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ABSTRACT. In this article we consider the zeta regularized determinant of
Laplace-type operators on the generalized cone. For arbitrary self-adjoint ex-
tensions of a matrix of singular ordinary differential operators modelled on
the generalized cone, a closed expression for the determinant is given. The re-
sult involves a determinant of an endomorphism of a finite-dimensional vector
space, the endomorphism encoding the self-adjoint extension chosen. For par-
ticular examples, like the Friedrich’s extension, the answer is easily extracted
from the general result. In combination with [13], a closed expression for
the determinant of an arbitrary self-adjoint extension of the full Laplace-type
operator on the generalized cone can be obtained.

1. INTRODUCTION

Motivated by endeavors to give answers to some fundamental questions in quan-
tum field theory there has been significant interest in the problem of calculating
the determinants of second order Laplace-type elliptic differential operators; see for
example [6, 59, 95, 96, 99]. In case the operator A in question has regular coeffi-
cients and is acting on sections of a vector bundle over a smooth compact manifold,
it will have a discrete eigenvalue spectrum A; < Ay < ... — oo. If all eigenval-
ues are different from zero the determinant, formally defined by det A =[], A;, is
generally divergent. In order to make sense out of it different procedures like Pauli-
Villars regularization [92] or dimensional regularization [103] have been invented.
Mathematically the probably most pleasing regularization is the zeta function pre-
scription introduced by Ray and Singer [97] (see also [49, 71]) in the context of
analytic torsion; see i.e. [7, 8, 9, 88, 89].

In this method, one uses the zeta function ((s, A) associated with the spectrum
A; of A, In detail, for the real part of s large enough one has

((s,0) =D A"
i=1
In the briefly described smooth setting, one can show that ((s, A) is analytic about
s =0 [66, 100, 107], which allows to define a zeta regularized determinant via
det¢(A) = e <08,

This definition has been used extensively in quantum field theory, see i.e. [19, 23,
52, 53, 54, 55, 71, 73], as well as in the context of the Reidemeister-Franz torsion
[97, 98]. In particular, in one dimension rather general and elegant results may be
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obtained, which has attracted the interest of mathematicians especially in the last
decade or so [21, 22, 51, 60, 61, 82, 83, 84]. In higher dimensions known results
are restricted to highly symmetric configurations [13, 14, 16, 23, 44, 45, 46, 50] or
conformally related ones [10, 11, 16, 47, 48].

Whereas most analysis has been done in the smooth setting, relevant situations
do not fall into this category. For example, in order to compute quantum corrections
to classical solutions in Euclidean Yang-Mills theory [26, 102] singular potentials
need to be considered. They also serve for the description of physical systems
like the Calogero Model [3, 4, 27, 28, 29, 56, 91] and conformal invariant quantum
mechanical models [2, 20, 30, 31, 40, 62, 94]. More recently they became popular
among physicists working on space-times with horizons. There, for a variety of black
holes, singular potentials are used to describe the dynamics of quantum particles
in the asymptotic near-horizon region [5, 37, 64, 67, 87].

A similar situation occurs when manifolds are allowed to have conical singular-
ities [32, 35]. Under these circumstances, in general, ¢'(0, A) will not be defined,
although for special instances this definition still makes sense; nearly all of the
literature has concentrated on these special instances. In order to describe these
instances in more detail, let us consider a bounded generalized cone. As we will see
below, the Laplacian on a bounded generalized cone has the form

0? 1

A= 92 + 772141“7

where Ar is defined on the base of the cone. If Ar has eigenvalues in the interval
[%, 00) only, one can show that A is essentially self-adjoint and no choices for self-
adjoint extensions exist. Spectral functions, in particular the determinant, have
been analyzed in detail in [13]. In case Ar has one or more eigenvalues in the
interval [—1,2) different self-adjoint extensions exist; see for example [86]. Most
literature is concerned with the so-called Friedrich’s extension [17, 24, 25, 35, 38,
39, 42, 43, 81, 82, 101] and homogeneous or scale-invariant extensions [35, 81, 85].
Exceptions are [56, 57, 58] where general self-adjoint extensions associated with one
eigenvalue in [*ia %) have been considered. Only recently, properties of spectral
functions for arbitrary self-adjoint extensions over the generalized cone have been
understood [76]; a summary of the results is given in Section 2. In particular, the
zeta function is shown to have a logarithmic branch point at s = 0, in addition
to the standard simple pole at s = 0. A natural construct for the determinant
is to subtract off these singular terms and to consider the derivative of the finite
remainder. This also is explained in Section 2.

The details of the singular behavior as s — 0, as well as of the finite terms,
strongly depend on the self-adjoint extension. In Section 3 we therefore briefly
review the construction of self-adjoint extensions on the generalized cone using the
Hermitian symplectic extension theory [69, 70, 72, 77, 78, 79, 80, 90, 93]. This,
finally, provides the set-up for the analysis of the zeta function for arbitrary self-
adjoint extensions. Even in the most general case eigenvalues are determined by
an implicit or transcendental equation, a perfect starting point for the contour
integration method described in detail in [12, 13, 14, 73, 74, 75]. This method allows
us to find the determinant for arbitrary self-adjoint extensions, the main result, see
Theorem 2.3, being derived in Section 4. In Section 5 we apply the answer for the
general case to certain natural self-adjoint extensions. The conclusions provide a
brief summary.



FUNCTIONAL DETERMINANTS ON THE GENERALIZED CONE 3

2. ZETA FUNCTIONS ON GENERALIZED CONES AND THEIR (-DETERMINANTS

In this section we review the notion of Laplace-type operators over generalized
cones and we discuss the pathological properties of their zeta functions, which may
have poles of arbitrary multiplicity and countably many logarithmic singularities.
We state a natural procedure to define the (-regularized determinant and finally,
we state the main formulas of this paper.

2.1. Generalized cones and regular singular operators. Let I' be a smooth
(n — 1)-dimensional compact manifold (with or without boundary). Then the gen-
eralized cone with base I, also called a cone over I'; is the n-dimensional manifold

M =[0,R], T,

where R > 0 and the metric of M is of the type dr? + r?h with h a metric over I.
Let E be a Hermitian vector bundle over M and let

Ay : CP(MN\{0} xT,E) - C(M\ {0} xT,E)
be a Laplace-type operator with the Dirichlet condition at » = R having the form
n—1

1
Ay =02 — & + —Ar,
T

,
where Ar is a Laplace-type operator acting on C*°(T', Er) where Er := E|p; if T
has a boundary we put Dirichlet conditions (for example) at OT. By introducing
a Liouville transformation, we can write Ajs in an equivalent way that is more
convenient for analysis. Writing ¢ € L?(M, E,r"~ldrdh) as

n—1~

(2.1) Pp=r""7 ¢,

-~ y—1
where ¢ := "7 ¢, we have

/ (¢, ) " Ldrdh = / (¢, ) drdh,
M

M
and a short computation shows that

Apo = (53 -

n—1

n—1 ~

1
ar+7ﬁ2AF)¢_T 2 A¢»

r

where
1
(2.2) A= -0+ —Ar

with Ap := Ap + 251 (271 —1). In conclusion: Under the isomorphism (2.1),
L?(M, E,r"~tdrdh) is identified with L?(M, E) with the standard measure drdh,
and Ay is identified with the operator A in (2.2). It turns out that for analytical
purposes, the operator A is somewhat more natural to work with. Notice that if
Ar happens to be nonnegative, then

n—1/(n-—1 1 1
Ar=A —1)|>Ar—=>-=
r r+ 5 ( 5 >_ r=y=-p

where we used the fact that the function 2(z —1) has the minimum value —i (when
z = 1). In fact, it is both a necessary and sufficient condition that Ap > —1 in
order that Aps (or A) be bounded below [17, 24, 25]. For this reason, we henceforth
assume that Ar > —%. The operator A is called a second order reqular singular

operator [17].
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Let {A\;} denote the spectrum of Ar. Then Weyl’s alternative [106] immediately
shows that 0 is in the limit case if and only if —1/4 < Ay < 3/4 [105]. Consider

only those eigenvalues in [—i, %):
1
(2‘3) _Z =M =A== )‘QO < )‘q0+1 < >‘qo+2 << )‘qurlIl’

-1 <3

I

where each eigenvalue is counted according to its multiplicity. Then, as a con-
sequence of von Neumann’s theory of self-adjoint extensions the self-adjoint ex-
tensions of A are in a one-to-one correspondence to the Lagrangian subspaces in
C2¢ where ¢ = qo + ¢1 and where C2¢ has the symplectic form described in (3.3)
[33, 34, 35, 65, 81, 86, 80]. A concrete description of these Lagrangian subspaces
is as follows (see Proposition 3.2). A subspace L C C?? is Lagrangian if and only
if there exists ¢ x ¢ complex matrices A and B such that the rank of the ¢ x 2¢
matrix (.A B) is q, A’ B* is self-adjoint where A’ is the matrix A with the first qo
columns multiplied by —1, and

(2.4) L={veC| (A B)v=0}.

Given such a subspace L C C?? there exists a canonically associated domain ®; C
H?(M, E) such that

Ap:=A:9;, — L*(M,E)

is self-adjoint (see Proposition 3.3).

2.2. Exotic zeta functions. Ay has pure discrete spectrum [81], and hence, if
{u;} denotes the spectrum of Ay, then we can form the zeta function

1

C(S,AL) = Z E
mi#0 I

The meromorphic structure of (s, Ar) (or the corresponding heat trace) has been
extensively studied for special self-adjoint extensions, as for example the Friedrichs
extension [13, 17, 24, 25, 35, 38, 39, 42, 43, 63, 101], which corresponds to taking
A=0and B=1din (2.4) [17], and the homogeneous or scale-invariant extensions
[35, 81, 85], which corresponds to taking A and B to be diagonal matrices with 0’s
and 1’s along the diagonal such that the first gy entries along the diagonal of B
are I’s and A+ B = Id [85]. In these cases, the zeta function has the “regular”
meromorphic structure; that is, the same structure as on a smooth manifold with
one exception, ((s,Ar) might have a pole at s = 0. For general self-adjoint ex-
tensions, the meromorphic structure has been studied in [56, 57, 58, 76, 86]. The
papers [56, 57, 58] are devoted to one-dimensional Laplace-type operators over the
unit interval and [76, 86] study the general case of operators over manifolds. The
papers [56, 57, 58, 86] show that ((s, Ar) has, in addition to the “regular” poles,
additional simple poles at “unusual” location. In [76] it was shown that the zeta
function (s, Ap) has, in the general case, in addition to the “unusual” poles, mero-
morphic structures that remained unobserved and which are unparalleled in the zeta

function literature such as poles of arbitrary order and logarithmic singularities.
The main result of [76] not only states the existence of such exotic singularities
but it also gives an algebraic-combinatorial algorithm that finds these singularities
explicitly. Although the algorithm is described in detail there, we have to provide
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a summary in order to set up the notation used in the rest of the paper. The
algorithm is described as follows.
Step 1: Let A and B be as in (2.4) and define the function

A B
x1dg, 0 0 0
(2.5) p(z,y) := det 0 mny* 0 0 . 7
0 0 0 q
0 0 0 74 y2a

where Id; denotes the k x k identity matrix and where

1 |
vii= A\t g5 =2

F(]. + Vj)

=1,...
F(l—llj)’ J ) » 41,

with go,¢1,A; as in (2.3). Expanding the determinant, we can write p(z,y) as a
finite sum

pla,y) = ajea? y**,

where the o’s are linear combinations of v1,...,v,, and the a;,’s are constants.
Let o be the smallest of all o’s with a;, 7 0 and let jo be the smallest of all j’s
amongst the a;,, # 0. Then factoring out the term a; o, 27° y**° in p(z,y) we can
write p(z,y) in the form

(2.6) (T, Y) = joay 70 Y**° (1 + Z big 2" y25>

for some constants big (equal to arg/ajyaq)-
Step 2: Second, putting z = 3 byg z* y%% into the power series log(1 + z) =

0o (=1)Ft g : ;
Y ohe1 —5—#" and formally expanding, we can write

(2.7) log (1 + Z wakym) = Z Cee zty®

for some constants cge. By construction, the {’s appearing in (2.7) are nonnegative,

countable, and approach +oc unless 3 = 0 is the only 3 in (2.6), in which case only

€ =0 occurs in (2.7). Also, for a fixed &, the ¢’s with cge # 0 are bounded below.
Step 3: Third, for each ¢ appearing in (2.7), define

(2.8) pe == min{l < 0|cee # 0} and le :=min{l > 0| cpe # 0},

whenever the sets {¢ < 0|cge # 0} and {¢ > 0| cge # 0}, respectively, are nonempty.
Let 2, respectively .Z, denote the set of ¢ values for which the respective sets are
nonempty. The following theorem is our main result [76, Th. 2.1].

Theorem 2.1. The (-function ((s, Ar) extends from Rs > 5 to a meromorphic
function on C\ (—o00,0]. Moreover, ((s,AL) can be written in the form

<<57 AL) = Creg(sv AL) + Csing(sa AL)a

where Creg(s, Ar) has possible “reqular” poles at the “usual” locations s = "T_k with

s ¢ —Ng for k € Ng and at s = 0 if dimI' > 0, and where (ing(s, Ar) has the
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following expansion:

(2.9) Going(s,Az) = sme) {(jo ~ qo)e~20982-) 1og ¢
__fels) 1 }
"‘5;@ (5+§)|P£|+1 +€;gg§(s) Og(s+£) 7

where jo appears in (2.6) and fe(s) and ge(s) are entire functions of s such that

Fe(—8) = (~1eltic, e ¢

peé 9lpe
and
¢ .
Ceo,0 (237:)1)!340 + O(sfo-‘rl) if € =0,

g¢(s) = _Clgg%(ﬁg)frl +O((s +€)%) ife>0.

Remark 2.2. The expansion (2.9) means that for any N € N,

fe(s)
(s + £)lpel+1

Cang(s, A7) = STS) {(jo —go)eB0oE N ggs 4 3
T (e E<N

£ T gele)lon(s O+ Fxlo),

€L, ESN

where Fi(s) is holomorphic for fts > —N. Note that the leading terms as s — 0
are contained in Ceg(s, Ar) and the first term of Ceing(s, AL).

2.3. (-determinant formulae. For a general self-adjoint extension, Theorem 2.1
shows that the ((s, Ar) may not only have a simple pole at s = 0 (from (yeg(s, AL))
but also a logarithmic singularity at s = 0. Needless to say, the zeta function is
rarely regular at s = 0 except for special self-adjoint extensions. In particular,
the usual definition of the zeta-regularized determinant is ill-defined via taking the
derivative of ((s, Ar) at s = 0. However, we can still associate a natural definition
of a determinant by subtracting off the singularities. Thus, let us define

Co(s,Ar) :==((s,AL) — S — (Jo — qo)slogs,

where ¢ = Resg=0(reg (s, Ar). The term ¢/s cancels the possible pole of (req(s, ArL)
at s = 0 and by the explicit formula (2.9) for (eing(s, Ar), the term (jo — go)slogs
cancels the logarithmic singularity of (eng(s,Ar) at s = 0 up to a term that is
O(s%logs) at s = 0. It follows that lim,_+ ¢)(s, AL) exists. Therefore, we can
define

det¢(Ar) :=exp <— lirgl+C6(s,AL))

This definition of course agrees with the standard definition in case ((s,Ap) is
regular at s = 0. In Theorem 2.3 below, we find an explicit formula for this
determinant. Because of some unyielding constants, it is elegant to write our main
formula as a relative formula in terms of the Neumann extension. The Neumann
extension is given by choosing A and B to be the diagonal matrices with the qo +
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1,...,q entries in A4 equal to 1 and the 1,...,qo entries in B equal to 1 with the
rest of the entries 0. By Corollary 4.7 (or [85]), we find the explicit formula

q1 B y

q 2vi R™Vi ~

2.10 detc(An) = (27R)2 ———— - det¢(A

( ) eC( ) (W)2HF(17VJ') eC( )

j=1

where A is the (essentially self-adjoint) operator obtained by projecting A onto

the eigenvalues of Ar in [2,00) (see (3.1) for a more precise definition of A). The
determinant detg(ﬁ) is given explicitly in Equation (9.8) of [13] when R = 1, with

a similar formula holding for arbitrary R > 0. We refer the reader to [13] for the

appropriate details on det¢(A). The following theorem is our main result.

Theorem 2.3. For a Lagrangian L C C2?9 such that the operator obtained by

projecting A onto the eigenvalues of Ar in [fi, %) 1s invertible, we have
—j A B
det (A —92¢e7)40—Jo
@) (220070 4l 0 (ogR)d, 0 |,
detC (AN) ajoao O RQV 0 qul

where ajya, is the coefficient in (2.6) and R* is the q1 X q1 diagonal matriz with
entries R?V* for 1 << q.

Combining this formula with (2.10), we get an explicit formula for det¢(Ap).
The next result follows from an application of Theorem 2.3 to a particular class
of matrices A and B.

Theorem 2.4. Let ¢ — r = rank(.A) and assume that A has r rows and columns
identically zero. Let i1, ...,14 be a permutation of the numbers 1,...,q such that the
rows and columns iy, ...,4, of A are zero. Choose jo € {0,1,...,q0} such that

1§i1<i2<"'<ij0SqO<ijO+1<'~-<7;T§q.

Let I,. denote the q X q matrix which is zero everywhere except along the diagonal
where the entries i1,...,1, equal 1, and let I,_, denotes the q x g matriz which
is zero everywhere except along the diagonal where the entries i,41,...,4 equal 1.
Then for a Lagrangian L having A as a first component and satisfying the condition
in Theorem 2.3, we have:

det¢(Ar) = (—2¢7)%0—Jo H [2‘2”ijw] det(A B >1><

det¢(An) Pttt T(1+v;) I I,
A B
det | Idg, O (logR)Idg, O
0 R¥ 0 Id,,

See Section 5 for more special cases including one-dimensional operators.

3. THE HERMITIAN SYMPLECTIC THEORY OF SELF-ADJOINT EXTENSIONS

In this section we briefly explain the correspondence between self-adjoint exten-
sions and the Lagrangian subspaces described by (2.4). This correspondence is a
direct consequence of von Neumann’s classical theory of self-adjoint extensions; a
partial list of relevant references is [33, 34, 35, 65, 81, 86, 80, 69, 70, 72, 77, 78, 79,
80, 90, 93, 104, 105].
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3.1. Reduction to the model problem. Let {\;} denote the set of all eigenval-
ues of Ap and let E; denote the span of the \,-th eigenvector. Let IT and II* denote,
respectively, the orthogonal projections of L?(T, Er) onto W := GB*iSAK% E, =

C? and W+. Using the isometry between
L*([0,R] x I, E) = L*([0, R], L*(T", Er)),

we obtain the corresponding projections on L?([0, R] x I', E), which we denote with
the same notations IT and II*. Since Ar preserves W and W+, we can write

A=L®A,
where
~ 1
T ATTL 92
(3.1) A = TIHAI = 02 + T—QAF|WL,
and £ is the (matrix) ordinary differential operator
L:=TIAl = i + ! A
o dr2 277
where A is the ¢ x ¢ diagonal matrix
—11dg, 0
Ago+1 0 0 0
0 Ago+2 0 0
A= 0 0 0 Agas 0 ;
0 0 0 . 0
0 0 0 Agotan

here we write A with respect to the basis of W = @7%0\&% E, = Ce. Tt is well-

known that the operator Ais essentially self-adjoint [17, 18, 24, 25, 86] Therefore,
the various self-adjoint extensions of A are simply the various self-adjoint extensions
of the “toy model operator” £, which we now study.

3.2. Self-adjoint extensions of the model operator. The key to determining
the self-adjoint extensions of L is to first characterize the mazimal domain of L:

Dmax = {¢ € Lz([(),R]va) ‘ E¢ € LQ([OaR]a(Cq) and QS(R) =0 };
which is the largest set of L? functions on which £ can act and stay within L?. As

an immediate consequence of Cheeger [34, 35] we have

Proposition 3.1. ¢ € Dy if and only if $(R) =0 and ¢ has the following form:

d0
32) o= {a(@)rie+coi(@)rilogre. |
(=1

q1

1 _ 1 ~
+ Z {qu+é(¢) P T e g0+ Capgore(@) TN 6qo+e} + ¢,
/=1

where

1
Vg =\ Ago4e + 1 > 0,

e is the column vector with 1 in the (-th slot and 0’s elsewhere, the c;j($)’s are
constants, and the ¢ is continuously differentiable on [0, R] such that ¢(r) = O(r?)
and ¢ (r) = O(rz) near r =0, and L¢ € L2([0, R], CY).
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We next want to formulate the correspondence between self-adjoint extensions
and Lagrangian subspaces with respect to a suitable symplectic form. Let

(0 —Idg4
7=, 0"

C?? x C*? 5 (v,w) — (Jv,w) € C
is the standard Hermitian symplectic form on C27; that is, this form is Hermitian
antisymmetric and nondegenerate. Now defining T : C2? — C?9 by

and recall that

T(vy,...,02¢) = (=01, .., —Vgo, Vgot1s - - - » V2q)
and putting (E: (cl (¢)7 02(¢)7 s 702q(¢))t7 '(/_; = (cl (1@7 cQ(¢)7 ) CQQ(w))ta one has
(3.3) (Lo, 0) — (6, L) = (JTG,TY) =: w(6, ),

where
w(v,w) := (JTv,Tw) for all v,w € C*
defines a symplectic form on C29. We say that a subspace L C C29 is Lagrangian
(with respect to w) if
{weC? | wv,w)=0 forall veL}=L.

Self-adjoint extensions of £ are then in one-to-one correspondence with Lagrangian
subspaces of (C?9,w) in the sense that given any Lagrangian subspace L C C2¢ and
defining

D1 = {¢ € Dnax | ¢ € L},
the operator
Lp:=L:D; — L*([0,R],CY)
is self-adjoint and any self-adjoint extension of L is of the form £ for some La-

grangian subspace L C C29. The fact that any Lagrangian subspace L C C?? with
respect to the standard symplectic form can be described by a system of equations

(3.4) L={veC¥| (A B)v=0}cC,
where A and B are ¢ x ¢ matrices such that (A B) has full rank and AB* is

self-adjoint translates into the following result when the symplectic form w is used.

Proposition 3.2. The set in (3.4) is a Lagrangian subspace of (C?*%,w) if and only
if the rank of (A B) is ¢ and A’ B* is self-adjoint where A’ is the matriz A with
the first qo columns of A multiplied by —1.

The following proposition concludes our summary of basically known results.

Proposition 3.3. The self-adjoint extensions of A are in one-to-one correspon-
dence with Lagrangian subspaces of (C?4,w). More, precisely, self-adjoint exten-
sions are of the form

AL == ACL &) 37
where
Lp:=L:D, — L*[0,R],CY), DL :={¢ € Dmax | ¢ € L}.

Here, L C C?% is given by (3.4) where A and B are q x ¢ matrices such that (.A B)
has rank q and A’ B* is self-adjoint.
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4. PROOF OF THEOREM 2.3

In this section we prove Theorem 2.3 using the contour integration method [12,
13, 14, 73, 74, 75]. We begin by reducing our computation to the model operator.

4.1. Reduction to the model problem. From the results in Section 3 it is clear
that the zeta function of Ay splits according to

(4.1) C(8,AL) = Greg(8, AL) + Gsing(s, AL),
where
Creg(s, AL) := C(s,ﬁ) and  Ceing(s, Ar) == ((s,L1).
The properties of 8, including the spectral functions, have been studied extensively,
see for example [13, 35, 39, 43]. In particular, (res(s, Ar) has possible poles at the

usual locations s = ”gk with s ¢ —Nj for £ € Ny and at s = 0 if dimI" > 0. The
residue of (reg(s,Ar) at s = 0 is given by

1
¢ = Ress—0reg (5, AL) = —§ReSS:7%C(s,AF).

In particular, this vanishes if {(s, Ar) is in fact analytic at s = —
the determinant

% . Furthermore,

det¢(A) := exp <_

2 5)

ds

is thoroughly studied in [13]. The meromorphic structure of the singular function
Csing (8, AL) := ((s, L) has the properties stated in Theorem 2.1, which was proved
in [76]. In particular,

Co(s, L) :=((s,LL) — (jo—qo)slogs,
is differentiable at s = 0 and so

so—0t ds

det¢(Lr) :==exp (— lim 4

Co(s, £L)>

50:0
is defined. Also, by (4.1), we have

det¢(AL) = det (L) - dete (A)
Therefore, we have reduced to computing det¢(L£r). We shall compute this in

Proposition 4.5, but first we need to review some fundamental results from [76].

4.2. Properties of the implicit eigenvalue equation. In order to analyze
det¢(Lr), we need to understand the behavior of the eigenvalue equation for Lr,.
In order to write down the eigenvalue equation, we need some notation. Define the
q X q matrices

Jo(nR)Idgq 0 e 0
0 21T (1 +vy)p~ "1 Jyy (WR) - 0
0 0 0
J4(p) == ]
0 0 " 0
0 0 e 2YNT(L vy ) pT YN Jug, (uR)
and
Jo(nR)Idg, 0 e 0
0 27VIT(1 — wy) ¥t Iy (uR) - 0
0 0 0
J_(u) =
0 0 " 0

0 0 cee 27TYAD(1 = wg) pMaL J—vq, (BR)
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where J,(z) denotes the Bessel function of the first kind and

~ ™
(4.2) Jo(pr) := 5¥o(pr) — (log u —log 2+ ) Jo(ur),
with Yj(2) the Bessel function of the second kind. Now we define
A B
4.3 F(p) = det .
(43) W= (57 1)

Then F(u) is an even function of p. Indeed, to see this observe that, by definition,
F(u) is expressed in terms of p*J_,(uR) with appropriate v’s and the function
Jo(uR). The following equation [1, p. 360]

(4.4 g =y o CU
' COE T e T (0t k1)

shows that pu~vJ,(1R) is even while the equality [1, p. 360]:
T B >\ Hy(—%2%)k
(4.5) §Y0(z) = (logz —log2 + 7) Jo(z) — 2 W,
where Hy := 1+ 5 +---+ 1, and the definition of Jo(pr) in (4.2) show that Jo(uR)
is even.
The importance of F'(u) lies in the following Proposition.

Proposition 4.1. p? is an eigenvalue of Ly, if and only if F(u) = 0. Moreover,
A B
FO)=det| Id,, O (log R)Idg, O ,
0 R’ 0 R

where RV are the ¢ x qi diagonal matrices with entries RT¢ for 1 < € < qy.

The first statement is straightforward to prove by solving the equation (L —
p?)¢ = 0 for ¢ and using the fact that L = {v € C*| (A B)v =0} and that
¢ € Dy. The details are provided in Proposition 4.2 of [76]. The formula for £(0)
follows directly from Equations (4.2), (4.4) and (4.5).

The following lemma analyzes the asymptotics of F'(u) as || — oo and is proved
in Proposition 4.3 of [76].

Lemma 4.2. Let T C C be a sector (closed angle) in the right-half plane. Then
we can write

q1
(4.6) F(iz) = (2nR)"2 [[ 270 (1 — v) 2173 €97 (5 — log ) x

p((—logz) " a™) (14 (@),

where 7 = log2 — ~, p(x,y) is the function in (2.5), and where as |x| — oo with
x €Y, f(x) is a power series in x~1 with no constant term.

Using this lemma, we prove the following Proposition.
Proposition 4.3. Let Y C C be a sector in the right-half plane. Then we can write
(4.7) F(iz) = Cz!V1= 3720000285 _ |og z)90—Jo (1 + G(x)),
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where
q1
(4.8) C = ajya, (27R) 72 [[ 27901 - 1),
j=1
with ajya, the coefficient in (2.6), and G(z) = O <loéx) and G'(z) = O (m)

as x| — oo with z € T.

Proof. Recall that aq is the smallest of all o’s with ajo # 0 and jo is the smallest
of all j’s amongst the a;q, # 0 in the expression

pla,y) =Y ajar’ y**,

which is obtained by expanding the determinant in the definition of p(x,y). Fac-
toring out aj,a, 270 y**° in p(z,y) we can write p(z,y) in the form (see (2.6))

P(2,Y) = ajga, 270 Y7 (1 +) begat yw),

where we may assume that all byg # 0. By definition of oy, all the §’s in this
expression are nonnegative real numbers and the k’s can be nonpositive or nonneg-
ative integers except when 8 = 0, when the k’s can only be positive by definition
of jo. Now observe that

(4.9) p((ﬁ —log :17)71, x*1> = jya, (7 — log z) 0 =20 (1 + g(:c)),
where g(z) = > byg (7 — log x)fk 728, Notice that as z — oo,
(7 - logx)_k =0 (

and, because log x increases slower than any positive power of x,

(7 - log:c)flc ¥ =0 <

) for k > 0,
log z

> for k € Z and B > 0.
log x

Therefore, g(z) = O (loéx). A similar argument shows that ¢’(z) = O (m)

Finally, replacing the formula (4.9) into the formula (4.6), we obtain
F(iz) ~ CzlV1= 372000028 (5 _ Jog z)90 o (1 + g(x)) (1 + f(ar))
~ C’x|u\—%—2aoequ(:? _ log x)qa—jo (1 4 G(CL‘)),

where C'is given in (4.8) and G(z) = f(x)+g(z)+f(z) g(z). The “big-O” properties
of g(x) we discussed above and the fact that f(z) is a power series in =% with no
constant term shows that G(z) has the desired properties. O

4.3. Computation of det¢(Ly). In order to facilitate the computation, we first
need to establish the following

Lemma 4.4. For any constants ¢ and |t| such that log|t| > ¢, we have

*° 1
/ T dr = e ?*logs 4 e3¢ (7 + log(2(log |t| — ¢)) + (9(5))7
It c—logx

where O(s) is an entire function of s that is O(s) at s = 0.
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Proof. To analyze this integral we make the change of variables u = logx — ¢ or
r = e®e", and obtain

o 1 o d
_ 95— _9sc _ U
/ X sl — dr = —e 2sc / (& 2s5u
|t] ¢ IOgLE log |t|—c u

Making the change of variables y = 2su, we get

/OO .’11_28_1 1 dr = _6—25(: /OO e~ @
[t] c— logx 2s(log |t]|—c) Y

= ¢ ?*Ei( — 2s(log [t| — ¢)),

where Ei(z) == — [ Udy is the exponential integral (see [1, Ch. 5] or [68, Sec.
8.2]). From (68, p. 877} We have

8

Ei(z) = v+ log(—

therefore

e} P 1 _92sc
/u P dr = e (5 + log(2s(log ]~ ) + O()
— o 2sc log s + e 2s¢ ('y + log(2(log ‘t| - C)) + O(S))7

where O(s) is an entire function of s that is O(s) at s = 0. O

We now compute det¢ (L) explicitly.

Proposition 4.5. If ker L1, = {0},

(2nR)% & 2w

det = —9¢7Y)90—Jo
et¢(Lr) Gios 1k (= Vj)( e) X
A B
det | Idg, O (logR)Idg, O
0 R 0 R

Proof. First, applying the Argument Principle (which is really a form of Cauchy’s
formula) [41, p. 123], the {-function of L, is given by

1 -2 d 1 -2 F’(,u)
s~ log =_— s
(s Lr) =5 L g s Flwdn = 5 A W

where v is a contour in the plane shown in Figure 4.3. Breaking up our integral
into three parts, one from ¢ to ico, another from —ico to —t, and then another over
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FIGURE 1. The contour ~ for the zeta function. The x’s represent
the zeros of F'(u) and squaring these x’s are the eigenvalues of Ly,.
Here, t is on the imaginary axis and |t|? is larger than the largest
absolute value of a negative eigenvalue of £y, (if it has any). The
contour y; goes from ¢ to —t.

~¢, which is the part of v from ¢ to —t, we obtain

1

d
_ —2s
(s, L) = 5 T log F(p) dp

1 9 d ‘ e d ,
=—q - *—log F(ix) d - *—log F(—iz)d
271'@'{ /|t| (i) 75 o8 (iz) x—i—/tl (—ix) 75 o8 (—ix) x}
= F'(4)
+— ? d
2mi %ﬂ F(u a

)
1 —i i < _asd . 1 _as (1)
[ iTs TS 52 loo F d - s d
g e )/ﬂ v g s i det n | R

or,

sints [ _,.d . 1 _os (1)
4.1 = 25~ Jog F - 2s )
(10) (s Ln) = 2 /| o s Pl de 5 /u L

The first step to compute det¢ (L) is to construct the analytical continuation of the
first integral in (4.10) to s = 0; the second term (being entire since it is an integral
over a finite contour) is already regular at s = 0. To do so, recall Proposition 4.3
(see (4.7)), which states that we can write

F(iz) = Cﬂul*%anoeqa:R(ﬁ — log x)LJo*jo (1 + G(x))7
where

q1
C = ajpa,(27R) "2 [ 27%T(1 - v),
j=1
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and where G(z) = O ( lw) and G'(z) = O (m) as |x| — oo. Hence,

log

/ x*QS% log F'(ix) dox = /| x*%% log (1 + G(z)) dx

£l t|

o d
+/ x> ﬁlog <Cx|”‘_* 20095 _og x)®~ 30) dx.

¢l

The second integral can be computed explicitly:
o d
/ z72*— log ( lvl— 2“%‘”R( — log x)~ 30) dx
\t| dlL’
oo _ 9 2 _ A
— / x—?s(‘l/| 2 Qg + qR _ (go ]O) ) d.’E
1l T z(y —log z)

<| | q 9 ) |t|_2S + R|t‘_25+1 4 ( - )/OO —2s—1 1 d
=(|lv]| -z -2« — x —dx.
2 0) 28 a 25 —1 Jo 4o It v —logx

From Lemma 4.4 we know that

[e%S) 1 =
/ T3 dr = e? log s + g(s),
1 7~ logx

where g(s) is entire such that

(4.11) 9(0) = v +log(2(log [t| - 7)).
Therefore,

sinms [t|72¢  sinws _|t]72s T

) =TS () )
Cls: L) = v 25 T s
sinmws , . 94 sinms
(jo — qo)e**7 log s + 7(]0 —q0)9(s)
i o d 1
+sm7rs/ 7% —log (1—|—G( dx+— wo ) du
s It dx 2mi J,, F(p)
Since
sin s

(jo — go)e " log s = (jo — qo)slog s

modulo a function that is O(s?log s), it follows that

(4.12) Co(s,Lr) =C(s, L) — (jo — qo0)slog s

_sin7s [t|=2¢  sinms _[t|72H!
2 (1wl - £ —200) 5
s T 25 —1
sinms . sinmws [ d
+ Gy~ anlg(0) + T [ e log (14Gla)) da
™ ™ t] dx
1 _2s (1)
i 1 Flu)
VTt
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modulo a function that is O(s?logs). The derivative of the fourth term on the
right in (4.12) is equal to

o0

d
—2s
(4.13) cosms /t| . log (1 + G(:c)) dx

2sin s

™

/t| —28(1ogx)dilog (1+G( ))d

Since G(z) = O (logm
into the first term in (4.13) and get

)andG’() O(m) as |z| — oo we can put s =0

/OO di log (1 + G(x)) dx = —log (1 + G(|t|))

t| ax

Also using the asymptotics of G(z) and G'(x), we see that the second term in (4.13)
satisfies, for s € R with s — 0T,

2sinms [0 _,, d B oy (logz)
- /t| x~**(log x)da: log (1 + G(x)) de =0 (s /|t| x P dx
> 1
=0 s/ z=2 dr | = O(slogs),
( 1t z(log x) > (slogs)

where we used Lemma 4.4 with ¢ = 0. In conclusion,

d | sinms [ < d
lim — —1 1 =—1 1 .
si»%l+ ds { s /| v dx 8 ( + G( )) dx } 08 ( + G(ltD)

t|

Now, using that

sin(7s) d sin(ms) d sin(ms)

= O7
s=0

™ ls=0 “ds w  ls=0 ms  ls=0 " ds Ts

and the formula (4.11) for g(0), we can take the derivatives of the other terms in
(4.12) and set s = 0 to conclude that

. q .
Tim Go(s, £2) = = (vl = § — 200 ) log |t] = gRIt] + (o — 40)9(0)

F/
log(1+G|t|)——/ log u ('u)du
i )

F
= — (v = 2 — 200 ) log [t| = gRIt| + (jo — ao0) (7 + log(2(1og [t = 7)) )
(

/

1 F
—log (1+G 1t]) ) / loguF(:j)) dp.
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Tt

T _ . with t = 0

FI1GURE 2. The contour 7; as we let t — 0 in Z from the upper half plane.

By definition of G(z), we have

— F(it])
log (1 + G(|t|)) = log (C|t|\V|*%72aoeq|t|R(:§ —log ‘t|)q0_j0)
Filt . o
— IOg (C’(—(l)ql)_ﬂ)) - IOg (|t|| | 2 2 eQ‘tIR(log ‘t| . ’y)q j )
g (D q
= log (W) — (I = £ — 200 ) log |t] - a R}

+ (Jo — o) log(log [t] — 7).

Replacing this expression into the preceding expression for lim, o+ {4(s, L), can-
celling appropriate terms, and using that F(i|t|]) = F(¢) since ¢ = i|t|, we obtain

, F(t) , 1 F' ()
/ _ -\ _ _
Jim Go(s, Lp) = —log (C(_l)qo_jo) + (Jo QO)(’Y'i-IOg?) m/wlog/JF(u) dp
—jooqo—jo (q0—jo)y £ () 1 F'(p)
— 1 —1)90—J0990—3o x(q0—350)¥ _ / 1 )
°8 <( ) ¢ C ) i ), M F) an
Therefore,
—jooan—jo .(qo—jo)y F (1) 1 F'(p)
— (_1)90—Jo9gq0—Jo ,(qo—Jjo)Y .
(4.14)  dete(Lp) = (—1)P—Jog—joe - exp (m, L log 1 du>.

This formula is derived, a priori, when ¢ is on the upper half part of the imaginary
axis. However, the right-hand side is a holomorphic function of t € &, where 2
is the set of complex numbers minus the negative real axis and the zeros of F(u).
Therefore (4.14) holds for all ¢ € Z. Note that this equality holds in general even
if £1, has a nontrivial kernel. But to control the factor exp(; f% -dp), we need the
condition that ker £, = {0}. Under this condition, recalling that -, is any curve in
2 from t to —t, the trick now is to let ¢ — 0 in (4.14), that is, taking t — 0 in 2
from the upper half plane as shown in Figure 2, it follows that

exp (% /ﬁ logui:((:j)) du) — exp (0) =1.

We also have
FO)=det| Id,, O (log R)Idg, O

from Proposition 4.1.
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In conclusion, taking ¢ — 0 on the right side of (4.14), we see that

A B
det [ Id,, O (logR)Idg, O
0 RY 0 R

Finally, using that C' = aj,a,(27R)™2 H?I:l 27%T(1 — v;), we get

(fgev)qofjo

detg(ﬁL) = ol

(27R)% & 2

(415) detg(ﬁL) = (fQB’Y)QO*]‘O %

joao 5y L1 =15)
A B
det | Idg, O (logR)Idg, O
0 RY 0 R
This completes the proof of Proposition 4.5. O

Remark 4.6. In the case that £, is not invertible, F'(t) — F(0) = 0 as t — 0 since
0 is an eigenvalue of L. On the other hand, the left side det¢ (L) does not depend
on t. This means that the factor exp(= f% -dy) blows up as t — 0. (Here 7; should
not contain the zero as in Figure 4.3.) Therefore, to get the value of det¢(Lr), we
need to know the exact form of the asymptotics of F(t) and exp(Z f% -dp) as

t— 0.

Recall that the Neumann extension is given by choosing A and B to be the
diagonal matrices with the gg + 1,...,q entries in A equal to 1 and the 1,...,qq
entries in B equal to 1 with the rest of the entries 0. Then the resulting operator
L has the trivial kernel. This can be shown as follows: First, by the simple form
of A, B, we may assume that ¢o = 1,q; = 0 or g9 = 0,¢q; = 1. For the first case, the
solution of L£1,¢ = 0 should have the form ¢ = c1r? if it exists since the term 72 logr
should vanish by the condition of A, B at r = 0. But, the Dirichlet condition at
r = R implies that ¢ = c1r? can not be the solution of £ either. The second case
can be treated in a similar way. Now we have

Corollary 4.7. The following equality holds

q1 B .
q 2¥i R™Vi
det¢(Ly) = 27R)2 || =———.
Jj=1
Proof. This proof is just a direct application of the formula (4.15). Observe that
for A and B defining the Neumann extension,

A B
2ld, 0 0 0
p(z,y) = det 0 7ny™ 0 0 .
0 0o - 0 !
0 0 0 74 y2”q1
Id,, 0
21/1
my 0 0
—det( 0 quo>.dt
xldg, Idg, 0 0 Idg,
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Therefore, jo = go, &9 =0, and aj,a, = (—1)% for the Neumann extension. In the
same way we simplified p(z,y), we can simplify

A B
det | Idg, O (logR)Idg, O
0 R¥ 0 R

B 0 Id, g, 0
= det <qu0 (log R)qu0> -det < R’ R
q1

=(-D* [ rR .

j=1
Therefore, by (4.15), we have

_ (27R)? 3 2% _9,7\0(_1)90 3 —vj 3 1 25 RS
dete(Ly) = Ty jl;llr(l—uj)( 27)° (1) [[ R = (27R) IEvent

Jj=1 Jj=

O

This corollary agrees with the result in [85]. In particular, for an extension L
with ker £;, = {0}, we have

» A B
—92e7)40—Jo

dote(Le) _ (22070 1o [ 1a,” 0 (log R, 0

det¢ (Ln) Ajoao 0 R? 0 Id

q1
and this formula completes the proof of Theorem 2.3.

5. SPECIAL CASES OF THEOREM 2.3
In this section we derive various consequences of Theorem 2.3.

5.1. Row and column conditions. We begin by proving Theorem 2.4. Actu-
ally, the proof of Theorem 2.4 follows directly from Theorem 2.3 and the following
lemma, which computes a;,q, in (2.6) explicitly under the row and columns condi-
tion of Theorem 2.4.

Lemma 5.1. Let ¢ — r = rank(A) and assume that A has r rows and columns
identically zero. Let i1, ...,1q be a permutation of the numbers 1, ...,q such that the
rows and columns iy, ...,4i, of A are zero. Choose jo € {0,1,...,r} such that

1§i1<z’2<~-~<ij0§q0<ij0+1<-~-<iT§q.

Let I, denote the q X q matriz which is zero everywhere except along the diagonal
where the entries i1,...,%, equal 1, and let I,_, denote the q X q matriz which is
zero everywhere except along the diagonal where the entries iyy1,...,4q equal 1. Then

A B
det( I I, ) # 0 and

P(2,Y) = ajo.a0ry** (1+ O(|(2,y)|)

T T +w,) A B
I | 2v; 2
aj()(!o - 2 J 7F(1 Vi.) . det ( IT Iq,T
J=jo+1 J

and ag = Vi + Vi 0+ Vi,

where
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Proof. Assume for the moment that jo > 1. Let A; denote the matrix A with the
i1-th column removed, let Ji(z,y) denote the matrix

xIdg, 0 0 0
0 ny*? 0 0
(5.1) )
0 0 - 0
0 0 0 74 y*a

with the ¢; column and row removed, and finally, let C; denote the ¢; X ¢; identity
matrix with the i¢;-th row removed. Then expanding the determinant of the matrix
in the definition of p(z,y):

A B
xIdg, 0 0 0
pley)i=det| 0 My 00
0 0 .0 !
0 0 0 74 y*a
about the i;-th column, recalling that the i;-th column of A is zero, we get
_ Aq B
(5.2) p(z,y) = Lz det (Jl(x,y) C1>

(for an appropriate choice of sign, which happens to equal (—1)%?1%4 in this case).
Assume for the moment that jo > 2. Let Ay denote the matrix A with the 4; and
io columns removed, let Jo(z,y) denote the matrix (5.1) with the iy and 45 columns
and rows removed, and finally, let Co denote the g1 x ¢; identity matrix with the
i1 and iz rows removed. Then expanding the determinant of the matrix in (5.2)
about the column containing the zero is-th column of A, we get

As B
5.3 x,y) = £a2 det .
53) p(o,y) (i, &
At this point, we see the general pattern: We expand the determinant in (5.3) about
the column containing the zero i3-th column of A and then we continue the process

of expanding about each column containing the zero i4, is, ig, . . . , 4 columns of A.
At the end, we arrive at

Y A B
5.4 z,y) = +7 27°0y?” det " ,
(5.4) p(z,y) Y (Jr(x,y) C,
where A, denotes the matrix 4 with the 41,...,4, columns removed, J,(z,y) de-
notes the matrix (5.1) with the ¢y, ...,%, columns and rows removed, and C, denotes
the ¢ x q identity matrix with the i1, ..., %, rows removed.

Now observe that
A, BY A, BY\ _ A B .
+ det (JT(O,O) C'r) = +det ( 0 Cr) = det ( I I, ) ;
indeed, the first equality is obvious because J,.(0, 0) is the zero matrix while the sec-

ond equality can be easily verified by expanding the determinant det ( }4 IB )
r q—r

about the zero iy, s, ...,4, columns of A just as we did in the previous paragraph.
It remains to prove that det ( }4 IB ) # 0. To see this, recall that the
T q—r

i1, ..., rows of A are identically zero. This implies that, since the rank of A is g—r,
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the rows of A complementary to i1, ..., %,, namely the i, 1, ..., i, rows where we use
the notation as in the statement of this lemma, are linearly independent. Therefore,
since the matrix (.A B) has rank ¢, the i1,...,4, rows of A are identically zero,
and the 4,11,...,14, rows of A are linearly independent, it follows that the 41,...,%,
rows of B are linearly independent and these rows, together with the i,,1,...,174
rows of A span all of C4. Now recall that the iy, ..., 4, columns of A are identically
zero; in particular, the span of the 4,,1,...,%, rows of A does not contain any
€iy,---,€i,, where e; denote the unit vector in C? with j-th slot equal to 1 and 0’s
elsewhere. It follows that the span of the 4,11, ...,i, rows of A (which are linearly
independent) is contained in the span of e;,_,,...,e;,. Therefore, by the property
of dimension,

(5.5) the span of the i,41,...,i; rows of A = the span of e;_,,,...,¢€;,.

Hence, as the i1, ...,4, rows of B plus the i,11,...,4, rows of A span all of C9, it
follows that

(5.6) the span of the iy,...,i, rows of B = the span of ¢;,,...,¢€;

-

We are now ready to prove our lemma. The nonzero rows of

(%)

are linearly independent by (5.5). The rows in the matrix

(1)

that are complementary to the nonzero rows of ( are therefore linearly inde-

I,

pendent by (5.6). It follows that the matrix ( }4 IB ) has full rank, which is
T q—r
. A B
equivalent to det I # 0. Now the formula of a;,4, follows from (2.6)
r q—r
and (5.4). This completes the proof. (]

5.2. Decomposable Lagrangians. Because the —i eigenvalues and the eigenval-
ues in (—i, %) of Ar result in rather different analytic properties, it is natural to
separate these eigenvalues. With this discussion in mind, we shall call a Lagrangian
subspace L C V' decomposable if L = Ly & L, where Ly is a Lagrangian subspace
of @M:_i E, ® Ey, and L, is a Lagrangian subspace of ®—i<>\z<% E, ® E,. As
described in Proposition 3.2, the Lagrangian subspace Ly is determined by two
Qo X qo matrices Ay, By where ¢y = dim Lg, that is, the multiplicity of the eigenval-
ues \p = —%. Similarly, the Lagrangian subspace L; is determined by two g1 X ¢1
matrices Ay, By where ¢ = dim Ly, that is, the multiplicity of the eigenvalues Ay
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with —% < Ay < 2. Thus, the function p(z,y) in (2.5) takes the form

Ay 0 By O
0 ./41 0 Bl
x1dg, 0 0 0
p(l‘, y) := det 0 1 y2V1 0 0
. Id,
0 0 " 0
0 0 0 74 y?Va
Ay B
21/1
Y 0 0
—det( A BO) - det
xldg, Idg, 0 Idg,
0 0 74 y*n

=:po(z) - p1(y),

where py and p; are the corresponding determinants in the second line. Expanding
the determinants, we can write

(5.7) po(z) = Z ajx’ and  pi(y) = Z ba Y22
The next theorem follows immediately from Proposition 4.5 and Theorem 2.3.

Theorem 5.2. For a decomposable Lagrangian L C C?? such that ker L1, = {0},
we have

(QWR)% K 2vi
F(l — I/j)

Ao Bo Al Bl
det <1qu (log R)qu0> det( R R )

where aj, and by, are the coefficients in (5.7) corresponding to the smallest j and
« with a nonzero coefficient in po(x) and p1(y), respectively. In particular, for the
generalized cone we have

detg(AL) . (—267)%7]-0 det Ao Bo det Ay B
detc(Ax)  ajobay Id,, (log R)Id, R? 1d, )

(5.8) det¢(Lr) = ; (—2¢7)0 790 x
@jo Oag j=1

5.3. The one-dimensional case. Consider now the one-dimensional operator

? 1 1 3
_ﬁ—’—ﬁ)\ over [0, R], where ~1 <A< -

L= 1

In this one-dimensional case, Lagrangians are given by two 1 x 1 matrices (numbers)
A = a and B = 8 where a3 € R. One can check that (see e.g. [76, prop. 3.7] that
we can take a, 3 € R with o + 3% = 1. We shall compute det¢(L£,) using Theorem
5.2 under the assumption ker £, = {0}. Assume that A = —%. Then

po(z) = det (i ?) =a-—fzx,
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which implies that jo = 0 and aj, = o if &« # 0 and jo =1 and a;, = -3 if a« =0,
and by (5.8), we have

det¢(Lr) = (27(:?); (—2€7)" 70 det ((f (lo?R))
_ \/j?(—%nlﬂ'o (a log R — 5).
In conclusion, we see that in the case \ = —%, we have
det¢(Lr) = {2\/%67(5 ~log R) ifa70
2rR ifa=0.

Assume now that —% <A< %. Then with v := \//\+i and T = 221’£8f3, we
have

« v
pl(y):det <Ty2u ?>_aﬂ7—y2 ’

which implies that g = 0 and by, = o if & # 0 and a9 = 2v and by, = —F7 if
a =0, and by (5.8), we have

_ (2rR)7 2V a B\ _ V2rR 2 . ,
detC(EL) = bao F(l — y) det <RV R_V) = bao m (OLR — /BR )

In conclusion, we see that in the case —i <A< %, we have

242 ERT(L-v) " (R = ERY) ifa#0

det¢(Lp) =
¢ 2~ vt /2 /rRT(1+v) ' R¥ if a =0.

6. CONCLUSIONS AND FINAL REMARKS

In this article we have considered zeta functions and zeta regularized deter-
minants for arbitrary self-adjoint extensions of Laplace-type operators over conic
manifolds. In general, the zeta function will have a logarithmic branch point as
well as a simple pole at s = 0. In order to get a well-defined notion of a deter-
minant we propose to use the natural prescription (2.3). Within this prescription,
Theorem 2.3 is the central theorem proven in this article. It gives a closed form
for the determinant of the Laplacian over the cone associated with an arbitrary
self-adjoint extension. As we have seen, it is easily applied to particular cases and
known results have been easily reproduced.

For convenience we have chosen to work with Dirichlet boundary conditions at
r = R, emphasizing the role of the self-adjoint extension for the analytic structure of
the zeta function and for the determinant. Equally well other boundary conditions
at r = R can be considered along the same lines.
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