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Abstract. In this note, we derive a formula for the ratio of the ζ-determinants
of the Laplacian with Neumann and Dirichlet boundary conditions over a
noncompact manifold with an infinite cylindrical end and a compact boundary
in terms of the ζ-determinant of the Dirichlet to Neumann map.

1. Introduction

The powerful technique of ζ-regularized determinants entered mathematics in
the seminal paper of Ray and Singer [25], and subsequently entered the physics
world in quantum field theory, which uses ζ-regularization to renormalize divergent
quantities such as vacuum energies and effective actions. In fact, at the one-loop
order, any such QFT can be reduced to the theory of determinants. We refer the
reader to the works of Dowker and Critchley [5], Hawking [10], Elizalde et al. [6],
and Kirsten [11] for recent reviews. Because of their increasingly important rôle in
mathematics and physics, over the past several years there has been intense research
to study functional ζ-determinants of Laplace type operators over a variety of com-
pact and noncompact space-time configurations. Of great practical significance is
the Laplacian with Dirichlet and Neumann boundary conditions. The purpose of
this paper is to study the ratio of the ζ-regularized determinants of the Laplacian
with Dirichlet and Neumann boundary conditions over a noncompact space-time
configuration given by a manifold with cylindrical end and compact boundary.

We now describe our situation more precisely. Let X be a Riemannian manifold,
of arbitrary positive dimension, with cylindrical end and compact boundary Y , that
is,

X =
(
(−∞, 0]× Z

)
∪M,

where M is a compact manifold with two compact boundary components of codi-
mension one, Z and Y , and where we assume that M has a tubular neighborhood
[−1, 0]u× Y of Y . See Figure 1 for an example of a two-dimensional manifold with
cylindrical end and compact boundary. Thus, X is just a certain type of noncom-
pact manifold with compact boundary. Let ∆ be a Laplace-type operator acting on
C∞(X, E) with E a Hermitian vector bundle over X, where Laplace-type means
that the principal symbol of ∆ is the Riemannian metric and ∆ is nonnegative
on smooth sections compactly supported on the interior of X. We assume that
∆ is of product-type over the cylindrical end (−∞, 0] × Z and over the tubular
neighborhood [−1, 0]u × Y :

(1.1) ∆ = −∂2
u + ∆Z over (−∞, 0]u × Z,
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Figure 1. X is a noncompact manifold that has both a cylindrical
end and a compact boundary.

where ∆Z is a Laplace-type over the compact boundaryless manifold Z, and

(1.2) ∆ = −∂2
u + ∆Y over [−1, 0]u × Y,

where ∆Y is a Laplace-type over the compact boundaryless manifold Y .
Since X has a boundary, we need to impose a boundary condition for ∆. In this

paper, we consider the two most common boundary conditions, the Neumann and
Dirichlet conditions:

∆N := ∆ : dom(∆N ) −→ L2(X, E),

where
dom(∆N ) := {φ ∈ H2(X, E) | (∂uφ)|Y = 0},

and similarly, we define the Dirichlet Laplacian ∆D with domain

dom(∆D) := {φ ∈ H2(X,E) | φ|Y = 0}.
We assume that the Neumann and Dirichlet Laplacians ∆N and ∆D are nonnegative
in the sense that

(1.3) (Lφ, φ) ≥ 0 for all φ ∈ dom(L) with L = ∆N , ∆D

where ( , ) denotes the L2-inner product, and that the Dirichlet problem is uniquely
solvable in the following sense: For each ϕ ∈ C∞(Y, E|Y ) there is a unique bounded
solution φ ∈ C∞(X, E) such that ∆φ = 0 and φ|Y = ϕ. The uniqueness of bounded
solutions implies ker∆D = {0}. For example, the product-type conditions (1.1) and
(1.2) and the nonnegativity condition (1.3) are both satisfied by the scalar Laplacian
operator corresponding to a Riemannian metric on X that is of product-type over
the cylindrical end and the tubular neighborhood of Y .

To orient the reader to the various “b-”regularizations used throughout this pa-
per, assume just for the moment that Z = ∅ so that the cylindrical end of X is
actually fictitious and X is a compact manifold with boundary. Then focusing on
Neumann Laplacian ∆N , the functional determinant of ∆N is by definition

detζ∆N := exp
(
− d

ds

∣∣∣
s=0

ζ(s,∆N )
)
,

ζ(s,∆N ) :=
1

Γ(s)

∫ ∞

0

ts−1 Tr(Π⊥0 e−t∆N ) dt,(1.4)

where Π⊥0 is the orthogonal projection off the zero modes of ∆N and e−t∆N is the
heat operator of ∆N . This definition of the ζ-determinant was introduced in Ray
and Singer’s paper [25] and is valid whether or not ∆N has zero modes; in the
case when ∆N has zero modes, some authors denote the above determinant with a
prime: det′ζ∆N . In order to generalize this to the noncompact case, we shall present
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an alternative, but equivalent, definition of the zeta function ζ(s, ∆N ). Consider
the integrals

(1.5) I1(s) :=
1

Γ(s)

∫ 1

0

ts−1 Tr(e−t∆N ) dt , I2(s) :=
1

Γ(s)

∫ ∞

1

ts−1 Tr(e−t∆N ) dt.

It is well-known that the trace of the heat operator satisfies (cf. [6], [11])

(1.6) Tr(e−t∆N ) ∼
∞∑

k=0

ak t(k−n)/2 as t → 0,

where n = dim X, and

(1.7) Tr(e−t∆N ) ∼ b0 as t →∞,

where b0 = dimker∆N . The expansion (1.6) shows that the function I1(s) in (1.5)
has a meromorphic extension to C, and the expansion (1.7) shows that the function
I2(s) in (1.5) has a meromorphic extension to C (in fact, the zero of 1

Γ(s) at s = 0
cancels the pole of the integral at t = ∞, so I2(s) is an entire function). Moreover,
it is a straightforward exercise to prove that

(1.8) ζ(s,∆N ) ≡ I1(s) + I2(s).

Splitting the zeta function in this way has certain advantages; for example, it allows
us to separate the small and long-time behavior of the heat operator, which allows
us via (1.6) and (1.7) to immediately get the meromorphic structures of I1(s) and
I2(s) separately, and hence of ζ(s, ∆N ). Another advantage is that the right-hand
side of (1.8) bypasses the explicit use of the orthogonal projection Π⊥0 off the zero
modes of ∆N in (1.4). (Of course, the zero modes are still present in I1(s) and
I2(s) but these cancel out when taking the sum I1(s) + I2(s).)

Back to the general situation, since X is not compact in the case when Z 6= ∅
(which we are mostly interested in), as explained in Section 2 the heat operators
e−t∆N and e−t∆D are not of trace class essentially because the traces diverges
over the infinite cylindrical end. To define their corresponding ζ-functions, it is
therefore necessary to introduce an appropriate regularization of the trace. Two
natural regularizations of the trace include the relative trace used by, for instance,
Bruneau [3], Carron [4], and Müller [23], and the b-trace introduced by Melrose [22],
both of which “remove” in slightly different ways the divergent parts of the heat
traces. We shall use Melrose’s b-trace, denoted by bTr, throughout this paper, an
introduction of which is given in Section 2. In particular, focusing on the Neumann
Laplacian for the moment, bTr(e−t∆N ) is well-defined and moreover, following the
motivating example in (1.8) we can define the corresponding bζ-function bζ(s, ∆N )
as the sum of the meromorphic extensions of the functions

(1.9)
1

Γ(s)

∫ 1

0

ts−1 bTr(e−t∆N ) dt,

defined a priori for <s À 0, and

(1.10)
1

Γ(s)

∫ ∞

1

ts−1 bTr(e−t∆N ) dt,

defined a priori for <s ¿ 0; then, see Section 2, bζ(s, ∆N ) is regular at s = 0. The
bζ-determinant of ∆N is defined, just as in the motivating example (1.4), as

detbζ∆N := exp
(
− d

ds

∣∣∣
s=0

bζ(s, ∆N )
)
.
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Similarly, one can define the bζ-determinant detbζ∆D. The relative invariant prob-
lem, in this context is to find a formula for the ratio

(1.11)
detbζ∆N

detbζ∆D
= ?

in terms of recognizable data. In our problem, this data involves the Dirichlet to
Neumann operator ! This is the operator N over Y defined by

Nϕ := (∂uφ)|Y for ϕ ∈ C∞(Y, E|Y )

where φ is the bounded solution of the Dirichlet problem, ∆φ = 0, φ|Y = ϕ.
(This operator is a specific case of the Agranovich-Dynin operator [1] for comple-
mentary elliptic boundary conditions.) It is easy to check that N is a pseudodif-
ferential operator of order 1, which may have negative eigenvalues (see Park and
Wojciechowski [24]) but is always bounded from below, and in the case that ∆
is the scalar Laplacian, N is nonnegative. Hence, we can define its ζ-regularized
determinant, detζN . We remark that besides its appearance in our main theorem,
the Dirichlet to Neumann map is perhaps most well-known in the study of inverse
problems; see Uhlmann [29] for a recent review and his joint work [12] for a recent
development. We also remark that there are other relative invariant problems of
great interest in addition to (1.11), especially dealing Dirac operators; see Scott
[26], Scott and Wojciechowski [27], and Loya and Park [18].

To state our main result, we need two more maps, L and L̃ over Y , dealing
with the L2 and the bounded solutions, respectively, of ∆N . Let {uj} be an or-
thonormal basis for the kernel of ∆N on L2(X, E) and let {Uj} be a basis of the
bounded solutions ∆NUj = 0 such that at {−∞} × Z on the cylinder, {Uj(−∞)}
are orthonormal in L2(Z,E|Z). Here, Uj(−∞) := limu→−∞ Uj(u, z) is well defined:
Solving the equation ∆NUj = 0 where ∆N = −∂2

u + ∆Z over (−∞, 0]u × Z (see
(1.1)) and using that Uj is bounded, it follows that Uj has the following expression
over (−∞, 0]u × Z,

Uj |(−∞,0]u×Z =
∑

λk≥0

ajkeλku φk,

where {(φk, λ2
k)} denotes the spectral resolution of the Laplacian ∆Z . Hence,

Uj(−∞) := lim
u→−∞

Uj(u, z) =
∑

λk=0

ajk φk ∈ L2(Z,E|Z).

Elliptic theory on manifolds with cylindrical ends shows that the sets {uj} and
{Uj} are finite [22, Ch. 5]. Let vj := uj |Y and Vj := Uj |Y be the restrictions of uj

and Uj , respectively, to the boundary {0} × Y . In [15] it is shown that

L :=
∑

j

vj ⊗ v∗j , L̃ :=
∑

j

Vj ⊗ V ∗
j ,

where v∗j = ( · , vj)Y and V ∗
j = ( · , Vj)Y with ( · , · )Y denoting the L2 inner product

over Y , are nonnegative linear operators on V = span{vj , Vj} ⊂ L2(Y, E|Y ). Since
the set {vj , Vj} is a linearly independent set spanning V , the operator

L + L̃ : V −→ V

is positive. In particular, det(L + L̃) is nonzero. Our main result is
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Theorem 1.1. The following relative formula holds:

(1.12)
detbζ∆N

detbζ∆D
=

detζN
det(L + L̃)

.

As mentioned in the lines above the formula (1.9), in order to define the b-traces
of e−t∆N and e−t∆D , we remove their components that give rise to divergent traces,
but it turns out that these components are the same for e−t∆N , e−t∆D (see Remark
2.1 in Section 2). Hence the left side of (1.12) in fact does not depend on the
regularization of b-trace. If Z, the cross section of the cylindrical end, is empty,
then X is just a compact manifold with boundary Y . In this case, the L̃ term
vanishes, so we get the following corollary for free.

Corollary 1.2. For a compact manifold with boundary, we have

(1.13)
detζ∆N

detζ∆D
=

detζN
det L

.

Remark 1.3. Under the condition that N is positive, the equality (1.13) was
proved by Park and Wojciechowski [24] — in this case there is no term det L. The
proof in [24] is in principle similar to Forman’s proof [7], but to overcome certain
trace class issues, the method of comparison with the model problem was employed;
this method has also been used in [15], [16], [17], [20].

The main body of this paper consists of the following three sections: In Section
2, we review the b-trace and then the bζ-determinant along with its gluing formula
for manifolds with an infinite cylindrical end and a compact boundary. In Section
3, we compute the ζ-determinant of the Laplacian over a finite cylinder with the
Dirichlet and Neumann boundary conditions over each boundary. In Section 4, we
prove Theorem 1.1 combining results presented in the previous sections.

The authors give their sincere thanks to the referees for corrections and helpful
suggestions, all of which considerably improved this paper.

2. Gluing formula of the bζ-determinant

We give an elementary introduction to Melrose’s b-trace introduced in [22]. To
see the necessity for a regularized trace, we begin by describing the heat operator
e−t∆N on the cylindrical end (−∞, 0]u × Z. Restricting the heat kernel to the
diagonal, taking the fiber-wise trace, and looking at it on the cylinder, one can
show that [22, Ch. 8]

(2.1) tr e−t∆N |Diag =
1√
4πt

tr e−t∆Z (z, z) + HN (t, u, z) over (−∞, 0]u × Z,

where z is the Z variable, ∆Z is a Laplace-type operator over Z, and for fixed t > 0,
HN (t, u, z) = O(e−|u|) as u → −∞. Since HN (t, u, z) = O(e−|u|), the integral of
HN (t, u, z) exists over (−∞, 0]u × Z. Unfortunately, the first term on the right in
(2.1) is constant with respect to u, so is not integrable on the infinite cylinder. In
particular, the trace given by the standard integral formula

(2.2)
∫

X

tr e−t∆N |Diag

is not defined. However, Melrose [22] defined another notion of trace called the b-
trace described as follows. Let φ be a locally integrable function on X and suppose
that on the infinite cylinder (−∞, 0]u × Y , we can write φ(u, z) = ϕ(z) + ψ(u, z)
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where ϕ(z) is constant in u and ψ(u, z) is integrable (cf. (2.1)). Then the function
ϕ(z) is exactly the obstruction to φ being integrable on X. We define the b-integral
of φ by throwing out this obstruction and keeping the integrable part:

b

∫

X

φ :=
∫

M

φ +
∫

(−∞,0]u×Z

ψ(u, z) du dz,

where dz is the measure on Z. From the decomposition (2.1), we see that

bTr e−t∆N := b

∫

X

tr e−t∆N |Diag,

is well-defined; bTr e−t∆N is called the b-trace of e−t∆N .
In a similar way, the Dirichlet heat kernel has the following form over the cylinder:

(2.3) tr e−t∆D |Diag =
1√
4πt

tr e−t∆Z (z, z) + HD(t, u, z) over (−∞, 0]u × Z,

where HD(t, u, z) = O(e−|u|) as u → −∞. In particular, just as for the Neumann
Laplacian, the b-trace of the Dirichlet Laplacian, bTr e−t∆D , is also well-defined.

Remark 2.1. Note that the term 1√
4πt

tr e−t∆Z (z, z), which leads to a divergent
trace integral as discussed around (2.2), is the same as for the Neumann case. This
accounts for the fact that the left-hand side in Equation (1.12) of Theorem 1.1 is
independent of the regularization of the b-trace.

By the work in Melrose [22], the b-trace of e−t∆N has the usual short-time
asymptotic expansion:

(2.4) bTr e−t∆N ∼
∞∑

k=0

ak t(k−n)/2 as t → 0,

where n = dim X, and the long-time asymptotic expansion (see [8, Appendix]):

(2.5) bTr e−t∆N ∼
∞∑

k=0

bk t−k/2 as t →∞,

where b0 = dimker∆N + p
2 − 1

4 dimker∆Z with p the dimension of the extended
L2 kernel of ∆N . The heat kernel for the Dirichlet Laplacian ∆D has similar
expansions, the main difference being that b0 in (2.5) is equal to − 1

4 dimker∆Z in
this case (because the Dirichlet problem is uniquely solvable). From (2.4) and (2.5)
it follows that bζ(s, ∆N ) and bζ(s, ∆D) (defined via (1.9) and (1.10)) are regular at
s = 0, so their corresponding bζ-determinants are well-defined.

We now discuss the gluing formula of detbζ∆N in our context. We consider a
hypersurface H in X of the form {s}×Z or {r}×Y where s ∈ (−∞, 0), r ∈ (−1, 0).
We decompose X into two parts X+ and X− along H, the right and left sides of H.
For the restriction of ∆N over X+, X−, we impose Dirichlet boundary conditions
over H and denote by ∆+, ∆− the resulting operators. Note that ∆− is defined over
the noncompact manifold X− with cylindrical end and one boundary component.
Hence, as for ∆N , we have to use the bζ-determinant for ∆− rather than the ordinary
ζ-determinant. Then the gluing problem in this context is to find a formula for the
ratio

detbζ∆N

detζ∆+ · detbζ∆−
= ?
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in terms of recognizable data. To describe the right side, we need to introduce some
notations. First, we consider the Dirichlet to Neumann operators N± for ∆±; that
is, we consider the solutions φ± of the Dirichlet problems for ∆± with the boundary
data ϕ. Then the operators N± are defined by N±ϕ = ∓(∂uφ±)|H . Now we define

Rϕ = N−ϕ +N+ϕ for ϕ ∈ C∞(H, E|H).

Then the operator R is a nonnegative pseudodifferential operator of order 1 over
H (this can be proved as in [15, Appendix]). In particular, we can define its ζ-
determinant, detζR. Second, we recall that {uj} is an orthonormal basis for the
kernel of ∆N on L2(X,E) and {Uj} is a basis of the bounded solutions ∆NUj = 0
such that at {−∞}×Z on the cylinder, {Uj(−∞)} are orthonormal in L2(Z,E|Z).
We put vj(H) := uj |H and Vj(H) := Uj |H , the restrictions of uj and Uj , respec-
tively, to the cutting hypersurface H. As before, we define

L(H) :=
∑

j

vj(H)⊗ vj(H)∗ , L̃(H) :=
∑

j

Vj(H)⊗ Vj(H)∗,

which are nonnegative linear operators on span{vj(H), Vj(H)} ⊂ L2(H,E|H).
Now we can state the gluing formula for detbζ∆N :

Theorem 2.2. The following gluing formula holds:

detbζ∆N

detζ∆+ · detbζ∆−
= 2−ζ∆H

(0)−hH · detζR
det

(
L(H) + L̃(H)

)

where ζ∆H (s) is the ζ-function of ∆H := ∆|H and hH := dimker∆H .

This theorem can be proved in essentially the same way as in [15], so we will not
repeat its proof here. We remark that Theorem 2.2 is a generalization of the result
of Burghelea, Friedlander, and Kappeler [2] for compact manifolds; cf. also Levit
and Smilansky [14], Carron [4], Hassell and Zelditch [9], Lee [13], and Hassell [8],
and Vishik [30] for related results dealing with the analytic torsion. We also refer
to Mazzeo and Piazza [21] for an overview of gluing problems. Finally, we remark
that there are gluing formulas similar to that in Theorem 2.2 in other contexts, see
[16],[17] [19], [20] for some recent developments.

3. ζ-determinants over finite cylinders

Let Yr := [−r, 0]u × Y and over Yr, consider the Laplace type operator

−∂2
u + ∆Y

where ∆Y is the Laplace type operator over Y . We impose the Dirichlet (resp.
Neumann) boundary condition at {−r} × Y (resp. {0} × Y ) and denote by ∆c

r the
resulting operator. First, we have

Proposition 3.1. The following equality holds:

(3.1) detζ∆c
r = 2hY · exp(Cr) · det∗F (Id + e−2r

√
∆Y )

where hY = dim ker(∆Y ), C = −(2
√

π)−1 d
ds

∣∣
s=0

(
Γ(s)−1Γ(s − 1/2)ζ∆Y (s − 1/2)

)

and det∗F denotes the Fredholm determinant over ker(∆Y )⊥ .
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Proof. Let us denote the spectrum of ∆Y by {µl : l ∈ N }. Then we have

spec(∆c
r) =

{
µl +

π2(k + 1/2)2

r2

∣∣∣ l, k ∈ N
}

.

This implies that

(3.2) ζ∆c
r
(s) =

∞∑

l=hY +1

∞∑

k=1

(
µl +

π2(k + 1/2)2

r2

)−s

+ hY (r/π)2sζ(2s, 1/2),

where ζ(s, a) is the Hurwitz zeta function defined by (see [31])

ζ(s, a) =
∞∑

k=0

(k + a)−s for 0 < a < 1,

with the properties ζ(0, a) = 1
2 − a and d

ds

∣∣
s=0

ζ(s, a) = log(Γ(a)) − 1
2 log(2π). We

can rewrite the first term of the right side of (3.2) as

(3.3)
1
2

1
Γ(s)

∞∑

l=hY +1

µ−s
l

∫ ∞

0

∑

k∈Z
exp

(
−

(
1 +

(π(k + 1/2)
r
√

µl

)2)
x

)
xs−1 dx.

Recalling the Poisson summation formula

∑

k∈Z
e−a2(k+b)2 =

∑

k∈Z

√
π

a
e−

π2k2

a2 · e2πikb

where a, b are positive real numbers, we see that (3.3) is same as

1
2

1
Γ(s)

∞∑

l=hY +1

µ−s
l

∫ ∞

0

(∑

k∈Z

r
√

µl√
πx

exp
(
− (r

√
µlk)2

x
+ πik

)
e−x

)
xs−1 dx

=
r√
π

1
Γ(s)

∞∑

l=hY +1

µ
−s+1/2
l

∫ ∞

0

(∑

k∈N
exp

(
− (r

√
µlk)2

x
+ πik

)
e−x

)
xs−3/2 dx

+
1
2

r√
π

1
Γ(s)

∞∑

l=hY +1

µ
−s+1/2
l Γ(s− 1/2).

Now observe that the function
∫ ∞

0

(∑

k∈N
exp

(
− (r

√
µlk)2

x
+ πik

)
e−x

)
xs−3/2 dx

is regular at s = 0 and that

1
2

r√
π

1
Γ(s)

∞∑

l=hY +1

µ
−s+1/2
l Γ(s− 1/2) =

1
2

r√
π

Γ(s− 1/2)
Γ(s)

ζ∆Y

(
s− 1/2

)
.
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Therefore, taking the derivative of ζ∆c
r
(s) at s = 0 in (3.2) and using the equality

d
ds

∣∣
s=0

(1/Γ(s)) = 1, we obtain

d

ds

∣∣∣
s=0

ζ∆c
r
(s) =

r√
π

∞∑

l=hY +1

√
µl

∫ ∞

0

(∑

k∈N
exp

(
− (r

√
µlk)2

x
+ πik

)
e−x

)
x−3/2 dx

+
r

2
√

π

d

ds

∣∣∣
s=0

(
Γ(s)−1Γ

(
s− 1/2

)
ζ∆Y

(
s− 1/2

))

+ hY

(
2 log(r/π) ζ(0, 1/2) + 2

d

ds

∣∣∣
s=0

ζ(s, 1/2)
)
.

Simplifying this expression, we obtain

d

ds

∣∣∣
s=0

ζ∆c
r
(s) =

∞∑

l=hY +1

∑

k∈N

e−2r
√

µlk

k
· eπik

+
r

2
√

π

d

ds

∣∣∣
s=0

(
Γ(s)−1Γ(s− 1/2)ζ∆Y

(
s− 1/2

))
− hY log 2.

This equality immediately implies (3.1). ¤

Let Nr denote the Dirichlet to Neumann operator for the operator

∆c
r,N := −∂2

u + ∆Y : dom(∆c
r,N ) −→ L2(Yr, E)

where
dom(∆c

r,N ) :=
{

φ ∈ H2(Yr, E) | (∂uφ)|{0}×Y = 0
}
.

Now we have

Proposition 3.2. The following equality holds:

Nr =
√

∆Y
Id− e−2r

√
∆Y

Id + e−2r
√

∆Y
.

Proof. Since ∆c
r,N is of product form, it is enough to know the map Nr on eigensec-

tions of ∆Y . Let ϕl be an eigensection of ∆Y corresponding to the eigenvalue µl.
Let us first consider the case of nonzero µl. Then the solution φl of the Dirichlet
problem for ∆c

r,N with φl|{−r}×Y = ϕl is given by

φl =
e(u+r)

√
µl + e(−u+r)

√
µl

1 + e2r
√

µl
ϕl.

Hence,

Nrϕl := −∂u

∣∣
u=−r

φl = −√µl
1− e2r

√
µl

1 + e2r
√

µl
ϕl =

√
µl

1− e−2r
√

µl

1 + e−2r
√

µl
ϕl.

For µl = 0, it is easy to see that Nrϕl = 0. These complete the proof. ¤

4. Proof of Theorem

Let us decompose X into Xr and Yr = [−r, 0] × Y with 0 < r < 1 as shown in
Figure 2. For the restrictions of ∆N to Xr and Yr, we impose Dirichlet boundary
conditions over {−r} × Y and we denote by ∆Xr , ∆Yr the resulting operators.
Then, by Theorem 2.2, the following equality holds:

(4.1)
detbζ∆N

detbζ∆Xr · detζ∆Yr

= 2−ζ∆Y
(0)−hY

detζRr

det(Lr + L̃r)
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Cut at r�

�

X ∼= [−1, 0]u × Y

−1−r 0

�

�

−1−r

Xr

−r 0

Yr

Figure 2. Cutting X at r into Xr and Yr = [−r, 0]× Y .

where Lr, L̃r are defined by restricting {uj}, {Uj} to {−r} × Y . Recall that the
operator Rr over {−r} × Y is defined by

Rr := NXr
+NYr

where NXr
, NYr

denote the Dirichlet to Neumann operators over Xr, Yr, respec-
tively. Rewriting (4.1) as

(4.2)
detbζ∆N

detbζ∆Xr

= 2−ζ∆Y
(0)−hY · detζ∆Yr

· detζRr

det(Lr + L̃r)
,

let us consider the limit of both sides as r → 0. First, we note that ∆Xr and ∆D

have no kernels by our assumption, hence it follows that

(4.3) lim
r→0

detζ∆Xr = detζ∆D.

Second, by Proposition 3.1 we have

detζ∆Yr = 2hY · exp(Cr) · det∗F (Id + e−2r
√

∆Y )

where C = −(2
√

π)−1 d
ds

∣∣
s=0

(
Γ(s)−1Γ(s− 1/2)ζ∆Y

(s− 1/2)
)

and det∗F denotes the
Fredholm determinant over ker(∆Y )⊥. Now let us consider the following equalities:

lim
r→0

det∗F (Id + e−2r
√

∆Y ) · detζ∆Y = lim
r→0

detζ

(
(Id + e−2r

√
∆Y ) ·∆Y

)

= detζ(2∆Y ) = 2ζ∆Y
(0) · detζ∆Y .

Cancelling detζ∆Y from both sides, we see that limr→0 det∗F (Id + e−2r
√

∆Y ) =
2ζ∆Y

(0). Therefore,

(4.4) lim
r→0

detζ∆Yr = lim
r→0

2hY · exp(Cr) · det∗F (Id + e−2r
√

∆Y ) = 2ζ∆Y
(0)+hY .

Third, by Proposition 3.2, we have

NYr =
√

∆Y
Id− e−2r

√
∆Y

Id + e−2r
√

∆Y
,

which implies

(4.5) lim
r→0

NYr = 0 with respect to the operator norm.

Now let us observe that Rr is continuous in r such that kerRr has constant rank
as it is given by restricting the harmonic sections of ∆N to {−r} × Y . Moreover,
defining R0 := NX0 = N , we can see that Rr is continuous even at r = 0 by (4.5)
with kerR0

∼= kerRr for small nonzero r. Hence, we can see that

lim
r→0

detζRr = lim
r→0

detζ(NXr +NYr ) = detζ

[
lim
r→0

(NXr +NYr )
]

= detζN .(4.6)
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Trivially, as r → 0,

(4.7) det(Lr + L̃r) −→ det(L0 + L̃0) =: det(L + L̃).

Combining (4.3), (4.4), (4.6) and (4.7) into the identity (4.2), we conclude that

detbζ∆N

detbζ∆D
=

detζN
det(L + L̃)

.

This completes the proof of Theorem 1.1.
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