exp

( ∫ s−n

0

2Pn
n,ρ(iz) dz

)

= Zρ(σ+, 2n− s)Zρ(σ−, 2n− s)

· Γ(n− s + 1)−2dc(ρ) d(σn) detCn
ρ (σn, n− s)d(σn)

where Pn
n,ρ(z) is an even polynomial of z.

Theorem 2.1 and 2.2 are generalizations of
the results of Gangolli and Warner in [2] and
Wakayama in [9] to the the case of the nontriv-
ial locally homogeneous vector bundle over noncom-
pact hyperbolic manifold with cusps. The result for
Zρ(σ+, s)Zρ(σ−, s) with the trivial ρ has been also
obtained in [7] where its relation with the determi-
nant of the Dirac Laplacian is studied. The proofs of
Theorem 2.1 and 2.2 are applications of (the invari-
ant form of) the Selberg trace formula in [10] and
an explicit computation of the weighted unipotent
orbital integral analyzed in [5] to our cases. The de-
tails of proofs are given in [4].

3. Results for Rρ(s) Let us recall the fol-
lowing equality which holds for <(s) > 2n,

(1) Rρ(s) =
2n∏

k=0

Zρ(σk, s + k)(−1)k+1

where Zρ(σn, s + n) = Zρ(σ+, s + n)Zρ(σ−, s + n).
Combining this equality and Theorem 2.1, we can
easily obtain

Theorem 3.1. The Ruelle zeta function
Rρ(s) defined a priori for <(s) > 2n has the
meromorphic extension over C.

We can state explicitly poles and zeros of Rρ(s)
using Theorem 2.1 and the equality (1). In partic-
ular, we can derive the order N0 of the singularity
of Rρ(s) at s = 0, that is, the integer such that
lims→0 sN0Rρ(s) is a nonzero finite value.

Theorem 3.2. The order N0 of the singular-
ity of Rρ(s) at s = 0 is

2
n∑

k=0

(−1)k(n + 1− k)βk +
n−1∑

k=0

(−1)k+1d(σk)bk

+ dc(ρ)
n∑

k=1

(−1)k k d(σk)

where βk := dim ker(∆k) and bk is the order of sin-
gularity of detCk

ρ (σk, s) at s = n− k.
Theorem 3.2 is a generalization of Theorem 3

in [1], [6] to the case of a noncompact hyperbolic
manifold with cusps XΓ where the second term (the

scattering contribution) and the third term (the cus-
pidal contribution from the unipotent term) appear.
It is also easy to derive the functional equation of
Rρ(s) from Theorem 2.2.

Theorem 3.3. The following functional equa-
tion of Ruelle zeta function Rρ(s) holds,

Rρ(−s) =Rρ(s)Y (n, s)dc(ρ)

· detCρ(n, s) exp (−Qρ(s))

where

Y (n, s) := Y1(n, s) Y2(n, s)

with

Y1(n, s) :=
n−1∏

k=0

(s + (n− k)
s− (n− k)

)(−1)k a(n,k)

with

a(n, k) := 2e(n, k)− d(σk) =
n− k

n
d(σk)

for 0 ≤ k ≤ n− 1 and

Y2(n, s) :=
n−1∏

k=0

(s + 2(n− k)
s− 2(n− k)

)(−1)k d(n,k)

,

Cρ(n, s) :=
n∏

k=0

(
C̃ρ(σk, s)

)(−1)k d(σk)

with

C̃ρ(σk, s) := Ck
ρ (σk, n− k − s)Ck

ρ (σk,−(n− k)− s)

for 0 ≤ k ≤ n− 1 and

C̃ρ(σn, s) := Cn
ρ (σn,−s)Cn

ρ (σn, 0)−1,

and

Qρ(s) :=
n−1∑

k=0

(−1)k

∫ s

−s

2Pn
k,ρ(i(z − n + k))dz

+ (−1)n

∫ s

0

2Pn
n,ρ(iz)dz.

Applications of Theorem 3.2 and 3.3 to the rela-
tion with analytic torsion, which is a generalization
of [1] to hyperbolic manifold with cusps, is given in
[8].
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