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SCATTERING THEORY AND ADIABATIC DECOMPOSITION
OF THE (-DETERMINANT OF THE DIRAC LAPLACIAN

JINSUNG PARK* AND KRZYSZTOF P. WOJCIECHOWSKI

ABSTRACT. In this note we announce the adiabatic decomposition formula for the
(-determinant of the Dirac Laplacian. Theorem 1.1 of this paper extends the re-
sult of our earlier work (see [8] and [9]), which covered the case of the invertible
tangential operator. The presence of the non-trivial kernel of the tangential op-
erator requires careful analysis of the small eigenvalues of the Dirac Laplacian,
which employs elements of scattering theory.

1. Statement of the Result

Let D : C*®°(M;S) — C*°(M;S) denote a compatible Dirac operator acting
on sections of a bundle of Clifford modules S over a closed manifold M of di-
mension 2k + 1. Assume that we have a decomposition of M as M7 UMs , where
M, and M, are compact manifolds with boundary so that

(1.1) M=MUM, , MiNMy=Y =0M; =0M> .

We assume that M and the operator D have product structures in a neighbor-
hood of the boundary Y. More precisely, we assume that there is a bicollar
neighborhood N = [—1,1] x Y of Y in M such that both the Riemannian struc-
ture on M and the Hermitian structure on S are products when restricted to V.
This implies that D has the following form when restricted to the submanifold
N

(1.2) D=G(d,+B) .

Here u denotes a normal variable, G : S|Y — S|Y is a bundle automorphism
and B is the corresponding Dirac operator on Y. Moreover, G and B do not
depend on u and they satisfy

(1.3) G*=-G , G*=—-Id , B=B* and GB=—BG .
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The operator B has a discrete spectrum with infinitely many positive and in-
finitely many negative eigenvalues. Let II- (resp. II.) denote the spectral
projections onto the subspaces spanned by the eigensections of B corresponding
to the positive (resp. negative) eigenvalues and

01,09 : ker B — ker B denote the involutions of kernel of B such that

(14) GO’Z‘ = —O'iG .

Let m; = Id% denote the orthogonal projections of the kernel of B onto —1
eigenspace of g; . The orthogonal projections P; = Il + 7 and P, = IIs + o
provide elliptic self-adjoint boundary conditions for the operators D; = D|M;
and Dy = D|M; respectively. This means that the associated operators

(Di)p, : dom (D;)p, — L*(M;; S|M;)

with domains dom(D;)p, = {s € H'(M;;S|M,); P,(s|]Y) = 0} are self-adjoint
Fredholm operators with ker((D;)p,) C C*°(M;; S|M;) and they both have dis-
crete spectrum (see [1], [11]).

We now introduce the manifold Mgz equal to the manifold M with N replaced
by NR = [*R, R] x Y and MI,R s Ml,oo y MZR N Mg’oo which are manifolds M1
or M, with the semicylinder [0, R] XY , [0,00) XY or [—R,0]xY , (—00,0] xY
attached to them. Let Dr , D; r , D; o denote the natural extension of D to
Mg , M; g, M; » for i = 1,2. We also use D;  , D2 » to denote the unique
closed self-adjoint extension of those operators in the spaces L?(M; «;S) and
L?*(M2,;S) . The operator Dp, is a self-adjoint operator on L?(Mpg;S) and as
such it has a discrete spectrum only. Analysis of the eigenvalues shows that they
fall into three different categories. We have large eigenvalues (I—values) bounded
away from 0 . Then there is infinitely many small eigenvalues (s—values) , which
are of the size O(%). Last, we have a finite amount of eigenvalues, which decay
exponentially with R (e — values). There exists Ry , such that for any R > Ry
number hj; of e — values does not depend on R and we have the formula

hM = dim (kerLz (Dl,m)) + dim (k’e’l“L2 (szo)) + dim (L1 N Lz)

(see [3], see also [6] and [12] for additional discussion). Here, L; C ker(B)
denotes the space of the extended L2-solutions of D; .

We define a modified zeta function of D% by the formula

o4(9) = 75

/ =17y (PR dt
0

where T7'(-) is taken over all the eigenvalues with the exception
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of e — values . The operators (D; r)p, do not have e — values (see [6]) and
h; = dim (ker(D; r)p,) is equal to

[3

dim (kerp2(D; o)) + dim (L; N ker(o; — 1))

We define the zeta functions of (D; r)%, by

1 - s—1 —t(Di,r)?,
C(’DLR)?% (3) = @/0 t T?",(e R Pl) dt

where T'r'(-) is taken over the non-zero eigenvalues for i = 1,2. The zeta func-
tions (pz (), Cep, 7)3, (s) are regular at s = 0 and we can define the (-regularized

determinants for these operators using the standard formula

d
(1.5) In det D, = = {Go3, ()} -

where D% denotes one of the aforementioned operators. In this announcement
we study the following adiabatic limit

detCD%

1. li
( 6) RILnO detg(Dl,R)%l'detC(DZR)%g

We have to introduce elements of Scattering Theory in order to present the
formula for the limit (1.6). The operators D}, over M;, have continuous
spectrum equal to [0,00). The number A\ € [0,00) and ¢ € ker(B) determine a
generalized eigensection of D; o , which has the following form on [0,00) X Y C
M o« (see (4.24) in [6])

E(¢,\) = e (¢ — iGe) + e C1(A) (¢ — iGo) + 0(¢, A)

where 0(¢, \) is a square integrable section of S on M o, which is orthogonal
to ker(B) , when restricted to {u} x Y , and C;()) is the scattering matrix.
There is also corresponding scattering matrix Cy(\) determined by the operator
Dy oo over My . We refer to [6] and [7] (see also [5]) for the presentation of the
necessary material from Scattering Theory.

Let C': W — W denote a unitary operator acting on the finite dimensional

vector space W. We introduce the operator D(C) equal to the differential op-

erator —i%% acting on L?(S', E¢) where E¢ is the flat vector bundle over

S! = R/Z with the complex conjugate of C' as the holonomy group. We define
operators

I = (G +1) : ker(B) — ker(G — i) ,
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I, = (G — i) : ker(B) — ker(G +1) ,

1
P, = 5(@ —1) : ker(B) — ker(o; + 1)

and
So.(A) = =P5, 0 Ci(X) © Li|per(o;41) = ker(oi + 1) — ker(o; +1) .

Then Ciz := C1(0) 0 Co(0)|ker(G+i) » S0y := So,(0) and Sy, := S5,(0) are the
unitary operators acting on the finite dimensional vector spaces and we have
well-defined self-adjoint, elliptic operators D(Ci2), D(S,,), D(Ss,). Now, we
are ready to state the main result

Theorem 1.1. The following formula holds:

(1.7) y R?M.det D%, 27220 det $ D(Ch)?
‘ Rr250 dete(Dr.g)3, -detc(Da.n)%,  detcD(Sy,)2-detc D(S,,)?

where h = hM - hl - hg = lel(Ll N Lg) - d1m(L1 N ker(ol - 1)) - d1m(L2 N
ker(op — 1)) and Py =11« + 7y, , Py =15 + 7y,

Remark 1.2. (1) A special case of the Theorem 1.1 was proved in [8], [9], where
it was assumed that

(18) kerLle,oo = keI'L2D2’OO = ker B = {0} .

Assumption (1.8) implies the vanishing of all s —values and e —values , in other
words, all eigenvalues of all operators involved are bounded away from 0 . This
reduces formula (1.7) to the equality

detcpé

im — 9=¢52(0)
R—o0 detCD%R,H< . detCID%’R,H>

(2) The main issue in the present work is the analysis of s — values. The
proof of Theorem 1.1 uses some ideas of the work in W. Miiller (see [6]).
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2. Scattering Matrix and Slowly Decaying Eigenvalues

In this section we investigate the relation between the scattering matrices
C1(N), C2(N) and the s — values of the operators Dg , (D1,r)p, and (D2 r)p,.

Let ¢ be a eigensection of Dg , which corresponds to s — values A = A(R),
that is

Dre =Xp with |[A\|<R™"

for some fixed x with 0 < k < 1. Now we study the s — values of the operator
Dr over M . We introduce the manifold

Mp =M rpUMsg

The boundary of Mg is equal to the sum of two copies of Y. We consider Dg,
the operator on a closed manifold Mg, as the Dirac operator on Mg, which
satisfies the transmission boundary condition. In particular, the corresponding
eigensection ¢ to s — values A\ = A(R) satisfies the “transmission boundary
condition”

90|<9M1,R = 90|8M2,R

We refer to [2] for more detailed discussion of the transmission problem (see also
[8]). We want to warn the reader that, when we discuss transmission boundary
condition, it would be natural to consider M; r as My rp = My U[—R,0] x Y,
but in the following we parametrize cylindrical parts as

MLR = M1 U [O,R] XY s M27R = M2 U [—R,O] xY.
The section ¢ can be represented in the following way on [0, R] x Y C M; g

p=e N+ e+ g

where 1)1 € ker(G — i),12 € ker(G + i) and ¢ is orthogonal to ker B when
restricted to {u} x Y. The eigenvalue A(R) is not bounded away from 0 , hence
11,12 are non-trivial sections of S|Y (see Theorem 2.2 in [12]). Choose ¢ € Ly
such that 1 = ¢ —iG¢ . Then the generalized eigensection F(¢, \) associated
to ¢ is given by

E(6,\) = e (¢ —iG) + e CL(N) (¢ — iGo) +0(9, A)

Following [6], we introduce F' = ¢|ns, , —E(¢, A)|ar, - We know that there exist
positive constants c1, ¢ , such that

o1l iryxy || < cre™2%
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(see for instance Lemma 2.1 in [12]). Green’s Theorem gives us
0= (DF, F)a, o — (F,DF)pp, = /Y<GF, Fdy .
This leads to
| (GF.Fyy = =[G ()x = val P+ O(e)

for some positive constant ¢ , and we get the following inequality

(2.1) ICL (N1 = a||* < ere™ 2T,
for some constants c1, o (compare [6]). Similarly, we have
o =3+ e My + oy
over [-R,0] xY C My g , where 3 € ker(G +i),94 € ker(G — i) and 9 is

orthogonal to ker(B) when restricted to {u} x Y. Again we have the expected
estimate

(2.2) [C2(N)os — thu|® < cre™F .

The transmission boundary condition over Y UY = 0M; r UOM; g implies the
equalities

e—i)\R,l/}I + ei)\RwQ — 6—i)\R1/}3 + €i>\RT/J4
so that

(2.3) 1 = My, g = 2y
By (2.1), (2.2), (2.3), we have
1€¥ MO (N)ihy — o |* < cre™ 2,
|2 MOy (N)aha — thu||? < cre™2F .
We combine these inequalities and obtain
[T (A) 0 Ca(N)ihy — ¢ha|* < cge™ T

[ Co(X) 0 Cr(A) s — | < cge 4R
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for some positive constants cs,cs. The unitary operator C1(\) o C3(A) is an
analytic function of A for sufficiently small A\. This whole analysis follows the
method presented in [6] and results in the following Proposition.

Proposition 2.1. There exists Ry such that for R > Ry the s — value A(R) of
Dpg satisfies

(2.4) 4RN(R) + a;(M(R)) = 27k + O(e™ )

for an integer k with |k| < R'™" | where exp(ia;(A(R))) is an eigenvalue of the
restriction of the unitary operator C1(A(R)) o C2(A(R)) to ker(G +1i) C ker(B).

Remark 2.2. The map C1(0) o C2(0) on ker(G + i) is not the identity map.
However, it is equal to the identity, when restricted to the subspace I5(L; N Ls),
where

I, = (G —1i) : ker(B) — ker(G + 1)

It follows that the number of j’s such that a;(0) = 0 is equal to dim(L; N Ly).
This is the dimension of the space of eigensections corresponding to e — values,
which are not determined by kery2(D; ) -

Similarly, we have the corresponding analysis for the slowly decaying eigen-
values of the operators (D; r)p, for i =1,2.

Proposition 2.3. There exists Ry such that for R > Ry the s —value A = \(R)
of (D; ), satisfies

(2.5) 2RA(R) + 3;(M(R)) = 27k + O(e™“F)

for an integer k with |k| < R'™" , and exp(iB3;(A(R))) an eigenvalue of the
unitary operator Sy, (A(R)) = —P,, o C;(A(R)) o I, : ker(o; + 1) — ker(o; + 1)
and i =1,2.

Remark 2.4. The map S, (0) restricted to the subspace ker(c; + 1) N
ker(C;(0) + 1) C ker(o; + 1) is equal to I, and the number of j’s such that
B;(0) = 0 is equal to dim(ker(o; + 1) N ker(C;(0) + 1)). This is the number of
zero eigenvalues of (D; r)p, which are not in kery2(D; ) for i =1,2.
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3. Sketch of the Proof of Theorem 1.1

In this section we briefly sketch the proof of Theorem 1.1. We refer to [10]
for the detailed exposition.

We define
(3.1)
]. o 2 2 2
@www—ﬂ)/tsmwewmﬁt@wa_ewM@%mmt
s) Jo

where h = dim(L; N Ly) — dim(L; Nker(oq — 1)) — dim(Lg Nker(og — 1)). We
decompose (e r(s) into two parts

v L [T Ry - [T
O ] RGO R MR

where 0 < € < 1. The derivatives of (¥(s),(f(s) at s = 0 give the small and
large time contribution. The standard computation shows that

R276
(c?yan=:/" t 1T (e~ PR —e T Prm)e e ~HP2r)E ) gt 4 hy—h(2 — €) log R,
0
where v denotes the Euler constant. We analyze the “small time” contribution
R2—e
/ tfl[TT(eftD% — e M Pr)E eit(DQ’RﬁD?) — h] dt
0

using a method developed in [4] and explicit computations made in [10]. It
follows that

(3.2) Jggnm(%ff(S)\s:o +h(2 —¢€)n R) = —In 2-Cp2(0) + hy .

We have the equality

o0
(G0 = [ T P - b, P10k

—e€

and the analysis of s—wvalues from Section 2 (see Proposition 2.1 and Proposition
2.3) provides the proof of the following result. The details will appear in [10].

Theorem 3.1.
o
lim t_l[Tr(e_tR2D2R _ R (D1}, _e—tR2(D2,R)f32)_h] dt+hy+helog R
R—oo R—¢
d | t1D(C12)®  —tD(Se ) —tD(Sy,)?
= d_|S=0{F( ) 13 [TT(G 4 o—e 7 —e 72 ) - h] dt} .
s s) Jo

This ends the proof of Theorem 1.1.
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