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Abstract

We study (relative) zeta regularized determinants of Laplace type operators on compact conic manifolds.
We establish gluing formulae for relative zeta regularized determinants. For arbitrary self-adjoint extensions
of the Laplace–Beltrami operator, we express the relative ζ -determinants for these as a ratio of the deter-
minants of certain finite matrices. For the self-adjoint extensions corresponding to Dirichlet and Neumann
conditions, the formula is particularly simple and elegant.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study relative zeta regularized determinants of second order regular singu-
lar differential operators generalizing Laplace type operators on conic manifolds. Of particular
interest is the Laplace–Beltrami operator on a conic manifold and its self-adjoint extensions cor-
responding to Dirichlet and Neumann conditions. Our main result, Theorem 1.1, gives an explicit
formula for the relative ζ -determinants of these self-adjoint extensions of Laplacians in terms of
the determinants of certain finite matrices. To concisely state our results, we recall the prerequi-
site material as it was developed, much of which we later adapt to the context in which we work.
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Throughout this discussion, let M be an n-dimensional connected Riemannian manifold and
let �(k) be the Laplace–Beltrami operator acting on k-forms.

When M is compact without boundary, the operator �(k) extends uniquely to a self-adjoint
operator acting on sections of the associated bundle of L2-forms. In addition, the heat operator
is trace class. Under these conditions one can associate to �(k) a zeta function which, for �(s) >

n/2, is given by

ζ
(
s,�(k)

)= 1

Γ (s)

∞∫
0

t s−1 Tr
(
e−t�(k)

Pk

)
dt, (1.1)

where Tr denotes trace and Pk is projection on the orthogonal complement of the null space
of �(k). Fundamental results of Seeley [44] imply that the ζ(s,�(k)) extends to a meromorphic
function on the complex plane which is regular at zero. Thus, following [42], one can associate
to �(k) a zeta regularized determinant

detζ
(
�(k)

)= e−ζ ′(0,�(k)). (1.2)

Introduced to provide an analytic counterpart to an important combinatorial invariant (Reide-
meister torsion), it was soon realized that the theory of ζ -determinants could be extended to
provide powerful tools in a variety of contexts. The first such extension was to compact mani-
folds with boundary.

For compact manifolds with boundary, the Laplace–Beltrami operator is no longer essen-
tially self-adjoint. Among self-adjoint extensions, there are two geometrically natural choices:
the Dirichlet extension and the Neumann extension. These Dirichlet and Neumann conditions
form a pair of complementary boundary conditions. For any such pair it is possible to establish
a gluing formula for ζ -determinants of Laplace type operators. More precisely, suppose that M

is a closed manifold and that L is an elliptic differential operator on M. Suppose that Γ is a
closed codimension one submanifold of M and let MΓ be the compact manifold with bound-
ary obtained by cutting M along Γ and gluing copies of Γ to the cut. Suppose that B and B ′
are complementary boundary conditions and the boundary value problem determined by L and
B is invertible and admits a principal angle. It is then a theorem of Burghelea, Friedlander and
Kappeler [9] that the ζ -determinants of L and LB satisfy a gluing formula:

detζ (L)

detζ (LB)
= C detζ (R),

where the constant C is independent of perturbations of L, B and B ′ by differential operators of
sufficiently small order and the BFK operator R (the composition of the Poisson operator for LB

and the boundary condition B ′) is pseudodifferential on Γ (cf. Section 4). Such gluing formulae
make it possible to use ζ -determinants to address problems arising in differential topology via
“cut and paste” arguments.

When the base manifold M is no longer compact, serious complications arise in the corre-
sponding analysis and there are a number of obstructions to obtaining good results. Among these
obstructions is the fact that it is often the case that the associated Laplace operators are not es-
sentially self-adjoint, and there is no canonical choice for which extension should be chosen.
Moreover, given an extension, it is rarely the case that the corresponding zeta function is defined
and holomorphic at zero, and the required estimates for the behavior of the heat kernel which
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would facilitate the appropriate regularization are, in general, difficult. In an attempt to address
such problems for a large class of interesting examples, Müller [35] (cf. [30]) observed that, in
certain circumstances, there may be a corresponding relative theory of determinants associated
to natural pairs of operators (e.g., the standard Laplace operator on R

n and the Laplace oper-
ator arising from a compact perturbation of the Euclidean metric). This approach was further
developed by Carron [11] to noncompact cases and has led to the relative ζ -determinant for-
mula of Dirac Laplacians with two boundary conditions [43], as well as results for a variety of
examples [35].

For manifolds which lack compactness, but for which there is uniform structure at infinity, a
good deal is known. Included in this class of results is the early work of Hassell involving the
behavior of analytic torsion under analytic surgery [23], and the work of Hassell and Zelditch
[24] which provides an analysis of determinants of Laplacians on exterior Euclidean domains.
These papers involve a regularization of the heat kernel due to Melrose; the so-called b-heat
trace [33]. The theory associated to the b-heat trace has since undergone extensive development
and application (cf. [31,41] and references therein).

More recently, Loya and Park (motivated by earlier work of Park and Wojciechowski
on the adiabatic decomposition of ζ -determinants [37–40]), have adapted b-trace techniques
and the gluing argument of Burghelea, Kappeler and Friedlander to study the decomposi-
tion of ζ -determinants for Laplacians on manifolds with cylindrical ends [31]; see Müller and
Müller [36] for related work.

The present work exploits a similar circle of ideas to analyze determinants of second order
regular singular operators [7] generalizing Laplace type operators on compact conic manifolds.
More precisely, suppose that M is a compact Riemannian manifold with boundary. Suppose that
Γ is a closed manifold and (referring details to Section 2) that [0,2]r ×Γ is a collar of Γ := ∂M

over which the metric is of product type dr2 +h with h a metric on Γ . Let � :C∞
c (M \Γ,E) →

C∞
c (M \ Γ,E) be a symmetric nonnegative second order differential operator such that over the

collar [0,2]r × Γ , � takes the form

� = −∂2
r + r−2A, (1.3)

where A is a Laplace-type operator over Γ satisfying A � −1/4. In Section 2 we explain how
the Laplace–Beltrami operator on a conic manifold can be transformed into such an operator.
Suppose that M decomposes as

M = X ∪ Y, (1.4)

where X = [0,1]r ×Γ and Y is a compact manifold admitting a collar neighborhood [1,2]r ×Γ

of its boundary (we identify the boundary of Y with Γ ). We also assume that the induced Dirich-
let Laplacian on Y , �Y , is invertible. The main example of an operator � satisfying the above
hypotheses is the Laplace–Beltrami operator acting on forms over a conic manifold (see Section 2
and [7,13,34]). The self-adjoint extensions of � are parameterized by Lagrangian subspaces
Λ of an associated finite-dimensional symplectic vector space V (see below and Section 2).
Among these Λ, we consider the self-adjoint extensions denoted by D,N , which correspond
to the Dirichlet, Neumann conditions, and we denote the resulting self-adjoint extensions of �

by �D, �N. For this pair, the relative zeta function ζ(s,�D,�N), which is defined as in (1.1)
using a relative trace (cf. (3.3)), is regular at s = 0 (see Theorem 3.2). Hence we can define the
relative determinant for (�D,�N) by

detζ (�D,�N) = exp
(−ζ ′(0,�D,�N)

)
.
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Our main result is a formula for this relative determinant in terms of determinants of certain
(finite) matrices. To describe these matrices, we proceed as follows. Define an operator

LD :=
∑
j

〈·, vj 〉vj : (ker�D)
∣∣
r=1 → (ker�D)

∣∣
r=1, (1.5)

where vj := uj |r=1 with {uj } is an orthonormal basis for the kernel of �D. By Theorem 4.5, the
sections {vj } are linearly independent in L2(Γ,EΓ ), where EΓ := E|Γ , so that LD is a positive
linear operator on the finite-dimensional vector space (ker�D)|r=1. Substituting Neumann for
Dirichlet, define an operator LN similarly.

With A � −1/4 as in (1.3), we will write ν� := √
λ� + 1/4 � 0, where λ� are the eigenvalues

of A. We denote by ΠV the orthogonal projection onto V :=⊕−1/4�λ�<3/4 E�, where E� is the
eigenspace of λ�. Recalling our assumption that �Y is invertible, we set NY,V := ΠVNY ΠV ,
where NY is the Dirichlet-to-Neumann map for the restriction of � to Y. We define a linear
map Mν on V by its action on eigenspaces: Mν := ν�|E�

. Finally, we say that NY is of clean type
if NY maps either V or V ⊥ into itself. With these conventions, our main result is the following:

Theorem 1.1. When �Y is invertible and NY is of clean type, the following relative determinant
formula holds:

detζ (�D,�N) =
∏

0<ν�<1

2−2ν�
Γ (1 − ν�)

Γ (1 + ν�)
· detLN

detLD
· det∗( Id

2 +Mν +NY,V )

det∗( Id
2 −Mν +NY,V )

,

where det∗ denotes the determinant over the orthogonal complement of the kernel of the matrix.

Remark 1.2. There are direct analogs of Theorem 1.1 for a larger class of self-adjoint extensions
(extensions of mixed D and N type; cf. Theorem 5.6). There are also extensions of Theorem 1.1
valid for arbitrary self-adjoint extensions. The formulae in this case, however, are quite different
in form from those appearing in Theorems 1.1 and 5.6 (cf. Theorem 5.10).

Theorem 1.1 means that the relative determinant detζ (�D,�N) depends on data near the
cone point given by the ν�’s as well as data of the whole manifold M via LD,LN and NY,V .
We expect this result to have a number of interesting applications; for example, to the study of
analytic torsion for conic manifolds.

To prove our result, we adapt much of the machinery referenced above to the context of conic
manifolds. We proceed as follows.

In Section 2, we review material involving the analysis of Laplace operators on metric cones,
including the parameterization of self-adjoint extensions by Lagrangian subspaces of a sym-
plectic vector space associated to forms which are formally harmonic near the singularity. In
Section 3 we define relative zeta functions for pairs of self-adjoint extensions of the Laplace
operator and investigate their regularity properties (cf. Theorems 3.1 and 3.2). In Section 4 we
develop the gluing formulae we require for our results. More precisely, given a decomposition
of M as in (1.4), and a self-adjoint extension �Λ, we define, for μ � 0 a BFK-operator, RΛ(μ),

for �Λ + μ. Using the variational argument of [9] and the model problem approach used in
[31,32], we establish a gluing formula for relative determinants (Theorem 4.2), a result of in-
dependent interest. In Section 5 we specialize to Dirichlet and Neumann boundary conditions,
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use our gluing formula and an analysis of associated one-dimensional model problems to com-
plete the proof of our main theorem. We also present a relative determinant formula involving
self-adjoint extensions of mixed D and N type and also for arbitrary self-adjoint extensions.

2. Self-adjoint extensions

In this section we introduce the notation and parameterizations we will use throughout the
remainder of the paper.

2.1. Conic manifolds

A (connected) conic manifold M is a compact connected metric space with a distinguished
subset Σ ⊂ M whose elements are called singular points, satisfying:

(1) Σ is a collection of isolated points,
(2) M \ Σ is a Riemannian manifold,
(3) for each p ∈ Σ, there is a neighborhood U � p and an isometry

I :U → (0,2]r × Γ (2.1)

with metric

g = dr2 + r2h,

where Γ is a compact manifold without boundary and h is a metric on Γ.

We refer to the product in (2.1) as the metric cone at p and we write

Cp = [0,2] × Γ ;
see Fig. 1. We denote by �(k) the Laplace–Beltrami operator acting on k-forms with compact
support. Our immediate interest is an investigation of the asymptotics of the trace of extensions
of the corresponding heat operators. It is a theorem of Cheeger [13] that the effect of the singular
set on the asymptotics of the heat trace can be localized to the metric cones Cp. Thus, for our
purposes it suffices to assume throughout the article that the singular set consists of a point.

For k away from the middle dimension, |k −n/2| � 2, �(k) is essentially self-adjoint and thus
admits a unique self-adjoint extension which acts on the corresponding collection of L2-forms.
This extension coincides with the graph closure of �(k) in L2, the so-called minimal extension
of �(k), the domain of which we denote by Dmin. When |k − n/2| < 2, the Laplace–Beltrami
operator is no longer essentially self-adjoint, and it becomes necessary to choose a domain for

Fig. 1. A conic manifold.
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the self-adjoint extension. Any such choice must include the domain of the minimal extension
and can be no larger than the domain of the maximal extension which is given by

Dmax = {f ∈ L2: ∀g ∈ Dmin, ∃h ∈ L2:
〈
f,�(k)g

〉= 〈h,g〉}. (2.2)

The collection of possible extensions is naturally parameterized by the behavior of forms which
are formally harmonic at Σ.

2.2. The Laplace–Beltrami operator near the cone tip

We now describe the Laplacian near the cone tip. Although what we say now seems to be
“folklore,” we cannot find the details spelled out explicitly in any published source, so we shall
outline the details of this important description. We begin with a rescaling trick (cf. Cheeger [12],
Brüning and Seeley [7]). There is a natural isomorphism between the space consisting of k-forms
on Cp \ Σ and C∞((0,2];Ωk(Γ ) ⊕ Ωk−1(Γ )) defined by writing φ ∈ C∞(Cp \ Σ,Ωk) as

φ = rk+ 1−n
2 φk + rk−1+ 1−n

2 dr ∧ φk−1, (2.3)

where φj ∈ C∞((0,2];Ωj(Γ )). (Brüning and Seeley [7, p. 370] put dr to the right of φk−1.
This will give a slightly different formula in (2.5); their formula has factors of (−1)k+1 in the
off diagonal terms.) Given φ,ψ ∈ C∞

c (Cp \ Σ,Ωk) written using the isomorphism (2.3), it is
automatic that

〈φ,ψ〉g =
2∫

0

(〈
φk(r),ψk(r)

〉
h

+ 〈φk−1(r),ψk−1(r)
〉
h

)
dr.

It follows that (2.3) defines a unitary rescaling map from the bundle of L2 k-forms on Cp with
the cone metric to L2((0,2];Ωk(Γ ) ⊕ Ωk−1(Γ )) with the usual metric. With respect to (2.3),
the exterior differential d with domain C∞((0,2];Ωk(Γ ) ⊕ Ωk−1(Γ )) can be written as

d =
( 1

r
dΓ 0

∂r + 1
r
(k + 1−n

2 ) − 1
r
dΓ

)
,

where dΓ is the exterior differential on Γ . Note that the factors of 1
r

in front of the dΓ ’s and
the term 1

r
(k + 1−n

2 ) arise from the dependence of the powers of r in (2.3) on the form degrees.
Taking the adjoint of d , we see that d∗ with domain C∞((0,2];Ωk+1(Γ ) ⊕ Ωk(Γ )) with the
usual metric can be written as

d∗ =
( 1

r
d∗
Γ −∂r + 1

r
(k + 1−n

2 )

0 − 1
r
d∗
Γ

)
.

A short computation shows that over C∞((0,2];Ωk(Γ ) ⊕ Ωk−1(Γ )), d∗d equals( d∗
Γ dΓ

r2 − ∂2
r + 1

r2 (k + 1−n
2 )(k + 1 + 1−n

2 ) − dΓ

r2 + 1
r
∂rdΓ − 1

r2 (k + 1−n
2 )dΓ

1 ∗ 1 1−n ∗ d∗
Γ dΓ

)

−

r
∂rdΓ −

r2 (k + 2 )dΓ r2
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and that dd∗ equals

( dΓ d∗
Γ

r2 − 1
r
∂rdΓ + 1

r2 (k − 1 + 1−n
2 )dΓ

− d∗
Γ

r2 + 1
r
∂rd

∗
Γ + 1

r2 (k − 1 + 1−n
2 )d∗

Γ

dΓ d∗
Γ

r2 − ∂2
r + 1

r2 (k − 1 + 1−n
2 )(k − 2 + 1−n

2 )

)
.

Adding d∗d and dd∗, we see that mapping C∞((0,2];Ωk(Γ )⊕Ωk−1(Γ )) to itself, the Laplace
operator takes the form

�(k) = −∂2
r + r−2Ak. (2.4)

Here,

Ak =
(

�
(k)
Γ + (k + 1−n

2 )(k + 1 + 1−n
2 ) −2dΓ

−2d∗
Γ �

(k−1)
Γ + (k − 1 + 1−n

2 )(k − 2 + 1−n
2 )

)
, (2.5)

where �
(k)
Γ denotes the Laplace operator acting on k-forms over Γ .

Lemma 2.1. We have

Ak � −1/4,

where Ak is given in (2.5).

Proof. Let φ = φk ⊕ φk−1 ∈ C∞((0,2];Ωk(Γ ) ⊕ Ωk−1(Γ )) and suppose that Aφ = λφ. By
definition of Ak , Akφ = λφ is equivalent to

(
�

(k)
Γ +

(
k + 1 − n

2

)(
k + 1 + 1 − n

2

))
φk − 2dΓ φk−1 = λφk and

(
�

(k−1)
Γ +

(
k − 1 + 1 − n

2

)(
k − 2 + 1 − n

2

))
φk−1 − 2d∗

Γ φk = λφk−1.

Applying dΓ to the first of these equations (we will not need the second equation), we obtain

(
�

(k+1)
Γ +

(
k + 1 − n

2

)(
k + 1 + 1 − n

2

))
(dΓ φk) = λ(dΓ φk),

where we used that dΓ �
(k)
Γ = �

(k+1)
Γ dΓ , since both sides equal dΓ d∗

Γ dΓ . We know that

�
(k+1)
Γ � 0, so

λ �
(

k + 1 − n

2

)(
k + 1 + 1 − n

2

)
� −1

4
,

because the function f (x) = x(x + 1) achieves its minimum when x = −1/2, with minimum
value −1/4. �
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2.3. Self-adjoint extensions and the D and N extensions

We now generalize the above considerations to Brüning and Seeley’s [7] category of regular
singular elliptic operators. Let M be a compact Riemannian manifold with boundary having
a collar neighborhood [0,2]r ×Γ of Γ = ∂M where the metric is of product type dr2 +h with h

a metric on Γ . Let � :C∞
c (M \Γ,E) → C∞

c (M \Γ,E) be a symmetric second order differential
operator such that over the collar [0,2]r × Γ , � takes the form

� = −∂2
r + r−2A, (2.6)

where A :C∞(Γ,EΓ ) → C∞(Γ,EΓ ) is a Laplace-type operator over Γ such that A � −1/4.
As shown in (2.5) and Lemma 2.1, the Laplace–Beltrami operator over a conic manifold can be
transformed to this category.

We now describe two natural self-adjoint extensions of �. Using the expression for the Lapla-
cian given in (2.6), Cheeger [13] gives a description of the maximal domain on k-forms. More
precisely, let us fix k and let

−1

4
� λ1 � λ2 � λ3 � · · · � λq︸ ︷︷ ︸

<3/4

< λq+1 � λq+2 � λq+3 � · · ·︸ ︷︷ ︸
�3/4

(2.7)

be the eigenvalues of A with corresponding orthonormal eigenvectors {φ�}. Then (cf.
Cheeger [13], Mooers [34, Proposition 2.3]), it is straightforward to prove that φ is in Dmax
if and only if φ is in H 2 away from the singular set and near the singular set, we can write

φ =
∑

−1/4�λ�<3/4

{
c+
� (φ)ψ+

� + c−
� (φ)ψ−

�

}+ o
(
r3/2), (2.8)

where setting ν� :=
√

λ� + 1
4 � 0, we have

ψ+
� :=

⎧⎨
⎩

1√
2ν�

r
1
2 +ν�φ� for ν� > 0,

r
1
2 φ� for ν� = 0,

ψ−
� :=

⎧⎨
⎩

1√
2ν�

r
1
2 −ν�φ� for ν� > 0,

r
1
2 log rφ� for ν� = 0.

(2.9)

Moreover, an integration by parts argument shows that for φ,ψ ∈ Dmax, we have

〈�φ,ψ〉 − 〈φ,�ψ〉 =
∑

−1/4�λ�<3/4

a�

{
c+
� (φ)c−

� (ψ) − c−
� (φ)c+

� (ψ)
}
, (2.10)

where a� = 1 for ν� > 0 and a� = −1 for ν� = 0. Following Mooers [34, p. 9], we can put
this computation in a symplectic framework by considering the 2q-dimensional complex vector
space V spanned by the collection {ψ±

� }q�=1:

V = span
{
ψ±

�

}q
�=1 (2.11)

and defining an Hermitian symplectic structure ω :V × V → C by setting
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ω
(
ψ±

i ,ψ∓
i

)= {±1 when νi �= 0,

∓1 when νi = 0;
ω
(
ψ±

i ,ψ±
j

)= 0, otherwise (2.12)

and extending to V ×V linearly in the first factor and conjugate linear in the second factor. Then
it follows that self-adjoint realizations of � are in one-to-one correspondence with Lagrangian
subspaces of V with the Hermitian symplectic structure ω. Explicitly, given a Lagrangian sub-
space Λ ⊂ V , near r = 0 elements in the domain for the Λ extension have the form

φ =
∑

−1/4�λ�<3/4

{
c+
� (φ)ψ+

� + c−
� (φ)ψ−

�

}+ o
(
r3/2) (Λ extension),

where ∑
−1/4�λ�<3/4

{
c+
� (φ)ψ+

� + c−
� (φ)ψ−

�

} ∈ Λ. (2.13)

The Friedrichs extension, which we shall call the “D extension,” is the extension obtained by
choosing all the c−

� ’s in (2.8) to vanish. The “D” stands for Dirichlet because in the special case
that all the eigenvalues λ� < 3/4 equal zero, we have

φ =
∑
λ�=0

{
c+
� (φ)rφ� + c−

� (φ)φ�

}+ o
(
r3/2),

and we see that φ satisfies the Dirichlet condition at r = 0 if and only if c−
� (φ) = 0 for all �. In

the case all the λ� < 3/4 equal zero, observe that the Neumann boundary condition is obtained
by choosing all the c+

� (φ)’s to vanish. In the general case we call the “N extension” the extension
obtained by choosing all the c+

� (φ)’s to vanish in (2.8) except when ν� = 0, where we require
c−
� (φ) = 0 just as for the D extension. In summary, near r = 0, elements in the domain for the

D extension have the form

φ =
∑

−1/4�λ�<3/4

c�(φ)r
1
2 +ν�φ� + o

(
r

3
2
)

(D extension),

while elements in the domain for the N extension have the form

φ =
∑

−1/4�λ�<3/4

c�(φ)r
1
2 −ν�φ� + o

(
r

3
2
)

(N extension).

In terms of Lagrangian subspaces of V , we have

D = span
{
ψ+

�

}
, N = span

{
ψ−

� for ν� �= 0, ψ+
� for ν� = 0

}
. (2.14)

We remark that the D and N extensions are the two canonical scale invariant domains of �,
where scale invariant means that they are invariant under the scaling r �→ cr for c > 0; for more
on self-adjoint extensions, see Gil and Mendoza [20].
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3. Usual poles of relative zeta functions

Let Λ ⊂ V be a Lagrangian subspace of the symplectic vector space V defined by (2.8)–(2.12)
above. For simplicity, we assume that Λ decomposes “diagonally” as

Λ = Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λq, (3.1)

where Λ� is a Lagrangian subspace of the two-dimensional space spanned by {ψ±
� } with respect

to the induced symplectic structure such that when λ� = − 1
4 , Λ� = span{ψ+

� } (both the D and N

extensions have this property). Then Λ determines a self-adjoint extension of �, which we denote
by �Λ. The main result of this section is the following theorem.

Theorem 3.1. As t → 0,

Tr
(
e−t�Λ

)∼ ∑
λ�<3/4

∞∑
j=0

aΛ,j,�t
j
√

λ�+1/4 +
∞∑

j=0

aj t
j−n

2 + b log t,

where the coefficients aj , j = 0,1,2, . . . , and b are independent of the choice of self-adjoint
extension, and b depends only on the operator A.

Before proceeding to the proof of Theorem 3.1, we note that, as a corollary, we obtain a
theory of relative zeta functions. More precisely, let Λ1,Λ2 ⊂ V be Lagrangian subspaces that
decompose as in (3.1). Then by Theorem 3.1, as t → 0,

Tr
(
e−t�Λ1

)− Tr
(
e−t�Λ2

)∼ ∑
λ�<3/4

∞∑
j=0

(aΛ1,j,� − aΛ2,j,�)t
j
√

λ�+1/4. (3.2)

Let Πi denote the positive spectral projection of �Λi
. Denoting the point spectrum of �Λi

by
{μi1,μi2, . . .}, we define the relative zeta function for the pair (�Λ1 ,�Λ2) by

ζ(s,�Λ1 ,�Λ2) :=
∑

μ1j <0

(μ1j )
−s −

∑
μ2j <0

(μ2j )
−s

+ 1

Γ (s)

( 1∫
0

+
∞∫

1

)
t s−1 Tr

(
Π1e

−t�Λ1 − Π2e
−t�Λ2

)
dt (3.3)

for s ∈ C with �(s) � 0. As a consequence of Theorem 3.1, we automatically get

Theorem 3.2. The relative zeta function ζ(s,�Λ1 ,�Λ2) extends to be meromorphic on C with
(possible) simple poles on the “unusual” set {−j

√
λ� + 1/4 | −1/4 < λ� < 3/4, j ∈ N}. In

particular, the relative zeta function is regular at s = 0.

Remark 3.3. By the work of Mooers [34], the relative zeta function ζ(s,�Λ1 ,�Λ2) is regular at
s = 0; what is new in Theorem 3.2 is the exact pole structure for diagonal Lagrangians with the
form in (3.1).
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For the proof of Theorem 3.1, we begin by studying a related model problem. More precisely,
we fix a Lagrangian subspace Λ of the boundary data V that decomposes as in (3.1). We let
X := [0,1]r × Γ and we consider the operator �X,Λ := −∂2

r + r−2A given in (2.6), where we
put the Dirichlet condition at r = 1 and domain DΛ at r = 0 fixed by Λ; that is, whose elements
have asymptotics at r = 0 determined by the Lagrangian subspace Λ.

Proposition 3.4. As t → 0,

Tr
(
e−t�X,Λ

)∼ ∑
λ�<3/4

∞∑
j=0

aΛ,j,�t
j
√

λ�+1/4 +
∞∑

j=0

aj t
j−n

2 + b log t,

where the coefficients aj , j = 0,1,2, . . . , and b are independent of the choice of self-adjoint
extension, and b depends only on the operator A.

Proof. Let {λ�} denote the set of all eigenvalues of A and let ΠV be the orthogonal projection
of L2(Γ,EΓ ) onto the finitely many eigenspaces of A with eigenvalues λ� < 3/4. We can write

e−t�X,Λ = ΠV e−t�X,ΛΠV + Π⊥
V e−t�X,ΛΠ⊥

V

=
⊕

λ�<3/4

Πλ�
e−tL�Πλ�

+ Π⊥
V e−t�X,ΛΠ⊥

V ,

where Πλ�
is the orthogonal projection onto the eigenspace corresponding to λ� and

L� := − d2

dr2
+ λ�r

−2

over [0,1] with the Dirichlet condition at r = 1 and with domain at r = 0 fixed by Λ�, that is,
whose elements have asymptotics at r = 0 determined by Λ�. Let us define

�′ := −∂2
r + r−2A′, where A′ :=

{
3
4 over V,

A over V ⊥,

where A is given in (2.5). Then, Π⊥
V e−t�X,ΛΠ⊥

V = Π⊥
V e−t�′

Π⊥
V , so

e−t�X,Λ =
⊕

λ�<3/4

Πλ�
e−tL�Πλ�

+ Π⊥
V e−t�′

Π⊥
V .

Hence,

Tr
(
e−t�X,Λ

)= ∑
λ�<3/4

Tr
(
e−tL�

)+ Tr
(
Π⊥

V e−t�′
Π⊥

V

)
. (3.4)

Now it follows from the work of Cheeger [13] (cf. [7,8,15]) that as t → 0,

Tr
(
e−t�′)∼ ∞∑

aj t
j−n

2 + b log t,
j=0
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for some coefficients aj , j = 0,1,2, . . . , and b, and from the work of Falomir et al. [19]
(cf. [17,18]) that as t → 0, we have

Tr
(
e−tL�

)∼ ∞∑
j=0

aΛ�,j,�t
j
√

λ�+1/4 +
∞∑

j=0

bj t
j−1

2 . (3.5)

Putting these trace expansions into (3.4) we get our result. �
To prove Theorem 3.1, we cut the manifold M at the hypersurface r = 1 in the collar

[0,2]r × Γ , giving a decomposition

M = X ∪ Y,

where X = [0,1]r × Γ and Y is a manifold with a collar neighborhood [1,2]r × Γ near its
boundary, which we identify with Γ .

Let �(r) ∈ C∞([0,∞)) be a nondecreasing function such that �(r) = 0 for r � 1/4 and
�(r) = 1 for r � 3/4. Given any real numbers α < β , we define

�α,β(r) := �
(
(r − α)/(β − α)

)
. (3.6)

Then �α,β(r) = 0 on a neighborhood of {r � α} and �α,β(r) = 1 on a neighborhood of {r � β}.
We define

ψ1(r) = �1/2,3/4(r), ψ2(r) = 1 − ψ1(r),

ϕ1(r) = �1/4,1/2(r), ϕ2(r) = 1 − �3/4,1(r). (3.7)

These functions extend either by 0 or 1 to define smooth functions on all of M and {ψi} forms a
partition of unity of M such that ϕi = 1 on supp(ψi).

Let �X,Λ = −∂2
r + r−2A given in (2.6) denote the Laplacian on X := [0,1]r × Γ , where we

put the Dirichlet condition at r = 1 and with domain DΛ at r = 0 fixed by Λ, and let �′ denote
the Laplacian on the compact manifold M \ ([0,1/4)r × Γ ) with boundary with the Dirichlet
condition at r = 1/4. We define

E = ϕ1e
−t�′

ψ1 + ϕ2e
−t�X,Λψ2. (3.8)

It follows that E maps into the domain DΛ of �Λ, and

(∂t + �Λ)E = K, where

K = [�Λ,ϕ1]e−t�′
ψ1 + [�Λ,ϕ2]e−t�X,Λψ2.

Because the supports of [�Λ,ϕi] and ψi , where i = 1,2, are disjoint, it is straightforward to
check that the Schwarz kernel of K is a smooth function on M2 vanishing to infinite order at
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t = 0 and near the whole left boundary ∂M × M of M2. Thus, the heat operator of �Λ is given
by (cf. [3, Chapter 2])

e−t�Λ = E + K ′, K ′ = E ∗
∞∑

j=1

(−1)jKj ,

where K1 = K and Kj = Kj−1 ∗ K with ∗ denoting the convolution of kernels:

K ∗ K ′ =
t∫

0

K(t − r)K ′(r) dr =
t∫

0

K(r)K ′(t − r) dr. (3.9)

Arguments similar to those found in [3, Chapter 2] show that the Schwarz kernel of K ′ is
a smooth function on M2 vanishing to infinite order at t = 0. Therefore, the asymptotics of
Tr(e−t�Λ) as t → 0 are the same as those of

Tr(E) = Tr
(
ϕ1e

−t�′
ψ1
)+ Tr

(
ϕ2e

−t�X,Λψ2
)
.

By the work of Iwasaki [25] (cf. Greiner [22]), the trace Tr(ϕ1e
−t�′

ψ1) has the usual expansion
as t → 0 in half-integer powers of t . Now our theorem follows directly from Proposition 3.4.

4. The gluing formula of the ζ -determinant

The object of this section is to derive a BFK-type gluing formula for the ζ -determinant over
conic manifolds.

4.1. Statement of the gluing formula

For this and the next section, let us fix a Lagrangian subspace Λ ⊂ V of the symplectic vector
space V defined by (2.8)–(2.12) such that Λ decomposes diagonally as (3.1) and is of mixed D

and N type in the following sense. We require (cf. (2.14)) Λ� ⊂ span{ψ±
� } to be either span{ψ+

� }
or span{ψ−

� }, except when λ� = −1/4, in which case we only choose span{ψ+
� }. Let �Λ denote

the Laplace-type operator � with domain DΛ corresponding to the fixed Λ. We are mostly
interested when Λ is given by D or N .

We cut the manifold M at the hypersurface r = 1 in the product neighborhood [0,2]r × Γ ,
giving a decomposition (see Fig. 2)

M = X ∪ Y,

where X = [0,1]r × Γ and Y is a manifold with a collar neighborhood [1,2]r × Γ near its
boundary, which we identify with Γ .

Let �X,Λ be � with domain the restriction of DΛ to X and with the Dirichlet condition at
r = 1.

Lemma 4.1. �X,Λ is invertible.
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Fig. 2. Cutting M into X and Y .

Proof. Given φ ∈ L2(X,E), it is straightforward to check that �φ = 0 if and only if

φ =
∑

λ�=−1/4

{
c+
� (φ)r

1
2 φ� + c−

� (φ)r
1
2 log rφ�

}

+
∑

−1/4<λ�<3/4

{
c+
� (φ)r

1
2 +ν�φ� + c−

� (φ)r
1
2 −ν�φ�

}+
∑

λ�� 3
4

c�(φ)r
1
2 +ν�φ�.

Requiring φ to vanish at r = 1, we obtain

φ =
∑

λ�=−1/4

c−
� (φ)r

1
2 log rφ� +

∑
−1/4<λ�<3/4

{
c+
� (φ)r

1
2 +ν�φ� + c−

� (φ)r
1
2 −ν�φ�

}
,

where c+
� (φ)+ c−

� (φ) = 0 for −1/4 < λ� < 3/4. By definition of Λ, φ ∈ DΛ implies that φ ≡ 0.
This completes our proof. �

Assume that �Y , the induced Dirichlet Laplacian on Y , is also invertible; for example, this
condition is satisfied when � is the Laplace–Beltrami operator.

Let μ � 0 and RΛ(μ) denote the BFK operator for �Λ +μ cut at r = 1 defined as follows: for
any μ ∈ [0,∞) and ϕ ∈ C∞(Γ,EΓ ), we can choose a smooth function φ(μ) = (φ1(μ),φ2(μ)) ∈
C∞(X \ Σ,E) ⊕ C∞(Y,E) with asymptotics at Σ fixed by Λ and is continuous at r = 1 with
value ϕ such that (�Λ + μ)φ(μ) = 0 off of Γ . Then RΛ(μ) is defined by

RΛ(μ)ϕ := ∂rφ1(μ)|r=1 − ∂rφ2(μ)|r=1. (4.1)

Thus, RΛ(μ) is simply the sum of the Dirichlet-to-Neumann operators of the restrictions of �Λ

to X and Y . For simplicity, we denote RΛ(0) by RΛ.
Using the definition provided by (3.3), one can define a relative zeta function ζ(s,�Λ,�X,Λ),

which is regular at s = 0 (see the analysis in Section 3). We define

detζ (�Λ,�X,Λ) := exp

(
d

ds

∣∣∣∣
s=0

ζ(s,�Λ,�X,Λ)

)
.

We shall prove the following theorem.

Theorem 4.2. If �Y is invertible, then the following gluing formula holds:

detζ (�Λ,�X,Λ)

det �
= C

detζ RΛ

detL
, (4.2)
ζ Y Λ
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where LΛ is the linear operator defined as in (1.5) and C is a constant determined by the restric-
tion of �Λ near {r = 1} × Γ , in particular, is independent of the choice of Lagrangian Λ ⊂ V

satisfying (3.1).

We outline the main steps in the argument, which follow [9] in spirit.
We begin by proving

detζ (�Λ + μ,�X,Λ + μ)

detζ (�Y + μ)
detζ RΛ(μ)−1 = C(μ), (4.3)

where C(μ) is independent of the choice of Lagrangian Λ ⊂ V (see Section 4.4). We establish
(4.3) by showing that the variation of the log of the left-hand side is related to the variation of
the log of a relative determinant of a certain model problem defined away from the conic point.

Having established (4.3), we prove that as μ → 0,

log detζ (�Λ + μ,�X,Λ + μ) = hΛ logμ + log detζ (�Λ,�X,Λ) + o(1), (4.4)

where hΛ is the dimension of the null space of �Λ.
Also, as μ → 0 we have

log detζ (�Y + μ) = log detζ �Y + o(1), (4.5)

which is valid because �Y is invertible.
Finally, we prove that as μ → 0

log detζ RΛ(μ) = hΛ logμ − log detLΛ + log detζ RΛ + o(1). (4.6)

Now combining (4.3)–(4.6), we see that

hΛ logμ + log detζ (�Λ,�X,Λ) − log detζ �Y

− (hΛ logμ − log detLΛ + log detζ RΛ) = logC + o(1).

Cancelling hΛ logμ and taking μ → 0, we get our final result putting C := limμ→0 C(μ).

4.2. The BFK operator

In this subsection, we study some properties of the BFK operator RΛ(μ) defined in (4.1). We
begin with

Proposition 4.3. RΛ(μ) is a smooth function of μ ∈ [0,∞).

Proof. RΛ(μ) is the sum of Dirichlet-to-Neumann (DN) operators over X and Y . Since Y is
a smooth manifold with boundary and �Y is invertible, the DN operator over Y is a smooth
function of μ ∈ [0,∞) as shown in [9, p. 49]. Thus, we are left to show that the DN operator
over X, which we denote by NX,Λ(μ), is smooth in μ ∈ [0,∞). To this end, let {λ�} denote the
set of all eigenvalues of A and let Πλ�

denote the orthogonal projection of L2(Γ,EΓ ) onto the
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λ� eigenspace of A. Then we can write

�X,Λ(μ) =
⊕

�

Πλ�
L�(μ)Πλ�

,

where L�(μ) := L� + μ with

L� := − d2

dr2
+ λ�r

−2

defined over [0,1] with the Dirichlet condition at r = 1 and with domain at r = 0 determined by
Λ� for λ� < 3/4; when λ� � 3/4, L� is essentially self-adjoint. Therefore,

NX,Λ(μ) =
⊕

�

Πλ�
N�(μ)Πλ�

, (4.7)

where N�(μ) is the DN operator corresponding to L� + μ. Thus, for each �, we just have to
prove that N�(μ) is a smooth function of μ ∈ [0,∞). Consider first the case that λ� �= −1/4.
Then L�(μ)φ = 0 if and only if

φ = c+
� (φ)r1/2Iν�

(
μ1/2r

)+ c−
� (φ)r1/2I−ν�

(
μ1/2r

)
, (4.8)

where I±ν�
(x) are modified Bessel functions and ν� := √

λ� + 1/4. Using the asymptotics near
x = 0 (see [1, p. 375])

Iν(x) = (x/2)ν

Γ (1 + ν)

(
1 + x2

4(1 + ν)
+ x4

32(1 + ν)(2 + ν)
+ · · ·

)
, (4.9)

we see that if λ� � 3/4, that is, ν� � 1, then we must have c−
� (φ) = 0 in order for φ to be in L2.

Therefore, if λ� � 3/4, then given ϕ ∈ C, we have L�(μ)φ = 0 with φ|r=1 = ϕ if and only if

φ = ϕ

Iν�
(μ1/2)

r1/2Iν�

(
μ1/2r

)
.

From this formula and the asymptotics (4.9) it is obvious that N�(μ)ϕ = (∂rφ)|r=1 is a
smooth function of μ ∈ [0,∞). This same exact argument works to prove that N�(μ) is
smooth in μ ∈ [0,∞) in the case that −1/4 < λ� < 3/4 and Λ� = span{ψ+

� }. In the case that
−1/4 < λ� < 3/4 and Λ� = span{ψ−

� }, we must take c+
� (φ) = 0 in (4.8) and then given ϕ ∈ C,

L�(μ)φ = 0 with φ in the domain of L� and φ|r=1 = ϕ if and only if

φ = ϕ

I−ν�
(μ1/2)

r1/2I−ν�

(
μ1/2r

)
.

Again using the asymptotics (4.9) it is obvious that N�(μ)ϕ = (∂rφ)|r=1 is a smooth function of
μ ∈ [0,∞). Finally, suppose that λ� = −1/4. In this case, L�(μ)φ = 0 if and only if

φ = c+(φ)r1/2I0
(
μ1/2r

)+ c−(φ)r1/2K0
(
μ1/2r

)
,
� �
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where I0(x),K0(x) are modified Bessel functions. For λ� = −1/4, by assumption on Λ we have
Λ� = span{ψ+

� }, therefore, in order for φ to be in the domain of L� we must have c−
� (φ) = 0.

Hence, given ϕ ∈ C, L�(μ)φ = 0 with φ in the domain of L� and φ|r=1 = ϕ if and only if

φ = ϕ

I0(μ1/2)
r1/2I0

(
μ1/2r

)
.

Using the asymptotics (4.9) with ν = 0, it is obvious that N�(μ)ϕ = (∂rφ)|r=1 is a smooth
function of μ ∈ [0,∞). This completes our proof. �

In the following theorem, γ denotes the restriction operator to r = 1 and γ ∗ is the adjoint
of γ , which is also given by γ ∗ = (· ⊗ δΓ ), where δΓ is the delta distribution concentrated on
the hypersurface {r = 1} ∼= Γ .

Theorem 4.4. For μ > 0, RΛ(μ) is a positive definite first order elliptic classical pseudodiffer-
ential operator and for μ > 0,

RΛ(μ)−1 = γ (�Λ + μ)−1γ ∗.

The proof of this result is similar to the proof of [28, Lemma 3.3] or [31, Theorem A.2], so
we omit it.

We now analyze RΛ = RΛ(0). By standard analytic Fredholm theory,

(�Λ + μ)−1 = 1

μ

∑
j

〈·, uj 〉uj + Q(μ), (4.10)

where {uj } is an orthonormal basis for the kernel of �Λ on DΛ and Q(μ) is a pseudodifferential
operator of order −2 away from r = 0 depending continuously on μ (even at μ = 0). The proof
of the following theorem is very similar to the proofs of [31, Lemma A.3 and Theorem A.4],
with the appropriate translations from the cylindrical end case considered in [31] to the conic
case considered here.

Theorem 4.5. The sections {vj := uj |r=1} are linearly independent in L2(Γ,EΓ ) and the kernel
of RΛ = RΛ(0) is exactly the subspace V0 = span{vj } ⊂ L2(Γ,EΓ ). The BFK operator RΛ =
RΛ(0) is a nonnegative self-adjoint first order elliptic classical pseudodifferential operator such
that

RΛ =
{

0 on V0,

A−1 on V ⊥
0 ,

where A = P ⊥γQ(0)γ ∗P ⊥ with P the orthogonal projection onto V0.

4.3. Difference of resolvents

Recall our situation: M is a manifold with a collar neighborhood [0,2]r × Γ of its boundary
over which the metric takes the form

dr2 + h,
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Fig. 3. The maps �0,�1,�2.

where h is a metric on Γ . Thus,

M = X ∪ Y, X = [0,1]r × Γ,

where Y has a collar neighborhood Z := [1,2]r × Γ . Let us fix 0 < a < 1 and 0 < b < 2, and
define

M0 := [a, b] × Γ, M1 := [a,1] × Γ, M2 := [1, b] × Γ.

For j = 0,1,2, let �j denote the Laplacian on Mj with the Dirichlet boundary condition at the
boundaries of Mj ; see Fig. 3. The importance of these operators is that they are independent of
any choice of Λ to get the self-adjoint extension operator �Λ. The goal of this subsection is to
compare the determinants on M , X, and Y to those on M0, M1, and M2. For this, we set

�Λ(μ) = �Λ + μ, �X,Λ(μ) = �X,Λ + μ, �Y (μ) = �Y + μ

and for j = 0,1,2, �j(μ) = �j + μ. Let R0(μ) denote the BFK operator for the split manifold
M0 = M1 ∪M2. Thus, for any μ ∈ [0,∞) and ϕ ∈ C∞(Γ,EΓ ), we can choose a smooth function
φ(μ) = (φ1(μ),φ2(μ)) ∈ C∞(M1,E) ⊕ C∞(M2,E) that is continuous at r = 1 with value ϕ

vanishing at r = a, b such that (�0 + μ)φ(μ) = 0 off of Γ ; then,

R0(μ)ϕ := ∂rφ1(μ)|r=1 − ∂rφ2(μ)|r=1.

In the following lemma we compare the operators over M , X, Y , to the model operators.

Lemma 4.6. For μ > 0, the following differences of operators

�Λ(μ)−1 − �X,Λ(μ)−1 − �Y (μ)−1 − (�0(μ)−1 − �1(μ)−1 − �2(μ)−1) and

RΛ(μ)−1 −R0(μ)−1

are smoothing.

Proof. Recall that for real numbers α < β , the function �α,β(r) in (3.6) has the property that
�α,β(r) = 0 on a neighborhood of {r � α} and �α,β(r) = 1 on a neighborhood of {r � β}. Let us
choose real numbers a1, a2, b1, b2 such that

a < a1 < a2 < 1 < b1 < b2 < b.
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We define

ψ1(r) := 1 − �a1,a2(r), ψ2(r) := �b1,b2(r), ψ0(r) := 1 − ψ1(r) − ψ2(r) and

ϕ1(r) := 1 − �a2,1(r), ϕ2(r) := �1,b1(r), ϕ0(r) := �a,a1(r) − �b2,b(r).

The functions {ψi}, {ϕi} extend either by 0 or 1 to define smooth functions on all of M and {ψi}
forms a partition of unity of M such that ϕi = 1 on supp(ψi). Now to prove this lemma, we first
claim that each of the following equalities hold modulo smoothing:

�Λ(μ)−1 = ϕ1�X,Λ(μ)−1ψ1 + ϕ0�0(μ)−1ψ0 + ϕ2�Y (μ)−1ψ2,

�X,Λ(μ)−1 = ϕ1�X,Λ(μ)−1ψ1 + ϕ0�1(μ)−1ψ0,

�Y (μ)−1 = ϕ0�2(μ)−1ψ0 + ϕ2�Y (μ)−1ψ2. (4.11)

For instance, let us verify the first claim in (4.11); the other claims are verified using a similar
argument. Define

Q(μ) = ϕ1�X,Λ(μ)−1ψ1 + ϕ0�0(μ)−1ψ0 + ϕ2�Y (μ)−1ψ2.

Then observe that �Λ(μ)Q(μ) = Id+K(μ), where

K(μ) = [�Λ(μ),ϕ1
]
�X,Λ(μ)−1ψ1 + [�Λ(μ),ϕ0

]
�0(μ)−1ψ0 + [�Λ(μ),ϕ2

]
�Y (μ)−1ψ2.

Because the support of [�Λ(μ),ϕi] and ψi are separated by some positive length, it follows that
K(μ) is smoothing. A similar argument works to prove that the other equalities in (4.11) hold
modulo smoothing. From (4.11), it follows that modulo smoothing,

�Λ(μ)−1 − �X,Λ(μ)−1 − �Y (μ)−1 = ϕ0�0(μ)−1ψ0 − ϕ0�1(μ)−1ψ0 − ϕ0�2(μ)−1ψ0.

(4.12)

On the other hand, very similar arguments used to establish (4.11) shows that modulo smooth-
ing,

�0(μ)−1 = ϕ1�1(μ)−1ψ1 + ϕ0�0(μ)−1ψ0 + ϕ2�2(μ)−1ψ2,

�1(μ)−1 = ϕ1�1(μ)−1ψ1 + ϕ0�1(μ)−1ψ0,

�2(μ)−1 = ϕ0�2(μ)−1ψ0 + ϕ2�2(μ)−1ψ2.

Then, modulo smoothing,

�0(μ)−1 − �1(μ)−1 − �2(μ)−1 = ϕ0�0(μ)−1ψ0 − ϕ0�1(μ)−1ψ0 − ϕ0�2(μ)−1ψ0.

Comparing this with (4.12) proves the first statement of our lemma. Conjugating the first formula
in (4.11) with γ0 and γ ∗

0 we get our second statement. �
4.4. Variation of log-det

We now state some variational results.
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Proposition 4.7. For μ > 0, we have

d

dμ

(
log detζ

(
�Λ(μ),�X,Λ(μ)

)− log detζ �Y (μ)

− log detζ �0(μ) − log detζ �1(μ) − log detζ �2(μ)
)

= Tr
(
�Λ(μ)−1 − �X,Λ(μ)−1 − �Y (μ)−1 − (�0(μ)−1 − �1(μ)−1 − �2(μ)−1)) (4.13)

and

d

dμ

(
log detζ RΛ(μ) − log detζ R0(μ)

)
= Tr

(
RΛ(μ)−1 d

dμ
RΛ(μ) −R0(μ)−1 d

dμ
R0(μ)

)
. (4.14)

Proof. From [2, Proposition 2.9], we have

∂μ

[
log detζ

(
�Λ(μ),�X,Λ(μ)

)− log detζ �Y (μ)

− log detζ �0(μ) − log detζ �1(μ) − log detζ �2(μ)
]

= Tr
(
�Λ(μ)−1−s − �X,Λ(μ)−1−s − �Y (μ)−1−s

− (�0(μ)−1−s − �1(μ)−1−s − �2(μ)−1−s
))∣∣

s=0. (4.15)

Here the right-hand side of (4.15) means that we evaluate the meromorphic extension of the
difference of zeta functions at s = 0. It follows from Lemma 4.6 that we can put s = 0 in the
right-hand side (4.15), and when we do we get exactly (4.13). A similar proof can be used to
derive (4.14). We only remark that the operator on the right-hand side of (4.14) is smoothing by
Lemma 4.6. �

Using this proposition together with the proof of [31, Lemma 5.1] or [28, Corollary 3.9], we
can equate (4.13) and (4.14) to prove that for μ > 0 we have

d

dμ

(
log detζ

(
�Λ(μ),�X,Λ(μ)

)− log detζ �Y (μ)

− log detζ �0(μ) − log detζ �1(μ) − log detζ �2(μ)
)

= d

dμ

(
log detζ RΛ(μ) − log detζ R0(μ)

)
.

In particular, for μ ∈ R+, there exists a constant K such that

detζ (�Λ(μ),�X,Λ(μ))

det � (μ)
detζ RΛ(μ)−1 = K

detζ �0(μ)

det � (μ) · det � (μ)
detζ R0(μ)−1. (4.16)
ζ Y ζ 1 ζ 2
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By [9, Theorem A.3], if we take logarithms of both sides of (4.16) and then take μ → ∞,
the coefficients of the asymptotics of log-determinants are given in terms of local data, that is,
symbols of the difference of operators given in Lemma 4.6. Hence, if we use Lemma 4.6, we get

K = 1.

Thus, we obtain the following proposition.

Proposition 4.8. For μ > 0,

detζ (�Λ(μ),�X,Λ(μ))

detζ �Y (μ)
detζ RΛ(μ)−1 = C(μ),

where C(μ) is the right-hand side of (4.16) with K = 1, which is independent of the choice of
Lagrangian Λ.

Notice that �0,�1,�2, and R0 are defined away from the conic singularity as we see in
Fig. 3; this is why C(μ) is defined independent of the choice of Lagrangian Λ.

4.5. Limit as μ → 0 and the conclusion of Theorem 4.2

We now take μ → 0 in Proposition 4.8. Since �0,�1,�2 are invertible operators defined
with Dirichlet boundary conditions on smooth manifolds with boundary, it follows that C(μ) is
continuous at μ = 0:

lim
μ→0

C(μ) = C := detζ �0

detζ �1 · detζ �2
detζ R−1

0 . (4.17)

Next, consider the following proposition.

Proposition 4.9. For μ > 0 near 0, we have

detζ
(
�Λ(μ),�X,Λ(μ)

)= μhΛ · detζ (�Λ,�X,Λ)
(
1 + o(1)

)
,

where hΛ = dim ker�Λ.

Proof. Let {μj } denote the eigenvalues of �Λ and Π0 (Π+) denote the orthogonal projection
onto the zero (positive) eigenspace(s) of �Λ. Then Π = Π0 + Π+ is the orthogonal projection
onto the nonnegative eigenspaces of �Λ and we can write

Tr
(
Πe−t (�Λ+μ)

)= e−tμ Tr
(
Πe−t�Λ

)= e−tμhΛ + e−tμ Tr
(
Π+e−t�Λ

)
.

Hence, by definition of the relative zeta function for (�Λ(μ),�X,Λ(μ)), for μ > 0 small we
have

ζ
(
s,�Λ(μ),�X,Λ(μ)

)= ∑
μj <0

(μj + μ)−s −
∑

μX,j <0

(μX,j + μ)−s + μ−shΛ

+ 1

Γ (s)

∞∫
t s−1e−tμ Tr

(
Π+e−t�Λ − ΠX,+e−t�X,Λ

)
dt,
0
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where notations with the subscript X denote the corresponding eigenvalues and projections
for �X,Λ. Since Tr(Π+e−t�Λ − ΠX,+e−t�X,Λ) vanishes exponentially as t → ∞ and e−tμ =
1 + O(tμ), it follows that the sum of the first and third terms on the right side equals
ζ(s,�Λ,�X,Λ) + O(μ). Thus, differentiating both sides with respect to s, we find that as
μ → 0+,

log detζ
(
�Λ(μ),�X,Λ(μ)

)= hΛ logμ + log detζ (�Λ,�X,Λ) + o(1),

which completes our proof. �
Before finishing the proof of Theorem 4.2, we need a proposition.

Proposition 4.10. As μ → 0, we have

detζ RΛ(μ) = μhΛ · detζ RΛ

detLΛ

(
1 + o(1)

)
,

where hΛ = dim ker�Λ and LΛ is the linear operator defined as in (1.5) in terms of ker�Λ

instead of ker�D.

Proof. If P :L2(Γ,EΓ ) → V0 denotes the orthogonal projection onto V0 := (ker�Λ)|r=1, then

ζ
(
s,RΛ(μ)

)= Tr
(
RΛ(μ)−s

)= Tr
(
PRΛ(μ)−s

)+ Tr
(
P ⊥RΛ(μ)−s

)
.

Proposition 4.3 along with Theorem 4.5 implies that as μ → 0,

− d

ds

∣∣∣∣
s=0

Tr
(
P ⊥RΛ(μ)−s

)= log detζ RΛ + o(1).

Since Tr(PRΛ(μ)−s) = Tr(PRΛ(μ)−sP ), it follows that

− d

ds

∣∣∣∣
s=0

Tr
(
PRΛ(μ)−s

)= − log det
(
PRΛ(μ)−1P

)
.

Thus, we are left to prove that, as μ → 0+,

det
(
PRΛ(μ)−1P

)= μ−hΛ
(
detLΛ + o(1)

)
.

To prove this, we note that by (4.10), we have

PRΛ(μ)−1P = 1

μ

∑
〈·, vj 〉vj + Q′(ν),

where Q′(μ) = Pγ0Q(μ)γ ∗
0 P is an operator that depends continuously on μ ∈ [0,∞). This

implies that

det
(
PRΛ(μ)−1P

)= μ−hΛ det
(
LΛ + μQ′(μ)

)
, (4.18)

from which our result easily follows. �
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Now taking μ → 0 in

detζ (�Λ(μ),�X,Λ(μ))

detζ �Y (μ)
detζ RΛ(μ)−1 = C(μ),

and using (4.17) and Propositions 4.9 and 4.10, we get Theorem 4.2.

5. Relative determinant formulae

In this section we derive a formula for the relative determinant of � with the D and N exten-
sions: detζ (�D,�N).

5.1. The D extension: Model case

For λ � −1/4, consider the following operator:

L := − d2

dr2
+ λr−2 over [0,R],

where we impose the Dirichlet condition at r = R. If λ � 3/4, it is not necessary to impose any
boundary condition at r = 0 to get a self-adjoint extension, but if not, we need a boundary con-
dition to get a self-adjoint extension of L. In this subsection, we choose the Friedrichs extension,
i.e., the D extension defined in Section 2.3. We denote by LD this self-adjoint extension. Let us
recall

ν :=√λ + 1/4 � 0. (5.1)

Now putting μ = z2 with z ∈ R
+, two solutions of (L + z2)f = 0 satisfying the boundary con-

ditions at r = 0, r = R are given by (see, for instance, Callias [10, p. 360])

φ(r) = r1/2Iν(zr), ψ(r) = r1/2(Kν(zr)Iν(zR) − Kν(zR)Iν(zr)
)
,

respectively. Here Iν,Kν denote the modified Bessel functions. Then it is known that the resol-
vent kernel (LD + z2)−1(r, r ′) is given by (see [16])(

φ′(r)ψ(r) − φ(r)ψ ′(r)
)−1

φ(r)ψ(r ′) if r � r ′.

Using the relation

I ′
ν(x)Kν(x) − Iν(x)K ′

ν(x) = 1

x
, (5.2)

we can derive(
LD + z2)−1

(r, r ′) = (rr ′)1/2Iν(zr)
(
Kν(zr

′) − Kν(zR)Iν(zR)−1Iν(zr
′)
)

for r � r ′. Then, by a straightforward computation (cf. [19, Appendix B]), we obtain

Tr
((
LD + z2)−1)= R∫ (

LD + z2)−1
(r, r) dr = (2z)−1(−νz−1 + RI ′

ν(zR)Iν(zR)−1). (5.3)
0
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Combining this with the equality

d

dz
log detζ

(
LD + z2)= 2zTr

((
LD + z2)−1)

,

which can be proved following the proof of Proposition 4.7, see especially (4.15), we get

d

dz
log detζ

(
LD + z2)= d

dz
log
(
z−νIν(zR)

)
.

Integrating, we see that for some constant c, we have

detζ
(
LD + z2)= c

(
z−νIν(zR)

)
, or

log detζ
(
LD + z2)= log c + log

(
z−νIν(zR)

)
.

To determine the constant c, we need to know the constant terms of the asymptotics of
log detζ (LD + z2) and log(z−νIν(zR)) as z → ∞. For log detζ (LD + z2), we have:

Lemma 5.1. The constant term in the asymptotics of log detζ (LD + z2) as z → ∞ is trivial.

Proof. By (3.5), we have the following asymptotics as t → 0:

Tr
(
e−tLD

)∼∑
j

aj t
ξj , (5.4)

where ξj → ∞ (the exact values of aj , ξj are not important). As z → ∞, we can disregard the
long-time behavior of Tr(e−tLD), which decays exponentially, therefore as z → ∞, we have

log detζ
(
LD + z2)∼ − d

ds

∣∣∣∣
s=0

1

Γ (s)

∞∫
0

t s−1
(∑

j

aj t
ξj

)
e−tz2

dt

= − d

ds

∣∣∣∣
s=0

∑
j

aj z
−2(s+ξj )Γ (s)−1Γ (s + ξj ).

From this, the conclusion follows. �
For log(z−νIν(zR)), we use the following asymptotics as x → ∞ (see [10, p. 361] or

[1, p. 377]),

Iν(x) ∼ ex

√
2πx

(
1 − 4ν2 − 1

8x
+ (4ν2 − 1)(4ν2 − 9)

2(8x)2
+O

(
x−3)). (5.5)

This implies that the constant term as z → ∞ in the asymptotics of log(z−νIν(zR)) is
− log

√
2πR. Hence, we conclude that c = √

2πR and

detζ
(
LD + z2)= √

2πR
(
z−νIν(zR)

)
. (5.6)
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To get detζ LD, we use the asymptotics [1, p. 375]

Iν(x) = (x/2)ν

Γ (1 + ν)

(
1 + x2

4(1 + ν)
+ x4

32(1 + ν)(2 + ν)
+ · · ·

)
, (5.7)

as x → 0. Then, taking the limit x → 0 in (5.6), we obtain:

Proposition 5.2. The following determinant formula holds:

detζ LD =
√

π21/2−νR1/2+ν

Γ (1 + ν)
. (5.8)

Using a different method, Lesch [29] derived this formula (for the interval [0,1]).

5.2. The N extension: Model case

As before, with λ � −1/4 we shall work with the model operator

L := − d2

dr2
+ λr−2 over [0,R],

but now let us consider the N extension as discussed in Section 2.3. In the case that λ = −1/4,
the N and D extensions are the same, so we shall assume that λ > −1/4. We denote this self-
adjoint extension by LN. In this case, one can check that the resolvent kernel of (LN + z2) is
given by

(
LN + z2)−1

(r, r ′) = (rr ′)1/2I−ν(zr)
(
Kν(zr

′) − Kν(zR)Iν(zR)−1Iν(zr
′)
)

for r � r ′. Then a straightforward computation following the derivation of (5.6) gives

detζ
(
LN + z2)= √

2πR
(
zνI−ν(zR)

)
. (5.9)

To get detζ LN, we use the asymptotics as x → 0 in (5.7) to obtain the proposition:

Proposition 5.3. The following determinant formula holds

detζ LN =
√

π21/2+νR1/2−ν

Γ (1 − ν)
. (5.10)

It is worth mentioning that this formula, to the best of our knowledge, is new. We remark that
the determinant formulas (5.8) and (5.10) agree when ν = 0 (both equal

√
2πR) exactly as they

should.
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5.3. Relative determinant formula

Let us recall that �D, �N denote the self-adjoint extensions determined by the D extension,
N extension at the conical point. Applying the gluing formula in Theorem 4.2, we obtain

detζ (�D,�X,D)

detζ �Y

= C
detζ RD

detLD
,

detζ (�N,�X,N)

detζ �Y

= C
detζ RN

detLN
,

where C is a constant, independent of the choice of self-adjoint extension, RD,RN denote the
BFK operators and LD,LN the operators defined in (1.5) for �D,�N, respectively. Combining
these formulas, we obtain

detζ (�D,�N) = detζ (�X,D,�X,N) · detLN

detLD
· detζ RD

detζ RN
. (5.11)

Let {λ�} denote the set of all eigenvalues of A and recall that ΠV denotes the orthogonal projec-
tion onto V ⊂ L2(Γ,EΓ ). We can write

�X,D = ΠV �X,DΠV + Π⊥
V �X,DΠ⊥

V =
⊕

−1/4�λ�<3/4

Πλ�
L�,DΠλ�

+ Π⊥
V �X,DΠ⊥

V ,

where Πλ�
is the orthogonal projection onto the eigenspace corresponding to λ� and

L� := − d2

dr2
+ λ�r

−2

over [0,1] with the Dirichlet condition at r = 1 and L�,D represents the D extension of L�.
We can write �X,N in a similar manner. Observe that Π⊥

V �X,DΠ⊥
V ≡ Π⊥

V �X,NΠ⊥
V since the

eigenspaces with eigenvalues � 3/4 give rise to an essentially self-adjoint operator. Hence,

detζ (�X,D,�X,N) =
∏

−1/4�λ�<3/4

detζ (L�,D,L�,N ). (5.12)

Recalling ν� := √
λ� + 1/4, by (5.8) and (5.10), we have

detζ (�X,D,�X,N) =
∏

0<ν�<1

2−2ν�
Γ (1 − ν�)

Γ (1 + ν�)
.

Thus,

detζ (�D,�N) = detLN

detLD

∏
0<ν�<1

2−2ν�
Γ (1 − ν�)

Γ (1 + ν�)
· detζ RD

detζ RN
. (5.13)

Now we reduce the ratio detζ RD/detζ RN to the ratio of finite-dimensional matrices under
the condition that NY is of clean type. Here, NY is the Dirichlet-to-Neumann map for the restric-
tion of � to Y and of clean type means that NY maps either V or V ⊥ into itself. Recall that RD
and RN are sums of Dirichlet-to-Neumann maps:

RD = NX,D +NY , RN = NX,N +NY ,
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where NX,D,NX,N denote the Dirichlet-to-Neumann maps of �X,D and �X,N , respectively.
Note that from (4.7), NX,D,NX,N preserve the eigenspaces of A. It follows that with respect to
the decomposition L2(Γ,EΓ ) = V ⊕ V ⊥, RD and RN have block matrix decompositions of the
form

RD =
(

a b

c d

)
, RN =

(
a′ b

c d

)
.

Then NY is of clean type if and only if b = 0 or c = 0.

Proposition 5.4. Assume that NY is of clean type. Then we have

detζ RD

detζ RN
= det∗ a

det∗ a′ ,

where det∗ denotes the determinant over the orthogonal complement of the kernel of the matrix.

Proof. Note that

ζ(s,RD,RN) := ζ(s,RD) − ζ(s,RN) = 1

2πi

∫
Γ

λ−s Tr
(
(RD − λ)−1 − (RN − λ)−1)dλ,

where Γ is an appropriate contour in the complex plane. Then

detζ RD

detζ RN
= exp

(−ζ ′(0,RD,RN)
)
.

On the other hand,

det∗ a

det∗ a′ = exp
(−ζ ′(0, a, a′)

)
,

where ζ(s, a, a′) denotes the relative ζ -function of the pair (a, a′). So, it suffices to prove that
under our assumption, we have

ζ(s,RD,RN) = ζ(s, a, a′).

To prove this, observe that

(RD − λ)−1 − (RN − λ)−1 = (RD − λ)−1((RN − λ) − (RD − λ)
)
(RN − λ)−1

= (RD − λ)−1(RN −RD)(RN − λ)−1

= (RD − λ)−1
(

a′ − a 0
0 0

)
(RN − λ)−1.
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Case 1. Assume that b = 0. Then one can check that

(RD − λ)−1 =
(

(a − λ)−1 0

A(λ) (d − λ)−1

)
, A(λ) = −(d − λ)−1c(a − λ)−1, and

(RN − λ)−1 =
(

(a′ − λ)−1 0

A′(λ) (d − λ)−1

)
, A′(λ) = −(d − λ)−1c(a′ − λ)−1.

Using these formulas, a short computation shows that

(RD − λ)−1 − (RN − λ)−1 = (RD − λ)−1
(

a′ − a 0

0 0

)
(RN − λ)−1

=
(

(a − λ)−1(a′ − a)(a′ − λ)−1 0

A(λ)(a′ − a)(a′ − λ)−1 0

)
.

It follows that

Tr
(
(RD − λ)−1 − (RN − λ)−1)= Tr

(
(a − λ)−1 − (a′ − λ)−1),

which prove that ζ(s,RD,RN) = ζ(s, a, a′) in the case when b = 0.
Case 2. Assume that c = 0. Then one can check that

(RD − λ)−1 =
(

(a − λ)−1 B(λ)

0 (d − λ)−1

)
, B(λ) = −(a − λ)−1b(d − λ)−1, and

(RN − λ)−1 =
(

(a′ − λ)−1 B ′(λ)

0 (d − λ)−1

)
, B ′(λ) = −(a′ − λ)−1b(d − λ)−1.

Using these formulas, a short computation shows that

(RD − λ)−1 − (RN − λ)−1 = (RD − λ)−1
(

a′ − a 0

0 0

)
(RN − λ)−1

=
(

(a − λ)−1(a′ − a)(a′ − λ)−1 (a − λ)−1(a′ − a)B ′(λ)

0 0

)
.

It follows that

Tr
(
(RD − λ)−1 − (RN − λ)−1)= Tr

(
(a − λ)−1 − (a′ − λ)−1),

which prove that ζ(s,RD,RN) = ζ(s, a, a′) in the case when c = 0. �
Denote the Dirichlet-to-Neumann maps of L�,D,L�,N over [0,1] by N�,D,N�,N ; then we

prove:

Lemma 5.5. We have

N�,D = 1/2 + ν�, N�,N = 1/2 − ν�.
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Proof. Assume for the moment that ν� := √
λ� + 1/4 > 0. Then an elementary computation

shows that L�φ = 0 if and only if

φ = c1r
1
2 +ν� + c2r

1
2 −ν� .

For the D extension, we require c2 = 0 and for the N extension, c1 = 0. Therefore, given ϕ ∈ C,
the unique solutions of L�,DφD = 0, L�,NφN = 0 with value ϕ at r = 1 are

φD = ϕr
1
2 +ν� , φN = ϕr

1
2 −ν� .

Now using the definitions N�,Dϕ := d
dr

|r=1φD and N�,Nϕ := d
dr

|r=1φN completes the proof for
the case that ν� > 0. In the case that ν� = 0, the D and N extensions agree and φD = φN = ϕr1/2.
Taking derivatives completes the proof in this case too. �

Combining (5.13) with Proposition 5.4 and Lemma 5.5, we finally complete the proof of
Theorem 1.1.

5.4. Relative formulas for mixed D and N type

Fix a Lagrangian subspace Λ ⊂ V of mixed D and N type in the sense that

Λ = Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λq,

where (cf. (2.14)) Λ� ⊂ span{ψ±
� } equals either span{ψ+

� } or span{ψ−
� }, except when λ� =

−1/4, in which case we only choose span{ψ+
� } (for instance, both the D and N extensions

have this property). Let �Λ denote the Laplace type operator � with domain DΛ corresponding
to Λ. We put

PΛ := {�: Λ� = span
{
ψ+

�

}};
for example, if Λ = D, then PD = {1, . . . , q} and in the case Λ = N , we have PN = {1, . . . , q0},
where q0 is the multiplicity of the − 1

4 eigenvalue of the operator A in (2.6). The set PΛ represents
a type of “perversity” in the spirit of Cheeger, Goresky and MacPherson [14,21]. Define LΛ as
in (1.5) using ker�Λ and put MΛ := ν� on E� if � ∈ PΛ and MΛ := −ν� on E� if � /∈ PΛ.
Then following the same argument in Section 5.3, it is straightforward to prove the following
generalization of Theorem 1.1.

Theorem 5.6. When �Y is invertible and NY is of clean type, the following relative determinant
formula holds:

detζ (�Λ,�N) =
∏

�∈PΛ

2−2ν�
Γ (1 − ν�)

Γ (1 + ν�)
· detLN

detLΛ

· det∗( Id
2 +MΛ +NY,V )

det∗( Id
2 −Mν +NY,V )

.
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5.5. Relative formulas for arbitrary self-adjoint extensions

We now generalize Theorems 1.1 and 5.6 to the case of arbitrary self-adjoint extensions.
Before doing so, we need to give an explicit description of self-adjoint extensions and then

discuss the corresponding zeta functions. Let E±
� := spanC{ψ±

� }, where ψ±
� are given around

(2.9) in Section 2.3. Then we can identify

V :=
⊕

−1/4�λ�<3/4

E+
� ⊕ E−

� =
( ⊕

−1/4�λ�<3/4

E+
�

)
⊕
( ⊕

−1/4�λ�<3/4

E−
�

)
∼= C

q ⊕ C
q = C

2q .

Using elementary symplectic linear algebra (see [26, Section 3]) one can show that a subspace
Λ ⊂ V is Lagrangian if and only if there exists q × q complex matrices A and B such that the
rank of the q × 2q matrix (A B) is q , A′B∗ is self-adjoint where A′ is the matrix A with the first
q0 columns multiplied by −1, and

Λ = {v ∈ C
2q : (A B ) v = 0

}
, (5.14)

where we identify Λ ⊂ V with its image under the isomorphism V ∼= C
2q .

Given such a Lagrangian Λ ⊂ V we can form the zeta function ζ(s,�Λ). The main result
of [26] shows that this zeta function, in general, has “exotic” singularities such as poles of ar-
bitrary finite order and even logarithmic singularities of arbitrary finite order, and it also gives
an algebraic-combinatorial algorithm that finds these singularities explicitly. This algorithm is
described as follows.

Step 1. Let A and B be as in (5.14) and define the function

p(x, y) := det

⎛
⎜⎜⎜⎜⎜⎝

A B
x Idq0 0 0 0

0 τ1y
2ν1 0 0

0 0
. . . 0

0 0 0 τq1y
2νq1

Idq

⎞
⎟⎟⎟⎟⎟⎠ , (5.15)

where Idk denotes the k × k identity matrix and where

νj :=
√

λq0+j + 1

4
, τj = 22νj

Γ (1 + νj )

Γ (1 − νj )
, j = 1, . . . , q1,

with q0 the multiplicity of the −1/4 eigenvalue of A, q1 := q − q0, and {λj } the eigenvalues
of A. Expanding the determinant, we can write p(x, y) as a finite sum

p(x, y) =
∑

ajαxjy2α,

where the α’s are linear combinations of ν1, . . . , νq1 and the ajα’s are constants. Let α0 be the
smallest of all α’s with ajα �= 0 and let j0 be the smallest of all j ’s amongst the ajα0 �= 0. Then
factoring out the term aj0α0x

j0y2α0 in p(x, y) we can write p(x, y) in the form

p(x, y) = aj0α0x
j0y2α0

(
1 +

∑
bkβxky2β

)
(5.16)

for some constants bkβ (equal to akβ/aj0α0 ). Note that the β’s are nonnegative but the k’s can be
negative.
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Step 2. Second, putting z =∑bkβxky2β into the power series log(1 + z) =∑∞
k=1

(−1)k−1

k
zk

and formally expanding, we can write

log
(

1 +
∑

bkβxky2β
)

=
∑

c�ξ x
�y2ξ (5.17)

for some constants c�ξ . By construction, the ξ ’s appearing in (5.17) are nonnegative, countable,
and approach +∞ unless β = 0 is the only β in (5.16), in which case only ξ = 0 occurs in (5.17).
Also, for a fixed ξ , the �’s with c�ξ �= 0 are bounded below.

Step 3. Third, for each ξ appearing in (5.17), define

pξ := min{� � 0 | c�ξ �= 0} and �ξ := min{� > 0 | c�ξ �= 0}, (5.18)

whenever the sets {� � 0 | c�ξ �= 0} and {� > 0 | c�ξ �= 0}, respectively, are nonempty. Let P ,
respectively L, denote the set of ξ values for which the respective sets are nonempty. Finally, put
N0 := {0,1,2, . . .}. The following theorem is the main result in [26, Theorem 2.1].

Theorem 5.7. The ζ -function ζ(s,�Λ) extends from �s > n/2 to a meromorphic function on
C \ (−∞,0]. Moreover, ζ(s,�Λ) can be written in the form

ζ(s,�Λ) = ζreg(s,�Λ) + ζsing(s,�Λ),

where ζreg(s,�Λ) has possible “regular” poles at the “usual” locations s = n−k
2 with s /∈ −N0

for k ∈ N0 and at s = 0 if dimΓ > 0, and where ζsing(s,�Λ) has the following expansion:

ζsing(s,�Λ) = sin(πs)

π

{
(j0 − q0)e

−2s(log 2−γ ) log s

+
∑
ξ∈P

fξ (s)

(s + ξ)|pξ |+1
+
∑
ξ∈L

gξ (s) log(s + ξ)

}
, (5.19)

where j0 appears in (5.16), γ is the Euler–Mascheroni constant, and fξ (s) and gξ (s) are entire
functions of s such that

fξ (−ξ) = (−1)|pξ |+1cpξ ξ

|pξ |!
2|pξ | ξ and

gξ (s) =
⎧⎨
⎩

c�0,0
2�0

(�0−1)! s
�0 +O(s�0+1) if ξ = 0,

−c�ξ ξ
ξ2�ξ

(�ξ −1)! (s + ξ)�ξ −1 +O((s + ξ)�ξ ) if ξ > 0.

Remark 5.8. The regular part ζreg(s,�Λ) will only have possible poles at s = n−k
2 /∈ −N and the

residue of ζreg(s,�Λ) at s = 0 is given by

Ress=0 ζreg(s,�Λ) = −1

2
Ress=−1/2 ζ(s,A);

in particular, this pole is independent of the choice of self-adjoint extension and it vanishes if
ζ(s,A) is in fact analytic at s = −1/2. The expansion (5.19) means that for any N ∈ N,
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ζsing(s,�Λ) = sin(πs)

π

{
(j0 − q0)e

−2s(log 2−γ ) log s +
∑

ξ∈P , ξ�N

fξ (s)

(s + ξ)|pξ |+1

+
∑

ξ∈L, ξ�N

gξ (s) log(s + ξ)

}
+ FN(s),

where FN(s) is holomorphic for �s � −N . Note that the leading terms as s → 0 are contained
in ζreg(s,�Λ) and the first term of ζsing(s,�Λ).

For a general self-adjoint extension, Theorem 5.7 shows that the ζ(s,�Λ) may not only have
the usual simple pole at s = 0 (from ζreg(s,�Λ)) but also a logarithmic singularity at s = 0. Thus,
the zeta function, in general, has a logarithmic singularity at s = 0 except for certain self-adjoint
extensions; for example, of mixed D and N type. In particular, the usual definition of the zeta-
regularized determinant or even the relative determinant is ill-defined via taking the derivative
of ζ(s,�Λ) at s = 0. However, we can still associate a natural definition of a determinant by
subtracting off the singularities. With this in mind, let us define

ζ0(s,�Λ) := ζ(s,�Λ) − c

s
− (j0 − q0)s log s,

where c := Ress=0 ζreg(s,�Λ) = −(1/2)Ress=−1/2 ζ(s,A). The term c/s cancels the possi-
ble pole of ζreg(s,�Λ) at s = 0 and by the explicit formula (5.19) for ζsing(s,�Λ), the term
(j0 − q0)s log s cancels the logarithmic singularity of ζsing(s,�Λ) at s = 0 up to a term that is
O(s2 log s) at s = 0. It follows that lims→0+ ζ ′

0(s,�Λ) exists. Therefore, we can define

detζ (�Λ) := exp
(
− lim

s→0+ζ ′
0(s,�Λ)

)
.

This definition of course agrees with the standard definition in case ζ(s,�Λ) is regular at s = 0.
In Theorem 5.10 below we get an explicit formula for the relative determinant

detζ (�Λ,�N).

Before doing so, we need the following theorem, proved in [27, Theorem 2.3] and using methods
from [4–6], which gives an explicit formula for the relative determinants of the model operators.

Theorem 5.9. For a Lagrangian Λ ⊂ V given in terms of matrices A and B as in (5.14), such
that the operator �X,Λ is invertible, we have

detζ (�X,Λ,�X,N) = (−2eγ )q0−j0

aj0α0

det

( A B
Idq0 0

0 Idq1

0 0

0 Idq1

)
,

where j0 appears in (5.16), aj0α0 is the coefficient in (5.16), q0 is the multiplicity of the −1/4
eigenvalue of A, q1 := q − q0, γ is the Euler–Mascheroni constant, and where Idk denotes the
k × k identity matrix.
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This formula gives an explicit formula for the relative determinant of the model operator
because the constant aj0α0 is always explicitly computable for any given A and B determining a
Lagrangian L ⊂ V .

Now fix a Lagrangian Λ ⊂ V such that the operator �X,Λ is invertible. Then following the
identical arguments that lead up to (5.11), one can show that

detζ (�Λ,�N) = detζ (�X,Λ,�X,N) · detLN

detLΛ

· detζ RΛ

detζ RN
,

where LΛ is defined as in (1.5) using ker�Λ. Indeed, this only requires slight modifications of
the arguments in the gluing formulas that were used to derive (5.11); the only nontrivial fact one
needs to check is that Proposition 4.3 holds for general Lagrangians Λ ⊂ V such that �X,Λ is
invertible, but one can show this using the explicit description of elements in the domain of �Λ

found in [26, Section 4.2]. Therefore, by Theorem 5.9, we have

detζ (�Λ,�N) = (−2eγ )q0−j0

aj0α0

det

( A B
Idq0 0

0 Idq1

0 0

0 Idq1

)
detLN

detLΛ

· detζ RΛ

detζ RN
.

Recall that RΛ and RN are sums of Dirichlet-to-Neumann maps:

RΛ = NX,Λ +NY , RN = NX,N +NY = Id

2
−Mν +NY ,

where NX,Λ denotes the Dirichlet-to-Neumann map of �X,Λ, where Mν is the linear map on V

defined by Mν := ν�|E�
and where NY,V := ΠVNY ΠV with NY the Dirichlet-to-Neumann map

for the restriction of � to Y . Finally, note that NX,Λ preserves V , therefore using Proposition 5.4,
we obtain the following theorem.

Theorem 5.10. Let Λ ⊂ V be Lagrangian such that the operator �X,Λ is invertible, and assume
that �Y is invertible and NY is of clean type. Then the following relative determinant formula
holds:

detζ (�Λ,�N) = (−2eγ )q0−j0

aj0α0

det

( A B
Idq0 0

0 Idq1

0 0

0 Idq1

)
detLN

detLΛ

· det∗(NX,Λ +NY,V )

det∗( Id
2 −Mν +NY,V )

,

where the first term on the right is an explicitly computable number explained in Theorem 5.9,
and where NY,V := ΠVNY ΠV .
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