
Mathematical Research Letters 9, 17–25 (2002)

SCATTERING THEORY AND ADIABATIC DECOMPOSITION
OF THE ζ-DETERMINANT OF THE DIRAC LAPLACIAN

Jinsung Park* and Krzysztof P. Wojciechowski

Abstract. In this note we announce the adiabatic decomposition formula for the
ζ-determinant of the Dirac Laplacian. Theorem 1.1 of this paper extends the re-
sult of our earlier work (see [8] and [9]), which covered the case of the invertible
tangential operator. The presence of the non-trivial kernel of the tangential op-
erator requires careful analysis of the small eigenvalues of the Dirac Laplacian,
which employs elements of scattering theory.

1. Statement of the Result

Let D : C∞(M ;S) → C∞(M ;S) denote a compatible Dirac operator acting
on sections of a bundle of Clifford modules S over a closed manifold M of di-
mension 2k+1. Assume that we have a decomposition of M as M1∪M2 , where
M1 and M2 are compact manifolds with boundary so that

M = M1 ∪ M2 , M1 ∩ M2 = Y = ∂M1 = ∂M2 .(1.1)

We assume that M and the operator D have product structures in a neighbor-
hood of the boundary Y . More precisely, we assume that there is a bicollar
neighborhood N = [−1, 1]×Y of Y in M such that both the Riemannian struc-
ture on M and the Hermitian structure on S are products when restricted to N .
This implies that D has the following form when restricted to the submanifold
N

D = G(∂u + B) .(1.2)

Here u denotes a normal variable, G : S|Y → S|Y is a bundle automorphism
and B is the corresponding Dirac operator on Y . Moreover, G and B do not
depend on u and they satisfy

G∗ = −G , G2 = −Id , B = B∗ and GB = −BG .(1.3)
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The operator B has a discrete spectrum with infinitely many positive and in-
finitely many negative eigenvalues. Let Π> (resp. Π<) denote the spectral
projections onto the subspaces spanned by the eigensections of B corresponding
to the positive (resp. negative) eigenvalues and
σ1, σ2 : ker B → ker B denote the involutions of kernel of B such that

Gσi = −σiG .(1.4)

Let πi = Id−σi

2 denote the orthogonal projections of the kernel of B onto −1
eigenspace of σi . The orthogonal projections P1 = Π< + π1 and P2 = Π> + π2

provide elliptic self-adjoint boundary conditions for the operators D1 = D|M1

and D2 = D|M2 respectively. This means that the associated operators

(Di)Pi : dom (Di)Pi → L2(Mi;S|Mi)

with domains dom(Di)Pi
= {s ∈ H1(Mi;S|Mi);Pi(s|Y ) = 0} are self-adjoint

Fredholm operators with ker((Di)Pi
) ⊂ C∞(Mi;S|Mi) and they both have dis-

crete spectrum (see [1], [11]).

We now introduce the manifold MR equal to the manifold M with N replaced
by NR = [−R, R]× Y and M1,R , M1,∞ , M2,R , M2,∞ which are manifolds M1

or M2 with the semicylinder [0, R]×Y , [0,∞)×Y or [−R, 0]×Y , (−∞, 0]×Y
attached to them. Let DR , Di,R , Di,∞ denote the natural extension of D to
MR , Mi,R , Mi,∞ for i = 1, 2. We also use D1,∞ , D2,∞ to denote the unique
closed self-adjoint extension of those operators in the spaces L2(M1,∞; S) and
L2(M2,∞;S) . The operator DR is a self-adjoint operator on L2(MR;S) and as
such it has a discrete spectrum only. Analysis of the eigenvalues shows that they
fall into three different categories. We have large eigenvalues (l−values) bounded
away from 0 . Then there is infinitely many small eigenvalues (s−values) , which
are of the size O( 1

R ). Last, we have a finite amount of eigenvalues, which decay
exponentially with R (e − values). There exists R0 , such that for any R > R0

number hM of e − values does not depend on R and we have the formula

hM = dim (kerL2(D1,∞)) + dim (kerL2(D2,∞)) + dim (L1 ∩ L2)

(see [3], see also [6] and [12] for additional discussion). Here, Li ⊂ ker(B)
denotes the space of the extended L2-solutions of Di,∞.

We define a modified zeta function of D2
R by the formula

ζD2
R
(s) =

1
Γ(s)

∫ ∞

0

ts−1Tr′(e−tD2
R) dt

where Tr′(·) is taken over all the eigenvalues with the exception
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of e − values . The operators (Di,R)Pi
do not have e − values (see [6]) and

hi = dim (ker(Di,R)Pi) is equal to

dim (kerL2(Di,∞)) + dim (Li ∩ ker(σi − 1)) .

We define the zeta functions of (Di,R)2Pi
by

ζ(Di,R)2Pi
(s) =

1
Γ(s)

∫ ∞

0

ts−1Tr′(e−t(Di,R)2Pi ) dt

where Tr′(·) is taken over the non-zero eigenvalues for i = 1, 2. The zeta func-
tions ζD2

R
(s) , ζ(Di,R)2Pi

(s) are regular at s = 0 and we can define the ζ-regularized
determinants for these operators using the standard formula

ln detζD
2
R = − d

ds
{ζD2

R
(s)}|s=0 ,(1.5)

where D2
R denotes one of the aforementioned operators. In this announcement

we study the following adiabatic limit

lim
R→0

detζD2
R

detζ(D1,R)2P1
·detζ(D2,R)2P2

.(1.6)

We have to introduce elements of Scattering Theory in order to present the
formula for the limit (1.6). The operators D2

i,∞ over Mi,∞ have continuous
spectrum equal to [0,∞). The number λ ∈ [0,∞) and φ ∈ ker(B) determine a
generalized eigensection of D1,∞ , which has the following form on [0,∞)×Y ⊂
M1,∞ (see (4.24) in [6])

E(φ, λ) = e−iλu(φ − iGφ) + eiλuC1(λ)(φ − iGφ) + θ(φ, λ)

where θ(φ, λ) is a square integrable section of S on M1,∞ which is orthogonal
to ker(B) , when restricted to {u} × Y , and C1(λ) is the scattering matrix.
There is also corresponding scattering matrix C2(λ) determined by the operator
D2,∞ over M2,∞. We refer to [6] and [7] (see also [5]) for the presentation of the
necessary material from Scattering Theory.

Let C : W → W denote a unitary operator acting on the finite dimensional
vector space W . We introduce the operator D(C) equal to the differential op-
erator −i 1

2
d

du acting on L2(S1, EC) where EC is the flat vector bundle over
S1 = R/Z with the complex conjugate of C as the holonomy group. We define
operators

I1 = (G + i) : ker(B) → ker(G − i) ,
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I2 = (G − i) : ker(B) → ker(G + i) ,

Pσi
=

1
2
(σi − 1) : ker(B) → ker(σi + 1)

and

Sσi(λ) = −Pσi ◦ Ci(λ) ◦ Ii|ker(σi+1) : ker(σi + 1) → ker(σi + 1) .

Then C12 := C1(0) ◦ C2(0)|ker(G+i) , Sσ1 := Sσ1(0) and Sσ2 := Sσ2(0) are the
unitary operators acting on the finite dimensional vector spaces and we have
well-defined self-adjoint, elliptic operators D(C12), D(Sσ1), D(Sσ2). Now, we
are ready to state the main result

Theorem 1.1. The following formula holds:

lim
R→∞

R2h·detζD2
R

detζ(D1,R)2P1
·detζ(D2,R)2P2

=
2−ζB2 (0)·detζ

1
4D(C12)2

detζD(Sσ1)2·detζD(Sσ2)2
(1.7)

where h = hM − h1 − h2 = dim(L1 ∩ L2) − dim(L1 ∩ ker(σ1 − 1)) − dim(L2 ∩
ker(σ2 − 1)) and P1 = Π< + πσ1 , P2 = Π> + πσ2 .

Remark 1.2. (1) A special case of the Theorem 1.1 was proved in [8], [9], where
it was assumed that

kerL2D1,∞ = kerL2D2,∞ = ker B = {0} .(1.8)

Assumption (1.8) implies the vanishing of all s−values and e−values , in other
words, all eigenvalues of all operators involved are bounded away from 0 . This
reduces formula (1.7) to the equality

lim
R→∞

detζD2
R

detζD2
1,R,Π<

·detζD2
2,R,Π>

= 2−ζB2 (0) .

(2) The main issue in the present work is the analysis of s − values. The
proof of Theorem 1.1 uses some ideas of the work in W. Müller (see [6]).
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2. Scattering Matrix and Slowly Decaying Eigenvalues

In this section we investigate the relation between the scattering matrices
C1(λ), C2(λ) and the s − values of the operators DR , (D1,R)P1 and (D2,R)P2 .

Let ϕ be a eigensection of DR , which corresponds to s − values λ = λ(R),
that is

DRϕ = λϕ with |λ| < R−κ

for some fixed κ with 0 < κ < 1. Now we study the s − values of the operator
DR over MR . We introduce the manifold

M̄R = M1,R � M2,R

The boundary of M̄R is equal to the sum of two copies of Y . We consider DR,
the operator on a closed manifold MR, as the Dirac operator on M̄R, which
satisfies the transmission boundary condition. In particular, the corresponding
eigensection ϕ to s − values λ = λ(R) satisfies the “transmission boundary
condition”

ϕ|∂M1,R
= ϕ|∂M2,R

We refer to [2] for more detailed discussion of the transmission problem (see also
[8]). We want to warn the reader that, when we discuss transmission boundary
condition, it would be natural to consider M1,R as M1,R = M1 ∪ [−R, 0] × Y ,
but in the following we parametrize cylindrical parts as

M1,R = M1 ∪ [0, R] × Y , M2,R = M2 ∪ [−R, 0] × Y.

The section ϕ can be represented in the following way on [0, R] × Y ⊂ M1,R

ϕ = e−iλuψ1 + eiλuψ2 + ϕ1

where ψ1 ∈ ker(G − i), ψ2 ∈ ker(G + i) and ϕ1 is orthogonal to kerB when
restricted to {u} × Y . The eigenvalue λ(R) is not bounded away from 0 , hence
ψ1, ψ2 are non-trivial sections of S|Y (see Theorem 2.2 in [12]). Choose φ ∈ L1

such that ψ1 = φ − iGφ . Then the generalized eigensection E(φ, λ) associated
to φ is given by

E(φ, λ) = e−iλu(φ − iGφ) + eiλuC1(λ)(φ − iGφ) + θ(φ, λ) .

Following [6], we introduce F = ϕ|M1,R
−E(φ, λ)|M1,R

. We know that there exist
positive constants c1, c2 , such that

||ϕ1|{R}×Y || < c1e
−c2R
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(see for instance Lemma 2.1 in [12]). Green’s Theorem gives us

0 = 〈DF, F 〉M1,R
− 〈F, DF 〉M1,R

=
∫

Y

〈GF, F 〉dy .

This leads to
∫

Y

〈GF, F 〉dy = −i||C1(λ)ψ1 − ψ2||2 + O(e−cR)

for some positive constant c , and we get the following inequality

‖C1(λ)ψ1 − ψ2‖2 < c1e
−c2R ,(2.1)

for some constants c1, c2 (compare [6]). Similarly, we have

ϕ = eiλuψ3 + e−iλuψ4 + ϕ2

over [−R, 0] × Y ⊂ M2,R , where ψ3 ∈ ker(G + i), ψ4 ∈ ker(G − i) and ϕ2 is
orthogonal to ker(B) when restricted to {u} × Y . Again we have the expected
estimate

‖C2(λ)ψ3 − ψ4‖2 < c1e
−c2R .(2.2)

The transmission boundary condition over Y � Y = ∂M1,R � ∂M2,R implies the
equalities

e−iλRψ1 + eiλRψ2 = e−iλRψ3 + eiλRψ4

so that

ψ1 = e2iλRψ4, ψ3 = e2iλRψ2 .(2.3)

By (2.1), (2.2), (2.3), we have

‖e2iλRC1(λ)ψ4 − ψ2‖2 < c1e
−c2R ,

‖e2iλRC2(λ)ψ2 − ψ4‖2 < c1e
−c2R .

We combine these inequalities and obtain

‖e4iλRC1(λ) ◦ C2(λ)ψ2 − ψ2‖2 < c3e
−c4R ,

‖e4iλRC2(λ) ◦ C1(λ)ψ4 − ψ4‖2 < c3e
−c4R
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for some positive constants c3, c4. The unitary operator C1(λ) ◦ C2(λ) is an
analytic function of λ for sufficiently small λ. This whole analysis follows the
method presented in [6] and results in the following Proposition.

Proposition 2.1. There exists R0 such that for R > R0 the s − value λ(R) of
DR satisfies

4Rλ(R) + αj(λ(R)) = 2πk + O(e−cR)(2.4)

for an integer k with |k| < R1−κ , where exp(iαj(λ(R))) is an eigenvalue of the
restriction of the unitary operator C1(λ(R)) ◦ C2(λ(R)) to ker(G + i) ⊂ ker(B).

Remark 2.2. The map C1(0) ◦ C2(0) on ker(G + i) is not the identity map.
However, it is equal to the identity, when restricted to the subspace I2(L1 ∩L2),
where

I2 = (G − i) : ker(B) → ker(G + i)

It follows that the number of j’s such that αj(0) = 0 is equal to dim(L1 ∩ L2).
This is the dimension of the space of eigensections corresponding to e− values,
which are not determined by kerL2(Di,∞) .

Similarly, we have the corresponding analysis for the slowly decaying eigen-
values of the operators (Di,R)Pi for i = 1, 2.

Proposition 2.3. There exists R0 such that for R > R0 the s−value λ = λ(R)
of (Di,R)Pi satisfies

2Rλ(R) + βj(λ(R)) = 2πk + O(e−cR)(2.5)

for an integer k with |k| < R1−κ , and exp(iβj(λ(R))) an eigenvalue of the
unitary operator Sσi

(λ(R)) = −Pσi
◦ Ci(λ(R)) ◦ Iσi

: ker(σi + 1) → ker(σi + 1)
and i = 1, 2.

Remark 2.4. The map Sσi(0) restricted to the subspace ker(σi + 1) ∩
ker(Ci(0) + 1) ⊂ ker(σi + 1) is equal to I, and the number of j’s such that
βj(0) = 0 is equal to dim(ker(σi + 1) ∩ ker(Ci(0) + 1)). This is the number of
zero eigenvalues of (Di,R)Pi which are not in kerL2(Di,∞) for i = 1, 2.
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3. Sketch of the Proof of Theorem 1.1

In this section we briefly sketch the proof of Theorem 1.1. We refer to [10]
for the detailed exposition.

We define

ζrel,R(s) :=
1

Γ(s)

∫ ∞

0

ts−1[Tr(e−tD2
R − e−t(D1,R)2P1 − e−t(D2,R)2P2 ) − h] dt

(3.1)

where h = dim(L1 ∩ L2) − dim(L1 ∩ ker(σ1 − 1)) − dim(L2 ∩ ker(σ2 − 1)). We
decompose ζrel,R(s) into two parts

ζR
s (s) =

1
Γ(s)

∫ R2−ε

0

(·) dt , ζR
l (s) =

1
Γ(s)

∫ ∞

R2−ε

(·) dt

where 0 < ε < 1. The derivatives of ζR
s (s), ζR

l (s) at s = 0 give the small and
large time contribution. The standard computation shows that

(ζR
s )′(0) =

∫ R2−ε

0

t−1Tr(e−tD2
R−e−t(D1,R)2P1−e−t(D2,R)2P2 )dt+hγ−h(2 − ε) log R,

where γ denotes the Euler constant. We analyze the “small time” contribution∫ R2−ε

0

t−1[Tr(e−tD2
R − e−t(D1,R)2P1 − e−t(D2,R)2P2 ) − h] dt

using a method developed in [4] and explicit computations made in [10]. It
follows that

lim
R→∞

( d

ds
ζR
s (s)|s=0 + h(2 − ε)·ln R

)
= −ln 2·ζB2(0) + hγ .(3.2)

We have the equality

(ζR
l )′(0) =

∫ ∞

R−ε

t−1[Tr(e−tR2D2
R − e−tR2(D1,R)2P1 − e−tR2(D2,R)2P2 ) − h]dt

and the analysis of s−values from Section 2 (see Proposition 2.1 and Proposition
2.3) provides the proof of the following result. The details will appear in [10].

Theorem 3.1.

lim
R→∞

∫ ∞

R−ε

t−1[Tr(e−tR2D2
R −e−tR2(D1,R)2P1 −e−tR2(D2,R)2P2 )−h] dt+hγ+hε log R

=
d

ds
|s=0{ 1

Γ(s)

∫ ∞

0

ts−1[Tr(e−t 1
4 D(C12)

2 − e−tD(Sσ1 )2 − e−tD(Sσ2 )2) − h] dt} .

This ends the proof of Theorem 1.1.
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1993.

[2] Brünning, J. and Lesch, M., On the η-invariant of certain nonlocal boundary value prob-
lems, Duke Math. J. 96 (1999) no. 2, 425–468.

[3] Cappell, S.E., Lee, R. and Miller, E.Y., Self-adjoint elliptic operators and manifold de-
compositions. I. Low eigenmodes and stretching, Comm. Pure Appl. Math. 49 (1996),
no. 8, 825-866.

[4] Douglas, R.G. and Wojciechowski, K.P., Adiabatic limits of the η–invariants. The odd–
dimensional Atiyah–Patodi–Singer problem, Comm. Math. Phys. 142 (1991), no. 1, 139–
168.

[5] Melrose, R.B., Geometric scattering theory. Stanford Lectures. Cambridge University
Press, Cambridge, 1995.

[6] Müller, W., Eta invariants and manifolds with boundary, J. Differential Geom. 40 (1994),
no. 2, 311–377.

[7] Müller, W., Relative zeta functions, relative determinants, and scattering theory, Comm.
Math. Phys. 192 (1998), no. 2, 309–347.

[8] Park, J. and Wojciechowski, K. P., Relative ζ-determinant and Adiabatic decomposition
of the ζ-determinat of the Dirac Laplacian, Lett. Math. Phys. 52 (2000), no. 4, 329–337.

[9] Park, J. and Wojciechowski, K. P., Adiabatic decomposition of the ζ-determinant of the
Dirac Laplacian I. The case of invertible tangential operator, to appear in Comm. Partial
Differential Equations.

[10] Park, J. and Wojciechowski, K. P., Scattering Theory and the Adiabatic Decomposition
of the ζ-determinant of the Dirac Laplacian, preprint.

[11] Seeley, R. T., Topics in pseudodifferential operators, 1969 Pseudo-Diff. Operators
(C.I.M.E., Stresa, 1968) 167–305 Edizioni Cremonese, Rome.

[12] Wojciechowski, K. P.,The additivity of the η-invariant: the case of an invertible tangential
operator, Houston J. Math. 20 (1994), no. 4, 603–621.

Department of Mathematics, IUPUI (Indiana/Purdue), Indianapolis, IN 46202–
3216, U.S.A.

E-mail address: jinspark@indiana.edu

E-mail address: kwojciechowski@math.iupui.edu


