SCATTERING THEORY AND ADIABATIC DECOMPOSITION OF THE ζ-DETERMINANT OF THE DIRAC LAPLACIAN

JINSUNG PARK* AND KRZYSZTOF P. WOJCIECHOWSKI

ABSTRACT. In this note we announce the adiabatic decomposition formula for the ζ -determinant of the Dirac Laplacian. Theorem 1.1 of this paper extends the result of our earlier work (see [8] and [9]), which covered the case of the invertible tangential operator. The presence of the non-trivial kernel of the tangential operator requires careful analysis of the small eigenvalues of the Dirac Laplacian, which employs elements of scattering theory.

1. Statement of the Result

Let $\mathcal{D}: C^{\infty}(M; S) \to C^{\infty}(M; S)$ denote a compatible Dirac operator acting on sections of a bundle of Clifford modules S over a closed manifold M of dimension 2k+1. Assume that we have a decomposition of M as $M_1 \cup M_2$, where M_1 and M_2 are compact manifolds with boundary so that

(1.1)
$$M = M_1 \cup M_2 \quad , \quad M_1 \cap M_2 = Y = \partial M_1 = \partial M_2 \quad .$$

We assume that M and the operator \mathcal{D} have product structures in a neighborhood of the boundary Y. More precisely, we assume that there is a bicollar neighborhood $N = [-1, 1] \times Y$ of Y in M such that both the Riemannian structure on M and the Hermitian structure on S are products when restricted to N. This implies that \mathcal{D} has the following form when restricted to the submanifold N

(1.2)
$$\mathcal{D} = G(\partial_u + B) \ .$$

Here u denotes a normal variable, $G: S|Y \to S|Y$ is a bundle automorphism and B is the corresponding Dirac operator on Y. Moreover, G and B do not depend on u and they satisfy

(1.3)
$$G^* = -G$$
, $G^2 = -Id$, $B = B^*$ and $GB = -BG$.

Received May 22, 2001.

^{*}Partially supported by Korea Science and Engineering Foundation.

The operator B has a discrete spectrum with infinitely many positive and infinitely many negative eigenvalues. Let $\Pi_{>}$ (resp. $\Pi_{<}$) denote the spectral projections onto the subspaces spanned by the eigensections of B corresponding to the positive (resp. negative) eigenvalues and

 $\sigma_1, \sigma_2: ker \ B \to ker \ B$ denote the involutions of kernel of B such that

(1.4)
$$G\sigma_i = -\sigma_i G$$

Let $\pi_i = \frac{Id - \sigma_i}{2}$ denote the orthogonal projections of the kernel of B onto -1 eigenspace of σ_i . The orthogonal projections $P_1 = \Pi_{<} + \pi_1$ and $P_2 = \Pi_{>} + \pi_2$ provide elliptic self-adjoint boundary conditions for the operators $\mathcal{D}_1 = \mathcal{D}|M_1$ and $\mathcal{D}_2 = \mathcal{D}|M_2$ respectively. This means that the associated operators

$$(\mathcal{D}_i)_{P_i} : dom \ (\mathcal{D}_i)_{P_i} \to L^2(M_i; S|M_i)$$

with domains dom $(\mathcal{D}_i)_{P_i} = \{s \in H^1(M_i; S|M_i); P_i(s|Y) = 0\}$ are self-adjoint Fredholm operators with $ker((\mathcal{D}_i)_{P_i}) \subset C^{\infty}(M_i; S|M_i)$ and they both have discrete spectrum (see [1], [11]).

We now introduce the manifold M_R equal to the manifold M with N replaced by $N_R = [-R, R] \times Y$ and $M_{1,R}$, $M_{1,\infty}$, $M_{2,R}$, $M_{2,\infty}$ which are manifolds M_1 or M_2 with the semicylinder $[0, R] \times Y$, $[0, \infty) \times Y$ or $[-R, 0] \times Y$, $(-\infty, 0] \times Y$ attached to them. Let \mathcal{D}_R , $\mathcal{D}_{i,R}$, $\mathcal{D}_{i,\infty}$ denote the natural extension of \mathcal{D} to M_R , $M_{i,R}$, $M_{i,\infty}$ for i = 1, 2. We also use $\mathcal{D}_{1,\infty}$, $\mathcal{D}_{2,\infty}$ to denote the unique closed self-adjoint extension of those operators in the spaces $L^2(M_{1,\infty}; S)$ and $L^2(M_{2,\infty}; S)$. The operator \mathcal{D}_R is a self-adjoint operator on $L^2(M_R; S)$ and as such it has a discrete spectrum only. Analysis of the eigenvalues shows that they fall into three different categories. We have large eigenvalues (l-values) bounded away from 0. Then there is infinitely many small eigenvalues (s-values), which are of the size $O(\frac{1}{R})$. Last, we have a finite amount of eigenvalues, which decay exponentially with R (e - values). There exists R_0 , such that for any $R > R_0$ number h_M of e - values does not depend on R and we have the formula

$$h_M = \dim \left(ker_{L^2}(\mathcal{D}_{1,\infty}) \right) + \dim \left(ker_{L^2}(\mathcal{D}_{2,\infty}) \right) + \dim \left(L_1 \cap L_2 \right)$$

(see [3], see also [6] and [12] for additional discussion). Here, $L_i \subset ker(B)$ denotes the space of the extended L^2 -solutions of $\mathcal{D}_{i,\infty}$.

We define a modified zeta function of \mathcal{D}_B^2 by the formula

$$\zeta_{\mathcal{D}_R^2}(s) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} Tr'(e^{-t\mathcal{D}_R^2}) dt$$

where $Tr'(\cdot)$ is taken over all the eigenvalues with the exception

of e-values. The operators $(\mathcal{D}_{i,R})_{P_i}$ do not have e-values (see [6]) and $h_i = \dim (ker(\mathcal{D}_{i,R})_{P_i})$ is equal to

$$\dim \left(ker_{L^2}(\mathcal{D}_{i,\infty}) \right) + \dim \left(L_i \cap ker(\sigma_i - 1) \right)$$

We define the zeta functions of $(\mathcal{D}_{i,R})_{P_i}^2$ by

$$\zeta_{(\mathcal{D}_{i,R})_{P_i}^2}(s) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} Tr'(e^{-t(\mathcal{D}_{i,R})_{P_i}^2}) dt$$

where $Tr'(\cdot)$ is taken over the non-zero eigenvalues for i = 1, 2. The zeta functions $\zeta_{\mathcal{D}_R^2}(s)$, $\zeta_{(\mathcal{D}_{i,R})_{P_i}^2}(s)$ are regular at s = 0 and we can define the ζ -regularized determinants for these operators using the standard formula

(1.5)
$$\ln \det_{\zeta} \mathfrak{D}_R^2 = -\frac{d}{ds} \{\zeta_{\mathfrak{D}_R^2}(s)\}|_{s=0} ,$$

where \mathfrak{D}_R^2 denotes one of the aforementioned operators. In this announcement we study the following adiabatic limit

(1.6)
$$\lim_{R \to 0} \frac{\det_{\zeta} \mathcal{D}_R^2}{\det_{\zeta} (\mathcal{D}_{1,R})_{P_1}^2 \cdot \det_{\zeta} (\mathcal{D}_{2,R})_{P_2}^2}$$

We have to introduce elements of *Scattering Theory* in order to present the formula for the limit (1.6). The operators $\mathcal{D}_{i,\infty}^2$ over $M_{i,\infty}$ have continuous spectrum equal to $[0,\infty)$. The number $\lambda \in [0,\infty)$ and $\phi \in ker(B)$ determine a generalized eigensection of $\mathcal{D}_{1,\infty}$, which has the following form on $[0,\infty) \times Y \subset M_{1,\infty}$ (see (4.24) in [6])

$$E(\phi,\lambda) = e^{-i\lambda u}(\phi - iG\phi) + e^{i\lambda u}C_1(\lambda)(\phi - iG\phi) + \theta(\phi,\lambda)$$

where $\theta(\phi, \lambda)$ is a square integrable section of S on $M_{1,\infty}$ which is orthogonal to ker(B), when restricted to $\{u\} \times Y$, and $C_1(\lambda)$ is the scattering matrix. There is also corresponding scattering matrix $C_2(\lambda)$ determined by the operator $\mathcal{D}_{2,\infty}$ over $M_{2,\infty}$. We refer to [6] and [7] (see also [5]) for the presentation of the necessary material from *Scattering Theory*.

Let $C: W \to W$ denote a unitary operator acting on the finite dimensional vector space W. We introduce the operator D(C) equal to the differential operator $-i\frac{1}{2}\frac{d}{du}$ acting on $L^2(S^1, E_C)$ where E_C is the flat vector bundle over $S^1 = \mathbb{R}/\mathbb{Z}$ with the complex conjugate of C as the holonomy group. We define operators

$$I_1 = (G+i) : \ker(B) \to \ker(G-i)$$
,

$$I_2 = (G - i) : \ker(B) \to \ker(G + i) \quad ,$$
$$P_{\sigma_i} = \frac{1}{2}(\sigma_i - 1) : \ker(B) \to \ker(\sigma_i + 1)$$

and

$$S_{\sigma_i}(\lambda) = -P_{\sigma_i} \circ C_i(\lambda) \circ I_i|_{ker(\sigma_i+1)} : ker(\sigma_i+1) \to ker(\sigma_i+1) \quad .$$

Then $C_{12} := C_1(0) \circ C_2(0)|_{\ker(G+i)}$, $S_{\sigma_1} := S_{\sigma_1}(0)$ and $S_{\sigma_2} := S_{\sigma_2}(0)$ are the unitary operators acting on the finite dimensional vector spaces and we have well-defined self-adjoint, elliptic operators $D(C_{12}), D(S_{\sigma_1}), D(S_{\sigma_2})$. Now, we are ready to state the main result

Theorem 1.1. The following formula holds:

(1.7)
$$\lim_{R \to \infty} \frac{R^{2h} \cdot \det_{\zeta} \mathcal{D}_{R}^{2}}{\det_{\zeta} (\mathcal{D}_{1,R})_{P_{1}}^{2} \cdot \det_{\zeta} (\mathcal{D}_{2,R})_{P_{2}}^{2}} = \frac{2^{-\zeta_{B^{2}}(0)} \cdot \det_{\zeta} \frac{1}{4} D(C_{12})^{2}}{\det_{\zeta} D(S_{\sigma_{1}})^{2} \cdot \det_{\zeta} D(S_{\sigma_{2}})^{2}}$$

where $h = h_M - h_1 - h_2 = \dim(L_1 \cap L_2) - \dim(L_1 \cap ker(\sigma_1 - 1)) - \dim(L_2 \cap ker(\sigma_2 - 1))$ and $P_1 = \Pi_{<} + \pi_{\sigma_1}, P_2 = \Pi_{>} + \pi_{\sigma_2}.$

Remark 1.2. (1) A special case of the Theorem 1.1 was proved in [8], [9], where it was assumed that

(1.8)
$$\ker_{L^2} \mathcal{D}_{1,\infty} = \ker_{L^2} \mathcal{D}_{2,\infty} = \ker B = \{0\} .$$

Assumption (1.8) implies the vanishing of all s-values and e-values, in other words, all eigenvalues of all operators involved are bounded away from 0. This reduces formula (1.7) to the equality

$$\lim_{R \to \infty} \frac{\det_{\zeta} \mathcal{D}_R^2}{\det_{\zeta} \mathcal{D}_{1,R,\Pi_{\leq}}^2 \cdot \det_{\zeta} \mathcal{D}_{2,R,\Pi_{>}}^2} = 2^{-\zeta_{B^2}(0)} \quad .$$

(2) The main issue in the present work is the analysis of s - values. The proof of Theorem 1.1 uses some ideas of the work in W. Müller (see [6]).

2. Scattering Matrix and Slowly Decaying Eigenvalues

In this section we investigate the relation between the scattering matrices $C_1(\lambda)$, $C_2(\lambda)$ and the s-values of the operators \mathcal{D}_R , $(\mathcal{D}_{1,R})_{P_1}$ and $(\mathcal{D}_{2,R})_{P_2}$.

Let φ be a eigensection of \mathcal{D}_R , which corresponds to $s - values \lambda = \lambda(R)$, that is

$$\mathcal{D}_R \varphi = \lambda \varphi \quad \text{with} \quad |\lambda| < R^{-\kappa}$$

for some fixed κ with $0 < \kappa < 1$. Now we study the s - values of the operator \mathcal{D}_R over M_R . We introduce the manifold

$$M_R = M_{1,R} \sqcup M_{2,R}$$

The boundary of M_R is equal to the sum of two copies of Y. We consider \mathcal{D}_R , the operator on a closed manifold M_R , as the Dirac operator on \overline{M}_R , which satisfies the transmission boundary condition. In particular, the corresponding eigensection φ to $s - values \lambda = \lambda(R)$ satisfies the "transmission boundary condition"

$$\varphi|_{\partial M_{1,R}} = \varphi|_{\partial M_{2,R}}$$

We refer to [2] for more detailed discussion of the transmission problem (see also [8]). We want to warn the reader that, when we discuss transmission boundary condition, it would be natural to consider $M_{1,R}$ as $M_{1,R} = M_1 \cup [-R,0] \times Y$, but in the following we parametrize cylindrical parts as

$$M_{1,R} = M_1 \cup [0,R] \times Y$$
, $M_{2,R} = M_2 \cup [-R,0] \times Y$.

The section φ can be represented in the following way on $[0, R] \times Y \subset M_{1,R}$

$$\varphi = e^{-i\lambda u}\psi_1 + e^{i\lambda u}\psi_2 + \varphi_1$$

where $\psi_1 \in \ker(G-i), \psi_2 \in \ker(G+i)$ and φ_1 is orthogonal to ker B when restricted to $\{u\} \times Y$. The eigenvalue $\lambda(R)$ is not bounded away from 0, hence ψ_1, ψ_2 are non-trivial sections of S|Y (see Theorem 2.2 in [12]). Choose $\phi \in L_1$ such that $\psi_1 = \phi - iG\phi$. Then the generalized eigensection $E(\phi, \lambda)$ associated to ϕ is given by

$$E(\phi,\lambda) = e^{-i\lambda u}(\phi - iG\phi) + e^{i\lambda u}C_1(\lambda)(\phi - iG\phi) + \theta(\phi,\lambda) \quad .$$

Following [6], we introduce $F = \varphi|_{M_{1,R}} - E(\phi, \lambda)|_{M_{1,R}}$. We know that there exist positive constants c_1, c_2 , such that

$$||\varphi_1|_{\{R\} \times Y}|| < c_1 e^{-c_2 R}$$

(see for instance Lemma 2.1 in [12]). Green's Theorem gives us

$$0 = \langle DF, F \rangle_{M_{1,R}} - \langle F, DF \rangle_{M_{1,R}} = \int_Y \langle GF, F \rangle dy \; .$$

This leads to

$$\int_{Y} \langle GF, F \rangle dy = -i ||C_1(\lambda)\psi_1 - \psi_2||^2 + O(e^{-cR})$$

for some positive constant c, and we get the following inequality

(2.1)
$$||C_1(\lambda)\psi_1 - \psi_2||^2 < c_1 e^{-c_2 R} ,$$

for some constants c_1, c_2 (compare [6]). Similarly, we have

$$\varphi = e^{i\lambda u}\psi_3 + e^{-i\lambda u}\psi_4 + \varphi_2$$

over $[-R, 0] \times Y \subset M_{2,R}$, where $\psi_3 \in ker(G + i), \psi_4 \in ker(G - i)$ and φ_2 is orthogonal to ker(B) when restricted to $\{u\} \times Y$. Again we have the expected estimate

(2.2)
$$||C_2(\lambda)\psi_3 - \psi_4||^2 < c_1 e^{-c_2 R} .$$

The transmission boundary condition over $Y \sqcup Y = \partial M_{1,R} \sqcup \partial M_{2,R}$ implies the equalities

$$e^{-i\lambda R}\psi_1 + e^{i\lambda R}\psi_2 = e^{-i\lambda R}\psi_3 + e^{i\lambda R}\psi_4$$

so that

(2.3)
$$\psi_1 = e^{2i\lambda R}\psi_4, \quad \psi_3 = e^{2i\lambda R}\psi_2 \ .$$

By (2.1), (2.2), (2.3), we have

$$\|e^{2i\lambda R}C_1(\lambda)\psi_4 - \psi_2\|^2 < c_1 e^{-c_2 R} ,$$

$$\|e^{2i\lambda R}C_2(\lambda)\psi_2 - \psi_4\|^2 < c_1 e^{-c_2 R} .$$

We combine these inequalities and obtain

$$\|e^{4i\lambda R}C_1(\lambda) \circ C_2(\lambda)\psi_2 - \psi_2\|^2 < c_3 e^{-c_4 R} ,$$

$$\|e^{4i\lambda R}C_2(\lambda) \circ C_1(\lambda)\psi_4 - \psi_4\|^2 < c_3 e^{-c_4 R}$$

for some positive constants c_3, c_4 . The unitary operator $C_1(\lambda) \circ C_2(\lambda)$ is an analytic function of λ for sufficiently small λ . This whole analysis follows the method presented in [6] and results in the following Proposition.

Proposition 2.1. There exists R_0 such that for $R > R_0$ the s - value $\lambda(R)$ of \mathcal{D}_R satisfies

(2.4)
$$4R\lambda(R) + \alpha_j(\lambda(R)) = 2\pi k + O(e^{-cR})$$

for an integer k with $|k| < R^{1-\kappa}$, where $\exp(i\alpha_j(\lambda(R)))$ is an eigenvalue of the restriction of the unitary operator $C_1(\lambda(R)) \circ C_2(\lambda(R))$ to $\ker(G+i) \subset \ker(B)$.

Remark 2.2. The map $C_1(0) \circ C_2(0)$ on ker(G + i) is not the identity map. However, it is equal to the identity, when restricted to the subspace $I_2(L_1 \cap L_2)$, where

$$I_2 = (G - i) : \ker(B) \to \ker(G + i)$$

It follows that the number of j's such that $\alpha_j(0) = 0$ is equal to dim $(L_1 \cap L_2)$. This is the dimension of the space of eigensections corresponding to e - values, which are not determined by $\ker_{L^2}(\mathcal{D}_{i,\infty})$.

Similarly, we have the corresponding analysis for the slowly decaying eigenvalues of the operators $(\mathcal{D}_{i,R})_{P_i}$ for i = 1, 2.

Proposition 2.3. There exists R_0 such that for $R > R_0$ the s-value $\lambda = \lambda(R)$ of $(\mathcal{D}_{i,R})_{P_i}$ satisfies

(2.5)
$$2R\lambda(R) + \beta_j(\lambda(R)) = 2\pi k + O(e^{-cR})$$

for an integer k with $|k| < R^{1-\kappa}$, and $\exp(i\beta_j(\lambda(R)))$ an eigenvalue of the unitary operator $S_{\sigma_i}(\lambda(R)) = -P_{\sigma_i} \circ C_i(\lambda(R)) \circ I_{\sigma_i} : \ker(\sigma_i + 1) \to \ker(\sigma_i + 1)$ and i = 1, 2.

Remark 2.4. The map $S_{\sigma_i}(0)$ restricted to the subspace $\ker(\sigma_i + 1) \cap \ker(C_i(0) + 1) \subset \ker(\sigma_i + 1)$ is equal to I, and the number of j's such that $\beta_j(0) = 0$ is equal to $\dim(\ker(\sigma_i + 1) \cap \ker(C_i(0) + 1))$. This is the number of zero eigenvalues of $(\mathcal{D}_{i,R})_{P_i}$ which are not in $\ker_{L^2}(\mathcal{D}_{i,\infty})$ for i = 1, 2.

3. Sketch of the Proof of Theorem 1.1

In this section we briefly sketch the proof of Theorem 1.1. We refer to [10] for the detailed exposition.

We define

(3.1)

$$\zeta_{rel,R}(s) := \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} [Tr(e^{-t\mathcal{D}_R^2} - e^{-t(\mathcal{D}_{1,R})_{P_1}^2} - e^{-t(\mathcal{D}_{2,R})_{P_2}^2}) - h] dt$$

where $h = \dim(L_1 \cap L_2) - \dim(L_1 \cap \ker(\sigma_1 - 1)) - \dim(L_2 \cap \ker(\sigma_2 - 1))$. We decompose $\zeta_{rel,R}(s)$ into two parts

$$\zeta_s^R(s) = \frac{1}{\Gamma(s)} \int_0^{R^{2-\varepsilon}} (\cdot) \ dt \quad , \quad \zeta_l^R(s) = \frac{1}{\Gamma(s)} \int_{R^{2-\varepsilon}}^{\infty} (\cdot) \ dt$$

where $0 < \epsilon < 1$. The derivatives of $\zeta_s^R(s), \zeta_l^R(s)$ at s = 0 give the small and large time contribution. The standard computation shows that

$$(\zeta_s^R)'(0) = \int_0^{R^{2-\epsilon}} t^{-1} Tr(e^{-t\mathcal{D}_R^2} - e^{-t(\mathcal{D}_{1,R})_{P_1}^2} - e^{-t(\mathcal{D}_{2,R})_{P_2}^2}) dt + h\gamma - h(2-\epsilon)\log R,$$

where γ denotes the Euler constant. We analyze the "small time" contribution

$$\int_{0}^{R^{2-\epsilon}} t^{-1} \left[Tr(e^{-t\mathcal{D}_{R}^{2}} - e^{-t(\mathcal{D}_{1,R})_{P_{1}}^{2}} - e^{-t(\mathcal{D}_{2,R})_{P_{2}}^{2}}) - h \right] dt$$

using a method developed in [4] and explicit computations made in [10]. It follows that

(3.2)
$$\lim_{R \to \infty} \left(\frac{d}{ds} \zeta_s^R(s) |_{s=0} + h(2-\varepsilon) \cdot \ln R \right) = -\ln 2 \cdot \zeta_{B^2}(0) + h\gamma .$$

We have the equality

$$(\zeta_l^R)'(0) = \int_{R^{-\epsilon}}^{\infty} t^{-1} [Tr(e^{-tR^2\mathcal{D}_R^2} - e^{-tR^2(\mathcal{D}_{1,R})_{P_1}^2} - e^{-tR^2(\mathcal{D}_{2,R})_{P_2}^2}) - h] dt$$

and the analysis of s-values from Section 2 (see Proposition 2.1 and Proposition 2.3) provides the proof of the following result. The details will appear in [10].

Theorem 3.1.

$$\lim_{R \to \infty} \int_{R^{-\epsilon}}^{\infty} t^{-1} [Tr(e^{-tR^2 \mathcal{D}_R^2} - e^{-tR^2 (\mathcal{D}_{1,R})_{P_1}^2} - e^{-tR^2 (\mathcal{D}_{2,R})_{P_2}^2}) - h] dt + h\gamma + h\epsilon \log R$$
$$= \frac{d}{ds}|_{s=0} \{ \frac{1}{\Gamma(s)} \int_0^{\infty} t^{s-1} [Tr(e^{-t\frac{1}{4}D(C_{12})^2} - e^{-tD(S_{\sigma_1})^2} - e^{-tD(S_{\sigma_2})^2}) - h] dt \} .$$

This ends the proof of Theorem 1.1.

References

- Booß-Bavnbek, B. and Wojciechowski, K.P., Elliptic Boundary Problems for Dirac Operators, Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1993.
- Brünning, J. and Lesch, M., On the η-invariant of certain nonlocal boundary value problems, Duke Math. J. 96 (1999) no. 2, 425–468.
- [3] Cappell, S.E., Lee, R. and Miller, E.Y., Self-adjoint elliptic operators and manifold decompositions. I. Low eigenmodes and stretching, Comm. Pure Appl. Math. 49 (1996), no. 8, 825-866.
- [4] Douglas, R.G. and Wojciechowski, K.P., Adiabatic limits of the η-invariants. The odddimensional Atiyah-Patodi-Singer problem, Comm. Math. Phys. 142 (1991), no. 1, 139– 168.
- [5] Melrose, R.B., Geometric scattering theory. Stanford Lectures. Cambridge University Press, Cambridge, 1995.
- [6] Müller, W., Eta invariants and manifolds with boundary, J. Differential Geom. 40 (1994), no. 2, 311–377.
- Müller, W., Relative zeta functions, relative determinants, and scattering theory, Comm. Math. Phys. 192 (1998), no. 2, 309–347.
- [8] Park, J. and Wojciechowski, K. P., Relative ζ-determinant and Adiabatic decomposition of the ζ-determinat of the Dirac Laplacian, Lett. Math. Phys. 52 (2000), no. 4, 329–337.
- [9] Park, J. and Wojciechowski, K. P., Adiabatic decomposition of the ζ-determinant of the Dirac Laplacian I. The case of invertible tangential operator, to appear in Comm. Partial Differential Equations.
- [10] Park, J. and Wojciechowski, K. P., Scattering Theory and the Adiabatic Decomposition of the ζ -determinant of the Dirac Laplacian, preprint.
- Seeley, R. T., Topics in pseudodifferential operators, 1969 Pseudo-Diff. Operators (C.I.M.E., Stresa, 1968) 167–305 Edizioni Cremonese, Rome.
- [12] Wojciechowski, K. P., The additivity of the η-invariant: the case of an invertible tangential operator, Houston J. Math. 20 (1994), no. 4, 603–621.

DEPARTMENT OF MATHEMATICS, IUPUI (INDIANA/PURDUE), INDIANAPOLIS, IN 46202–3216, U.S.A.

E-mail address: jinspark@indiana.edu

 $E\text{-}mail \ address:$ kwojciechowski@math.iupui.edu