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Abstract. In this note, we explicitly compute the ζ-determinant of a
Dirac Laplacian with APS boundary conditions over a finite cylinder.
Using this exact result, we illustrate the gluing and comparison formulas
for the ζ-determinants of Dirac Laplacians proved in [12] and [14].

1. Introduction

The ζ-function technique of regularizing determinants entered the mathe-
matical world in Ray and Singer’s celebrated article [16] on the analytic tor-
sion, and in the physics world commencing with the groundbreaking works
of Dowker and Critchley [6] and Hawking [9] (for a recent review, see [10]).
The power of this technique can be appreciated by the now well-known
fact that any quantum field theory can be renormalized to the theory of
one loops via ζ-regularization. Because of their facility in mathematics and
physics, there has been immense research in computing ζ-determinants un-
der a variety of conditions, cf. Elizalde et al. [8] for such techniques. Of
particular importance is the Dirac Laplacian with non-local Atiyah-Patodi-
Singer (APS) boundary conditions, which arises in a variety of situations;
for instance, one-loop quantum cosmology [3, 4, 5], spectral branes [18], and
the study of Dirac fields in the background of a magnetic flux [2].

However, the value of the ζ-determinant for a Dirac Laplacian with APS
boundary conditions over a finite cylinder has remained an open question,
partly because it is not possible to compute the eigenvalues of the Dirac oper-
ator “explicitly” under these conditions. The main purpose of this note is to
answer this question and compute this ζ-determinant. Because in general it
is not possible to compute the eigenvalues of the Dirac operator explicitly, we
have to proceed using a totally different method from the conventional ones
used to compute ζ-determinants. The method we use is the method of adi-
abatic decomposition, pioneered in the work of Douglas and Wojciechowski
[7] for the eta invariant, and by the second author and Wojciechowski [15]
for the ζ-determinant. The second purpose of this paper is to elucidate the
effectiveness of the adiabatic method in a concrete situation (see Section 4).
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Finally, we investigate the gluing problem for the ζ-determinant (see Section
5), which can be stated as follows: Given a partitioned compact manifold
M = M− ∪M+ into manifolds with boundaries, describe the ζ-determinant
of a Dirac Laplacian on M in terms of the ζ-determinants on M± with
suitable boundary conditions. This gluing problem has remained an open
problem partly because of the highly nonlocal nature of the ζ-determinant
and its variation and partly because of the technical aspects inherent with
the nonlocal pseudodifferential boundary conditions required for Dirac type
operators. In [12] we solve this problem and the third purpose of this paper
is to illustrate our gluing formula in the concrete situation of a partitioned
finite cylinder. We also illustrate the so-called comparison, or relative in-
variant, formula proved in [14].

We now describe our set up. Let DR : C∞(NR, S) → C∞(NR, S) be a
Dirac type operator where NR = [−R,R]×Y is a finite cylinder with R > 0,
Y a closed compact Riemannian manifold (of arbitrary dimension), and S
a Clifford bundle over NR. We assume that DR is of product form

(1.1) DR = G(∂u + DY )

where G is a bundle automorphism of S0 := S|Y and DY is a Dirac operator
acting on C∞(Y, S0) such that G2 = −Id and GDY = −DY G. Since the
finite cylinder NR has boundaries, we have to impose boundary conditions.
An important boundary condition for applications is the non-local general-
ized APS spectral condition, which is defined as follows. We assume that
dim ker(G + i)∩ ker(DY ) = dim ker(G− i)∩ ker(DY ). Then we can fix two
involutions σ1, σ2 over ker(DY ) such that σ1G = −Gσ1 and σ2G = −Gσ2,
and impose the boundary conditions given by the following generalized APS
spectral projections,

Πσ1 = Π> +
1 + σ1

2
Π0 at {−R} × Y,

Πσ2 = Π< +
1 + σ2

2
Π0 at {R} × Y

(1.2)

where Π>,Π<,Π0 denote the orthogonal projections onto the positive, nega-
tive, and zero eigenspaces of DY . We denote by DR,P the resulting operator
with these boundary conditions, that is,

DR,P := DR : dom(DR,P ) → L2(NR, S)

where

dom(DR,P ) :=
{

φ ∈ H1(NR, S) | Πσ1φ|u=−R = 0 , Πσ2φ|u=R = 0
}

.

Then the spectrum of the Dirac Laplacian D2
R,P consists of discrete real

eigenvalues {λk}. The ζ-function of D2
R,P is defined by

ζD2
R,P

(s) =
∑

λk 6=0

λ−s
k ,
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which is a priori defined for <(s) À 0 and has a meromorphic extension to
C with 0 as a regular point. Then the ζ-determinant of D2

R,P is defined by

detζD2
R,P := exp

(− ζ ′D2
R,P

(0)
)
.

As we already mentioned, since we imposed APS spectral boundary condi-
tions, it is not possible to compute the eigenvalues {λk} explicitly, so there
is no direct way to compute the ζ-determinant detζD2

R,P from the eigenval-
ues. However, using adiabatic and gluing techniques proved in [15], [11],
[13], we compute detζD2

R,P , which we now explain. We denote by (σ1σ2)−
the restriction of σ1σ2 to ker(G+ i)∩ ker(DY ). For a linear operator L over
a finite-dimensional vector space, det∗(L) denotes the determinant of the
invertible operator (L|ker(L)⊥). The following theorem is the main result of
this note.

Theorem 1.1. The following equality holds:

detζD2
R,P = (2R)2h e2CR 2

ζ
D2

Y
(0)+hY det∗

(2Id− (σ1σ2)− − (σ1σ2)−1
−

4

)

where h is the number of (+1)-eigenvalues of (σ1σ2)−, hY = dim ker(DY )
and C = −(2

√
π)−1(Γ(s)−1Γ(s − 1/2)ζD2

Y
(s − 1/2))′(0) with ζD2

Y
(s) the ζ-

function of D2
Y .

This exact value is used to determine certain constants appearing in the
gluing formulas of the ζ-determinants of Dirac Laplacians in [12], [13]. Fi-
nally, the authors thank the referees for helpful comments.

2. Asymptotics of detζD2
R,P as R →∞

In this section, we derive the asymptotics of detζD2
R,P as R → ∞. This

is one of the main ingredients in the proof of our main theorem.

We decompose L2(NR, S) as follows:

(2.1) L2(NR, S) = L2([−R, R]; ker(DY ))⊕ L2([−R, R]; ker(DY )⊥)

where ker(DY )⊥ is the orthogonal complement of ker(DY ) in L2(Y, S0). We
denote by DR,P (0) the restriction of DR,P to the first component of the
decomposition (2.1). Since DY = 0 on ker(DY ), the operator DR,P (0) is
G∂u with the boundary conditions at {±R} × Y determined by σ1, σ2.

For DR,P (0), we can compute all the eigenvalues of DR,P (0) explicitly
using elementary ordinary differential equations and we obtain
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Lemma 2.1. The spectrum of DR,P (0) is given by
{ (

kπ − αj

2

)
(2R)−1

∣∣∣ k ∈ Z , αj ∈ (−π, π] , eiαj ∈ Spec(σ1σ2)−
}

.

Therefore, we can also compute detζDR,P (0)2 explicitly as we now show.

Proposition 2.2. We have the following equality:

detζDR,P (0)2 = (2R)2h 2hY det∗
(2Id− (σ1σ2)− − (σ1σ2)−1

−
4

)

with h the number of (+1)-eigenvalues of (σ1σ2)− and hY = dim ker(DY ).

Proof. By Lemma 2.1, the ζ-function of DR,P (0)2 is given by

ζDR,P (0)2(s) = 2h · (2R)2sπ−2sζ(2s) + F (s),

where ζ(s) is the Riemann zeta function and the second term is given by

F (s) = (2R)2sπ−2s

hY /2−h∑

j=1

∑

k∈Z

(
k − αj

2π

)−2s

with αj 6= 0 in the sum. For the first term, using that ζ(0) = −1
2 and

ζ ′(0) = −1
2 log(2π), we obtain

(2.2) − d

ds

∣∣∣∣
s=0

2h · (2R)2sπ−2sζ(2s) = log(4R)2h.

To compute −F ′(0), we use the Hurwitz zeta function defined by

ζ(s, a) =
∞∑

k=0

(k + a)−s for 0 < a < 1,

which has the properties ζ(0, a) = 1
2−a and ζ ′(0, a) = log(Γ(a))− 1

2 log(2π).
Then F (s) can be written in terms of the Hurwitz function as

F (s) = (2R)2sπ−2s

hY /2−h∑

j=1

(
ζ(2s,

αj

2π
) + ζ(2s, 1− αj

2π
)
)
,

where we assumed that αj > 0 since
∑

k∈Z(k − a)−2s =
∑

k∈Z(k + a)−2s.
Using the properties of the Hurwitz zeta function, we have

− F ′(0) = −2
hY /2−h∑

j=1

(
ζ ′(0,

αj

2π
) + ζ ′(0, 1− αj

2π
)
)

= −2
hY /2−h∑

j=1

(
log

(
Γ(

αj

2π
)Γ(1− αj

2π
)
)
− log(2π)

)
=

hY /2−h∑

j=1

log
(
4 sin2(αj/2)

)
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where we used Γ(x)Γ(1 − x) = π
sin(πx) . Combining this derivative with the

derivative (2.2) and the fact that

sin2(αj/2) =
(eiαj/2 − e−iαj/2

2i

)2
=

2− eiαj − e−iαj

4
,

completes the proof. ¤

Since we can split the contributions of detζDR,P (0)2 over each subspace
in the decomposition (2.1) and we already obtained the exact value of
detζDR,P (0)2, it remains to compute the ζ-determinant of the restriction
of D2

R,P to the second component in the decomposition (2.1). Therefore,
from now on, we can assume:

(2.3) The tangential operator DY is invertible.

We previously remarked that it is not possible to get the exact form of all
the eigenvalues of DR,P , so we can not compute detζD2

R,P in a direct way.
For this reason, we first consider the asymptotics of detζD2

R,P as R →∞.

For functions f(R) > 0, g(R) > 0 defined over (0,∞), f(R) ∼ g(R) means

lim
R→∞

| log f(R)− log g(R)| = 0 ⇐⇒ lim
R→∞

f(R)
g(R)

= 1.

The following proposition is the main result of this section.

Proposition 2.3. When DY is invertible, we have

detζD2
R,P ∼ 2

ζ
D2

Y
(0)

e2CR

where C = −(2
√

π)−1(Γ(s)−1Γ(s − 1/2)ζD2
Y
(s − 1/2))′(0) with ζD2

Y
(s) the

ζ-function of D2
Y .

Proof. With DR = G(∂u + DY ) over [−R, R] × Y , let DR,− denote the
restriction of DR to [−R, 0] × Y with boundary condition Π< at {0} × Y ,
and DR,+ denote the restriction of DR to [0, R]×Y with boundary condition
Π> at {0}× Y . We take the square of these operators and impose Dirichlet
boundary conditions over {±R}×Y and denote by D2

R,d, D2
R,d,−, and D2

R,d,+

the resulting operators. Then by Proposition 4.1 to be proved later,

(2.4)
detζD2

R,d

detζD2
R,d,− · detζD2

R,d,+

∼ 2
−ζ

D2
Y

(0)
.

By Proposition 7.1 in [11], we know that

detζD2
R,d =

(
detζ

√
D2

Y

)−1
e2RC

∞∏

k=1

(1− e−4Rµk)2
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where C = −(2
√

π)−1(Γ(s)−1Γ(s− 1/2)ζD2
Y
(s− 1/2))′(0) and {µk} are the

positive eigenvalues of DY . It follows that

detζD2
R,d ∼

(
detζ

√
D2

Y

)−1
e2RC .

Combining this with (2.4), we conclude that

(2.5) detζD2
R,d,− · detζD2

R,d,+ ∼ 2
ζ
D2

Y
(0)

(
detζ

√
D2

Y

)−1
e2RC .

Now let D2
R,−,d and D2

R,+,d denote the restrictions of D2
R,P to [−R, 0]× Y

and [0, R]× Y , respectively, with the Dirichlet condition at {0} × Y . Then
according to the main result in [11], which also holds for this case, we have

(2.6)
detζD2

R,P

detζD2
R,−,d · detζD2

R,+,d

= 2
−ζ

D2
Y

(0)
detζRR,

where RR is the sum of the Dirichlet to Neumann operators for the restric-
tion of D2

R,P to [−R, 0] × Y and [0, R] × Y . By a direct computation, we
find that

detζRR = 2
ζ
D2

Y
(0)

(
detζ

√
D2

Y

) ∞∏

k=1

(1− e−2µkR)−2

∼ 2
ζ
D2

Y
(0)

(
detζ

√
D2

Y

)
(2.7)

where {µk} are the positive eigenvalues of DY . Finally, noting that we have
detζD2

R,d,− = detζD2
R,+,d and detζD2

R,d,+ = detζD2
R,−,d, in view of (2.5),

(2.6), and (2.7), we obtain

detζD2
R,P ∼

(
detζ

√
D2

Y

)−1
e2RC detζRR

∼
(
detζ

√
D2

Y

)−1
e2RC

)(
2

ζ
D2

Y
(0)

(
detζ

√
D2

Y

))
= 2

ζ
D2

Y
(0)

e2RC .

This completes our proof. ¤

3. Proof of Theorem 1.1

Let us consider the Dirac type operator G(∂u+DY ) on the infinite cylinder
M =

(
(−∞, 0]∪[0,∞)

)×Y with boundary conditions Π< and Π> at the left
and right, respectively, of the two copies of {0}×Y and we denote by D̂P the
resulting operator. We decompose M into M2R =

(
[−2R, 0]∪[0, 2R]

)×Y and
M2R,∞ =

(
(−∞,−2R]∪ [2R,∞)

)×Y and obtain Dirac operators over these
by restricting D̂P . On M2R, we then impose the boundary conditions given
by Π> at the boundary {−2R}×Y and Π< at the boundary {2R}×Y , and
on M2R,∞, we put Π< at the boundary {−2R}×Y and Π> at the boundary
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{2R}×Y . Then the resulting operator over M2R is equivalent to two copies
of DR,P . We denote the resulting operator over M2R,∞ by D̂2R,P .

As remarked in the proof of Lemma 8.3 of [13], it follows that

(3.1) detζ(D̂2
P , D̂2

2R,P )
(
detζD2

R,P

)−2 is independent of R,

where detζ(D̂2
P , D̂2

2R,P ) denotes the relative ζ-determinant of (D̂2
P , D̂2

2R,P )
defined by

detζ(D̂2
P , D̂2

2R,P ) := exp
(− ζ ′(D̂2

P , D̂2
2R,P , 0)

)

with

ζ(D̂2
P , D̂2

2R,P , s) :=
1

Γ(s)

∫ ∞

0
ts−1 Tr

(
e−tD̂2

P − e−tD̂2
2R,P

)
dt.

In the following lemma we compute this relative ζ-determinant explicitly.

Lemma 3.1. When DY is invertible, the following equality holds:

detζ(D̂2
P , D̂2

2R,P ) = e4CR

where C = −(2
√

π)−1(Γ(s)−1Γ(s − 1/2)ζD2
Y
(s − 1/2))′(0) with ζD2

Y
(s) the

ζ-function of D2
Y .

Proof. Let {(µk, ϕk)} be the spectral resolution of DY . Then as shown in
[1], for

(
(u, y), (u′, y′)

) ∈ ([0,∞)× Y )2, we have

e−tD̂2
P =

∑

µk>0

e−tµ2
k√

4πt

[
e−(u−u′)2/4t − e−(u+u′)2/4t

]
ϕk(y)⊗ ϕk(y′)

+
∑

µk>0

{
e−tµ2

k√
4πt

[
e−(u−u′)2/4t + e−(u+u′)2/4t

]

− µk eµk(u+u′)erfc
(

u + u′

2
√

t
+ µk

√
t

)}
Gϕk(y)⊗Gϕk(y′);

(3.2)

with a similar formula for
(
(u, y), (u′, y′)

) ∈ ((−∞, 0]× Y )2. Since the heat
kernel of D̂2

2R,P is obtained from e−tD̂2
P by shifts of ±2R, it follows that

Tr
(
e−tD̂2

P − e−tD̂2
2R,P

)
= 4R · 1√

4πt
TrY

(
e−tD2

Y
)
.

From this, the claim follows by the standard computation. ¤

Now taking the logarithm of (3.1) and using Lemma 3.1 and Proposition
2.3, we see that

(3.3) 2CR− log detζD2
R,P = −ζD2

Y
(0) log 2 + E(R) is independent of R,

where E(R) → 0 as R → ∞. Since E(R) vanishes as R → ∞, and the
expression (3.3) is constant in R, it follows that E(R) is in fact identically
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zero. Then setting E(R) = 0 in (3.3) and then solving for log detζD2
R,P

completes the proof of Theorem 1.1.

4. Adiabatic decomposition of ζ-determinant

The aim of this section is to prove the following proposition, which was
used in the proof of Proposition 2.3.

Proposition 4.1. When DY is invertible, we have

detζD2
R,d

detζD2
R,d,− · detζD2

R,d,+

∼ 2
−ζ

D2
Y

(0)
.

For simplicity we use the notation D2
R,t for the operator

D2
R,d,− ⊕D2

R,d,+ : dom(D2
R,d,−)⊕ dom(D2

R,d,+)

→ L2([−R, 0]× Y, S)⊕ L2([0, R]× Y, S).

Then the log of the left-hand side of Proposition 4.1 can be written as

(4.1) log detζD2
R,d − log detζD2

R,d,− − log detζD2
R,d,+

= − d

ds

∣∣∣∣
s=0

1
Γ(s)

∫ ∞

0
ts−1 Tr

(
e−tD2

R,d − e−tD2
R,t

)
dt.

The fundamental idea to prove Proposition 4.1 is to construct a parametrix
for e−tD2

R,d − e−tD2
R,t up to an error term that vanishes as R →∞. Because

the arguments below are similar to those in [15], we shall omit some details
which the reader can find in [15].

We introduce a smooth even function ρ(a, b) : R→ [0, 1] that is equal to
0 for −a ≤ u ≤ a and equal to 1 for b ≤ |u|. We now define

φ1 = 1− ρ((5/7)R, (6/7)R) , ψ1 = 1− ψ2,

φ2 = ρ((1/7)R, (2/7)R) , ψ2 = ρ((3/7)R, (4/7)R).

We now define parametrices of the heat kernels ER(t;x, x′) of D2
R,d where

(x, x′) ∈ N2
R and ER,t(t; x, x′) of D2

R,t where (x, x′) ∈ M2
R. To do so, we

consider the heat kernel of −∂2
u + D2

Y over R× Y , which we denote by

(4.2) E(t; x, x′) :=
1√
4πt

e−(u−u′)2/4t e−tD2
Y (y, y′)
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where (x, x′) ∈ (R× Y )2 with x = (u, y), x′ = (u′, y′). For e−tD̂2
P defined in

the previous section, we put EP (t; x, x′) := e−tD̂2
P (x, x′) where (x, x′) ∈ M2.

Now we define the parametrices by

QR(t; x, x′) = φ1(x) E(t;x, x′) ψ1(x′) + φ2(x) ER(t;x, x′) ψ2(x′),

QR,t(t; x, x′) = φ1(x) EP (t; x, x′) ψ1(x′) + φ2(x) ER,t(t; x, x′) ψ2(x′),

where φi(x) = φi(u) with x = (u, y) and ψi(x′) is defined similarly. By
Duhamel’s principle, we can estimate the difference of the real heat kernels
and these parametrices. We refer the proof of the following lemma to [15,
Lem. 1.5].

Lemma 4.2. For any t > 0, there are positive constants c1, c2, c3 such that
∣∣∣∣ ER(t;x, x′)−QR(t;x, x′)

∣∣∣∣ ≤ c1e
c2t−c3(R2/t),

∣∣∣∣ ER,t(t; x, x′)−QR,t(t; x, x′)
∣∣∣∣ ≤ c1e

c2t−c3(R2/t)

where (x, x′) ∈ N2
R, M2

R, respectively, and
∣∣∣∣ · ∣∣∣∣ denotes the norm for an

element in End (Sx′ , Sx).

We are now ready to prove Proposition 4.1. First, we note that since DY

is invertible by assumption, as R →∞ all the eigenvalues of D2
R,d and D2

R,t
are bounded below by a positive constant c. Hence we have

∣∣Tr
(
e−tD2

R,d − e−tD2
R,t

)∣∣ ≤ e−c(t−1)
∣∣Tr

(
e−D

2
R,d − e−D

2
R,t

)∣∣
≤ c′vol(NR)e−c(t−1) ≤ c′′Re−ct

for positive constants c′, c′′. Henceforth we fix 0 < ε < 1. Then from these
inequalities, it is straightforward to show that

1
Γ(s)

∫ ∞

Rε

ts−1 Tr
(
e−tD2

R,d − e−tD2
R,t

)
dt → 0 as R →∞.

Here, the convergence means that this holomorphic function and its deriv-
ative converge to the zero function uniformly over some compact neighbor-
hood of s = 0. Thus, for the purpose of evaluating the asymptotics of (4.1),
we can ignore this large time integral and focus on the small time integral

(4.3)
1

Γ(s)

∫ Rε

0
ts−1 Tr

(
e−tD2

R,d − e−tD2
R,t

)
dt.

Applying Lemma 4.2, this integral is equal to

(4.4)
1

Γ(s)

∫ Rε

0
ts−1 Tr

(
QR −QR,t

)
dt

modulo a term vanishing as R → ∞, where again, vanishing means that
the concerned error function and its derivative converge to the zero function
uniformly over some compact neighborhood of s = 0. From the explicit
formulas (4.2) and (3.2), and recalling that (3.2) only represents e−tD̂2

P for
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u, u′ ≥ 0 and there is a similar formula for u, u′ ≤ 0, it follows that (4.4) is
equal to

1
Γ(s)

∫ Rε

0
ts−1

∫ ∞

0
2

∑

µk>0

ψ1(u)µk e2µkuerfc
(

u√
t

+ µk

√
t

)
du dt

modulo a term vanishing as R → ∞. To evaluate the right-hand side, we
integrate by parts to get

∫ ∞

0
2

∑

µk>0

ψ1(u)µk e2µkuerfc
(

u√
t

+ µk

√
t

)
du

=
1√
πt

Tr(e−tD2
Y )

∫ ∞

0
ψ1(u)e−u2/t du−

∑

µk>0

erfc
(

µk

√
t

)

−
∫ ∞

0

∑

µk>0

ψ′1(u)e2µkuerfc
(

u√
t

+ µk

√
t

)
du.

Now by Proposition 2.1 of [15],

− 1
Γ(s)

∫ Rε

0
ts−1

∫ ∞

0

∑

µk>0

ψ′1(u)e2µkuerfc
(

u√
t

+ µk

√
t

)
du dt

vanishes as R → ∞. Therefore, the nontrivial contribution to the asymp-
totics of (4.3) is given by

1
Γ(s)

∫ Rε

0
ts−1

(
Tr(e−tD2

Y )√
πt

∫ ∞

0
ψ1(u)e−u2/t du−

∑

µk>0

erfc
(

µk

√
t

) )
dt.

Up to a term vanishing as R → ∞, we can remove ψ1(u) and then adding
the large time integral

∫∞
Rε , which gives rise to another term vanishing as

R → ∞, we can see that the final contribution to (4.3) is given by the
integral

1
Γ(s)

∫ ∞

0
ts−1

(
Tr(e−tD2

Y )√
πt

∫ ∞

0
e−u2/t du−

∑

µk>0

erfc
(

µk

√
t

) )
dt.

Using an integration by parts argument (or a table of Mellin transforms),
we can evaluate this integral as 1

2

(
1− Γ(s+1/2)

Γ(s+1)
√

π

)
ζD2

Y
(s). Finally we obtain

− d

ds

∣∣∣∣
s=0

(
1
2

(
1− Γ(s + 1/2)

Γ(s + 1)
√

π

)
ζD2

Y
(s)

)
= −ζD2

Y
(0) log 2,

which completes our proof.
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5. Gluing and comparison formulæ of the ζ-determinant

In this section, for the case of the finite cylinder we illustrate the gluing
and comparison formulas of the ζ-determinant proved in [12] and [14].

Let D be a Dirac type operator acting on C∞(M,S) where M is a closed
compact Riemannian manifold of arbitrary dimension and S is a Clifford
bundle over M . Suppose that M = M− ∪ M+ is partitioned into a union
of manifolds with a common boundary Y = ∂M− = ∂M+. We assume that
all geometric structures are of product type over a tubular neighborhood N
of Y where D takes the product form (1.1). By restriction of D, we obtain
Dirac type operators D± over M±. We impose the boundary conditions
given by the orthogonalized Calderón projectors C± for D± and we denote
by DC± the resulting operators,

DC± = D± with dom(DC±) := {φ ∈ H1(M±, S) | C±(φ|Y ) = 0 }.
Here, we recall that the Calderón projectors C± are the projectors defined in-
trinsically as the unique orthogonal projectors onto the infinite-dimensional
Cauchy data spaces of D±:

{φ|Y | φ ∈ C∞(M±, S) , D±φ = 0 } ⊂ C∞(Y, S0),

where S0 := S|Y . The gluing problem for the ζ-determinant is to describe
the “defect”

detζD2

detζD2
C+ · detζD2

C−
= ?

in terms of recognizable data. To describe the solution in [12], we need
to introduce some notations. The Calderón projectors C± have the matrix
forms

(5.1) C± =
1
2

(
Id κ−1

±
κ± Id

)

with respect to the decomposition C∞(Y, S0) = C∞(Y, S+) ⊕ C∞(Y, S−),
where S± ⊂ S0 are the subbundles defined as the (±i)-eigenspaces of G.
Here, the maps κ± : C∞(Y, S+) → C∞(Y, S−) are isometries, so that
U := −κ−κ−1

+ is a unitary operator over C∞(Y, S−). Furthermore, U is
of Fredholm determinant class. We denote by Û the restriction of U to the
orthogonal complement of its (−1)-eigenspace. We also put

L :=
hM∑

k=1

γ0Uk ⊗ γ0Uk

where hM = dim ker(D), γ0 is the restriction map from M to Y , and {Uk}
is an orthonormal basis of ker(D). Then L is a positive operator on the
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finite-dimensional vector space γ0(ker(D)). We now have all the ingredients
to state the following gluing formula [12]:

(5.2)
detζD2

detζD2
C− · detζD2

C+
= 2

−ζ
D2

Y
(0)−hY (detL)−2 detF

(2Id + Û + Û−1

4

)

where hY = dim ker(DY ) and detF denotes the Fredholm determinant.
There is a similar formula for manifolds with cylindrical ends [13].

Using Theorem 1.1, let us verify the gluing formula (5.2) for the Dirac
type operator DR,P of the form (1.1) on NR = [−R, R]× Y with boundary
conditions (1.2), where we partition NR into

NR = NR,− ∪NR,+, NR,− = [−R, 0]× Y, NR,+ = [0, R]× Y.

We denote by DR,− and DR,+ the restrictions of DR,P to NR,− and NR,+,
respectively, with the boundary conditions at {0} × Y given by their cor-
responding Calderón projectors CR,− and CR,+, respectively. It is easy to
check that CR,− = Π< + Id−σ1

2 Π0 and CR,+ = Π> + Id−σ2
2 Π0. Now it is

straightforward to confirm that

detζD2
R,P

detζD2
R,− · detζD2

R,+

= 2
−ζ

D2
Y

(0)−hY(2R)2hdet∗
(2Id− (σ1σ2)− − (σ1σ2)−1

−
4

)

where we used Theorem 1.1 to compute the left-hand side. Comparing this
and (5.2), we see that the following equalities should hold:

(detL)−2 = (2R)2h,

detF

(2Id + Û + Û−1

4

)
= det∗

(2Id− (σ1σ2)− − (σ1σ2)−1
−

4

)
,

(5.3)

where U and L are the operators defined before, but now for our finite
cylinder operator DR,P . To verify the first equality in (5.3), we note by
definition of DR,P ,

(5.4) ker(DR,P ) = {ϕ ∈ ker(DY ) | σ1ϕ = −ϕ and σ2ϕ = −ϕ}.
It follows that projecting onto S− gives an isomorphism of ker(DR,P ) to the
(+1)-eigenspace of (σ1σ2)−, thus dim ker(DR,P ) = h. Moreover, if {ϕk} is
an orthonormal basis for the right-hand side of (5.4), then the operator L
is given by

L =
h∑

k=1

1√
2R

ϕk ⊗ 1√
2R

ϕk.

This implies the first equality in (5.3). To verify the second equality in (5.3),
note that by the definition of U and the formulas for CR,±, we have

U = Id over P−(ker(DY ))⊥, U = −(σ1σ2)− over P−(ker(DY ))
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where P− = Id+iG
2 is the projection onto S−. This implies the second

equality in (5.3). In conclusion, we can see that the gluing formula (5.2) is
compatible with Theorem 1.1 for the case of D2

R,P over NR.

We now explain the comparison formula proved in [14]. To this end, we
consider the smooth, self-adjoint Grassmannian Gr∗∞(D±), which consists
of orthogonal projections P± such that GP± = (Id−P±)G and P±−C± are
smoothing operators. For P1 ∈ Gr∗∞(D−), let κ1 : C∞(Y, S+) → C∞(Y, S−)
be the map that determines P1 as κ± does C± in (5.1). Let DP1 denote the
operator D− on M− with the boundary condition given by P1. Let P1 be
the orthogonal projection of C∞(Y, S0) onto the finite-dimensional vector
space ker(DP1)|Y . Then we introduce a linear map

L1 = −P1 GR−1
− GP1 over ker(DP1)|Y

where R− is the sum of the Dirichlet to Neumann maps on the double of
M− defined as follows. If we denote the double of M− by M̃ = M−∪(−M−)
and the double of D− by D̃, then for any ϕ ∈ C∞(Y, S0), there are unique
φ1 ∈ C∞(M−, S) and φ2 ∈ C∞(−M−, S) that are continuous at Y with
value ϕ such that D̃2φi = 0, i = 1, 2, off of Y . Then

(5.5) R− ϕ := ∂uφ1

∣∣∣
Y
− ∂uφ2

∣∣∣
Y

.

In [14], we prove that L1 is a positive operator so that detL1 is a positive
real number. Now the main result of [14] states that

detζD2
P1

detζD2
C−

= (detL1)2 · detF

(2Id + Û1 + Û−1
1

4

)
(5.6)

where Û1 is the restriction of U1 := κ−κ−1
1 to the orthogonal complement

of its (−1)-eigenspace. The formula (5.6) generalizes Scott’s formula [17] to
the case when DP1 is not invertible.

Let us verify the comparison formula in (5.6) for DR,− on NR,− using
Theorem 1.1. To this end, we define DR,1 by replacing the boundary condi-
tion CR,− = Π< + Id−σ1

2 Π0 with Π< + Id+eσ1
2 Π0 at {0} × Y where σ̃1 is an

involution over ker(DY ) anticommuting with G. Then

(5.7)
detζD2

R,1

detζD2
R,−

= R2h1 det∗
(2Id− (σ1σ̃1)− − (σ1σ̃1)−1

−
4

)

with h1 is the number of (+1)-eigenvalues of (σ1σ̃1)− and where we used
Theorem 1.1 to compute the left-hand side. Hence, comparing the formulas
(5.6) and (5.7), we can see that the following equalities should hold:

(detL1)2 = R2h1 ,

detF

(2Id + Û1 + Û−1
1

4

)
= det∗

(2Id− (σ1σ̃1)− − (σ1σ̃1)−1
−

4

)
,

(5.8)
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where U1 and L1 are the operators explained above, but now for our oper-
ators DR,1, DR,−. The second equality in (5.8) holds by the same reason as
we gave for the operator Û before. For the first equality in (5.8), we note
that ker(DR,1) is given by a similar formula to (5.4) but with σ2 replaced
with σ̃1. This implies that dim ker(DR,1) = h1. To find the operator L1, we
recall that L1 = −P1 GR−1

− GP1 and now P1 denotes the projection onto
ker(DR,1)|{0}×Y . Since G exchanges Im(P1) and G

(
Im(P1)

)
, we need to

know how R− acts over G
(
Im(P1)

)
. To do so, we note that the double of

NR,− is just NR and the double of DR,− is just DR together with the bound-
ary conditions Π> + Id+σ1

2 Π0 at {−R} × Y and Π< + Id−σ1
2 Π0 at {R} × Y .

We denote this operator by D̃R,−. Then, given ϕ ∈ G
(
Im(P1)

)
, one can

easily check that φ1 ∈ C∞(NR,−, S) and φ2 ∈ C∞(NR,+, S) defined by

φ1(u, y) = ϕ + (u/R)ϕ , φ2(u, y) = ϕ

satisfy D̃2
R,−φi = 0, i = 1, 2, off of {0} × Y . Thus, we have

L1 = −P1 GR−1
− GP1 = RP1.

One can also derive this formula from Proposition 7.3 in [11]. This shows
that the first equality in (5.8) holds, and verifies the compatibility of the
comparison formula (5.6) with Theorem 1.1.

We remark that an equality similar to (5.6) holds for the corresponding
objects over M+ with the proper changes taking care of the orientation. Let
P2 ∈ Gr∗∞(D+) and let κ2, U2, and L2 be the corresponding objects for the
pair (D+,P2) defined as we did for (D−,P1) before. Then combining (5.2)
with (5.6) and the comparison formula for (D+,P2), one can check that

detζD2

detζD2
P1
· detζD2

P2

= 2
−ζ

D2
Y

(0)−hY (detL)−2 detF

(2Id + Û + Û−1

4

)

·
2∏

i=1

(detLi)−2 · detF

(2Id + Ûi + Û−1
i

4

)−1
.

For more details on this general gluing formula, see [12]. As with our pre-
vious examples, one can also verify that this general gluing formula is com-
patible with Theorem 1.1.
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