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Abstract We give a complete classification and present new exotic phenomena of
the meromorphic structure of ζ -functions associated to general self-adjoint exten-
sions of Laplace-type operators over conic manifolds. We show that the meromor-
phic extensions of these ζ -functions have, in general, countably many logarithmic
branch cuts on the nonpositive real axis and unusual locations of poles with arbitrar-
ily large multiplicity. The corresponding heat kernel and resolvent trace expansions
also exhibit exotic behaviors with logarithmic terms of arbitrary positive and negative
multiplicity. We also give a precise algebraic-combinatorial formula to compute the
coefficients of the leading order terms of the singularities.
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1 Introduction

In this article, we give a complete classification of the meromorphic structure of ζ -
functions associated to conic manifolds; that is, general self-adjoint extensions of
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Laplace-type operators on conic manifolds introduced by Cheeger [9, 11]. In par-
ticular, we prove that such ζ -functions exhibit pathological meromorphic properties.
Before giving a synopsis of these pathological properties, recall that the ζ -function
ζ(s,Δ) of a Laplacian Δ over a smooth closed manifold has a meromorphic exten-
sion to all of C with only simple poles at s = n−k

2 /∈ −N0 with n the dimension of the
manifold and k ∈ N0 := {0,1,2, . . .} [28, 52, 53, 61, 68]. The situation is completely
different for conic manifolds. We show that the ζ -function associated to a general
self-adjoint extension of a Laplace-type operator on a conic manifold has, as a gen-
eral rule (except for very special cases, e.g. the Friedrichs extension), in addition to
the singularities at s = n−k

2 /∈ −N0 for k ∈ N0, the following properties:

(1) It can have countably many poles of arbitrarily high multiplicity at “unusual”
locations on the negative real axis; that is, at points not of the form s = n−k

2 .
(2) It can have countably many logarithmic singularities at “unusual” locations.
(3) The singularities in (1) and (2) can occur for the same ζ -function and at the

same “unusual” locations. Moreover, we also give an elementary and explicit
algebraic-combinatorial recipe to compute the exact locations and leading coef-
ficients of the “unusual” poles and logarithmic singularities.

In fact, the explicit computation of these exotic singularities is so straightforward
(see Sect. 2.2) that for low dimensions we can find the structure of zeta functions
quickly. We also remark that one can always conjure up artificial zeta functions hav-
ing (1) and (2), but for natural (geometric) zeta functions, properties (1) and (2) seem
to have no parallels in the differential geometry literature.

1.1 A Simple Example

Here is a surprising, and completely natural, example of a ζ -function which has no
meromorphic extension to all of C. We first review conic manifolds. Let M be an n-
dimensional compact manifold with boundary Γ and let g be a smooth Riemannian
metric on M \ Γ . We assume that near Γ there is a collared neighborhood

U ∼= [0, ε)r × Γ,

where ε > 0 and the metric g is of product type dr2 + r2h with h a metric over Γ .
Such a metric is called a conic metric and M is called a conic manifold, ideas intro-
duced by Cheeger [9, 11] (cf. [50]). Using a Liouville transformation over the collar
U as in [4], we can identify L2(M,dg) with L2(M,drdh) and the scalar Laplacian
Δg can be identified with

Δg|U = −∂2
r + 1

r2
AΓ , with AΓ = ΔΓ +

(
1 − n

2

)(
1 + 1 − n

2

)
, (1.1)

where ΔΓ is the Laplacian over Γ . Notice that AΓ ≥ − 1
4 because the function x(1 +

x) has the minimum value − 1
4 (when x = − 1

2 ). Let us now assume that n = 2 so that:

Δg|U = −∂2
r + 1

r2
AΓ , with AΓ = ΔΓ − 1

4
.
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We remark that the term − 1
4r2 can be considered a “singular potential,” and such

Laplacians and their self-adjoint extensions have been studied by physicists since
the 70’s [6, 14, 20, 57]. Note that ΔΓ always has the eigenvalue 0. Let us assume
that 0 is the only eigenvalue (counting multiplicity) of ΔΓ in the interval [0,1);
this is the case for the Euclidean Laplacian on a punctured region in R

2, for in this
case, ΔΓ is just the Laplacian on the unit circle which has eigenvalues {k2 | k ∈ Z}.
Then AΓ has exactly one eigenvalue in the interval [− 1

4 , 3
4 ), the eigenvalue − 1

4 ,
and (see Sect. 3) Δg has many different self-adjoint extensions, each of which is
parameterized by an angle θ ∈ [0,π) (cf. [24, 26, 34, 38]). It turns out that θ = π

2
corresponds to the so-called Friedrichs extension [4, 24], and any extension has a
discrete spectrum [44]. Consider any one of the extensions, say Δθ with θ ∈ [0,π),
and form the corresponding ζ -function:

ζ(s,Δθ ) :=
∑
μj �=0

1

μs
j

,

where the μj ’s are the eigenvalues of Δθ . The surprising fact is that the meromorphic
extension of every such ζ -function corresponding to an angle θ ∈ [0,π) except θ = π

2
(the Friedrich’s extension) has a logarithmic singularity at s = 0. More precisely, as
a consequence of Theorem 2.4, for θ �= π

2 , we can write:

ζ(s,Δθ ) = ζreg(s,Δθ ) − sin(πs)

π
e−2sκ log s, (1.2)

where κ = log 2−γ − tan θ with γ the Euler-Mascheroni constant and ζreg(s,Δθ ) has
a meromorphic extension over C with the “regular” simple poles at the well-known
values s = 1

2 − k for k ∈ N0.

1.2 Operators on Conic Manifolds

Brüning and Seeley’s regular singular operators [4] generalize the example (1.1) of
the Laplacian on a conic manifold as follows. Let M be an n-dimensional compact
manifold with boundary Γ and we assume that near Γ there is a collared neighbor-
hood U such that:

U ∼= [0, ε)r × Γ,

where ε > 0 and the metric of M is of product type dr2 + h with h a metric over Γ .
Let E be a Hermitian vector bundle over M and let Δ be a second order regular
singular operator acting on C∞

c (M \Γ,E); this means that Δ is an elliptic symmetric
nonnegative second order differential operator such that the restriction of Δ to U has
the form:

−∂2
r + 1

r2
AΓ , (1.3)

where AΓ is a Laplace-type operator over Γ with AΓ ≥ − 1
4 . (The condition AΓ ≥

− 1
4 is necessary otherwise Δ is not bounded below [4, 7].) Laplacians on forms and

squares of Dirac operators on conic manifolds [4, 9, 11, 12, 35, 43, 49] are examples
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of second order regular singular operators. We can also deal with the case when M

has boundary components up to which Δ is smooth; at such components, put local
boundary conditions.

From Von Neumann’s theory of self-adjoint extensions (cf. Cheeger [9–11], Gil
and Mendoza [24], Lesch [44], Mooers [54]), the self-adjoint extensions of Δ are
parameterized by Lagrangian subspaces in the eigenspaces of AΓ with eigenvalues
in the interval [− 1

4 , 3
4 ). To describe these extensions, denote by

−1

4
= λ1 = λ2 = · · · = λq0︸ ︷︷ ︸

=− 1
4

< λq0+1 ≤ λq0+2 ≤ · · · ≤ λq0+q1︸ ︷︷ ︸
− 1

4 <λ�<
3
4

the spectrum of AΓ in [− 1
4 , 3

4 ) and by {φ�} the associated eigenvectors, and define

V ∼=
⊕

− 1
4 ≤λ�<

3
4

E� ⊕ E�
∼= C

2q with E� := span{φ�} and q = q0 + q1;

see Sect. 3 for a more precise description of V . We can endow V with a symplectic
structure as described in Sect 3. Then the self-adjoint extensions of Δ are in a one-to-
one correspondence to the Lagrangian subspaces in V . Given a Lagrangian subspace
L in V , we denote by ΔL the self-adjoint extension corresponding to L.

One of the natural questions for a given self-adjoint extension ΔL is whether the
ζ -function of ΔL, ζ(s,ΔL), would have a meromorphic extension over C and if so,
what the pole structure is. Here the ζ -function of ΔL is defined by:

ζ(s,ΔL) =
∑
μj �=0

1

μs
j

(1.4)

for 	s 
 0 where μj ’s are the eigenvalues of ΔL. The ζ -function has been studied
in many articles for the Friedrich’s extension or with the condition AΓ ≥ 3

4 , which
implies that Δ is essentially self-adjoint [2–4, 7, 8, 10, 11, 13, 21, 22, 45, 46, 48,
49, 64]. For scalable extensions (extensions for which the domain is invariant under
r �→ cr), the ζ -function has been studied in [44]. There are no “unusual” phenomena
with these cases. Finally, for arbitrary self-adjoint extensions with AΓ ≥ − 1

4 , the
ζ -function has been studied by Falomir, Muschietti and Pisani [18], see also joint
work with Seeley [17] (cf. [19]), for one-dimensional Laplace-type operators over
[0,1] and by Mooers [54] who was the first to study the general case over manifolds
and who noticed the presence of “unusual” poles. However, the works [18, 54] only
imply the existence of simple “unusual” poles and do not imply the existence of poles
of arbitrary order nor of logarithmic singularities of the ζ -function.

We now outline this article. We begin in Sect. 2 by giving the statement of our
main result, Theorem 2.1, and we also illustrate the ease of applying the main result
by giving examples; in particular, we re-derive the main result of [18] and we show
that poles of arbitrary order and countably many logarithmic singularities show up
even for simple situations. We also show how our theorem simplifies when we make
assumptions on the self-adjoint extensions and we present corresponding resolvent
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and heat kernel expansions. The description of self-adjoint extensions as Lagrangian
subspaces plays a key role in the proof of our main result and because of this reason,
in Section 3 we briefly review this important topic. The main technical task of the
proof of our main theorem is the explicit form of the parametrix of the resolvent of
ΔL near the boundary. This is handled by solving model problems explicitly over a
finite interval employing Theorem 6.1, which is a new representation of the resolvent
in terms of an implicit eigenvalue equation, and the contour integration method [35–
37]. The presentation and details of the solutions of the model problems are given in
Sects. 4, 5 and 6. The results for the model problems and a parametrix construction
then enable us to prove all the theorems listed in Sect. 2 below. This is described
in Sect. 7. The appendix by Boris Vertman gives a careful analysis of the implicit
eigenvalue equation and proves that the zeta function can be written as a contour
integral in terms of the implicit eigenvalue equation.

Finally, it is a pleasure to thank Mattias Lesch for remarks that greatly improved
the exposition of this article.

2 Statement and Examples of Results

2.1 Statement of Main Result

Fix a Lagrangian L ⊂ V and hence a self-adjoint extension ΔL of Δ (we use the
notation from Sect. 1.2). In Sect. 3 we show that L can be described by q ×q matrices
A and B having the property that the rank of the q × 2q matrix (A B) is q and A′B∗
is self adjoint where A′ is the matrix A with the first q0 columns multiplied by −1
(conversely, any such A and B define a Lagrangian). Before stating the main result
which describes the exact structure of ζ(s,ΔL), we apply a straightforward three-step
algorithm to A and B that we need for the statement.

Step 1: First, we define the function:

p(x, y) := det

⎛
⎜⎜⎜⎜⎝

A B
x Idq0 0 0 0

0 τ1y
2ν1 0 0

0 0
. . . 0

0 0 0 τq1y
2νq1

Idq

⎞
⎟⎟⎟⎟⎠ , (2.1)

where Idk denotes the k × k identity matrix and where

νj :=
√

λq0+j + 1

4
, τj = 22νj

Γ (1 + νj )

Γ (1 − νj )
, j = 1, . . . , q1.

For specific A and B, p(x, y) is explicitly computable “by hand”; we shall give some
examples in Sect. 2.2. Expanding the determinant using one’s favorite method, we
can write p(x, y) as a “polynomial”:

p(x, y) =
∑

ajαxjy2α,

where the α’s are linear combinations of ν1, . . . , νq1 and the ajα’s are constants.
Let α0 be the smallest of all α’s with ajα �= 0 and let j0 be the smallest of all j ’s
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amongst the ajα0 �= 0. Then factoring out the term aj0α0 xj0 y2α0 in p(x, y) we can
write p(x, y) in the form:

p(x, y) = aj0α0x
j0y2α0

(
1 +

∑
bkβxky2β

)
(2.2)

for some constants bkβ (equal to akα/aj0α0 ).

Step 2: Second, using the power series log(1 + z) = ∑∞
k=1

(−1)k−1

k
zk with z =∑

bkβxky2β for a sufficiently small |z|, we can write:

log
(

1 +
∑

bkβxky2β
)

=
∑

c�ξ x
�y2ξ (2.3)

for some constants c�ξ . We emphasize that for specific A and B, all the coeffi-
cients c�ξ are explicitly computable “by hand” when q is small (see the examples
in Sect. 2.2) and easily with a computer for q large. With a little thought, one can see
that the ξ ’s appearing in (2.3) are nonnegative, countable and approach +∞ unless
β = 0 is the only β occurring in (2.3), in which case ξ = 0 occurs in (2.3). Also, the
�’s with c�ξ �= 0 for a fixed ξ are bounded below.

Step 3: Third, for each ξ appearing in (2.3), define:

pξ := min{� ≤ 0 | c�ξ �= 0} and �ξ := min{� > 0 | c�ξ �= 0}, (2.4)

when these numbers are actually defined, that is, whenever the sets {� ≤ 0 | c�ξ �= 0}
and {� > 0 | c�ξ �= 0}, respectively, are nonempty. We now define:

P := {ξ | pξ is defined} and L := {ξ | �ξ is defined}. (2.5)

The following theorem is our main result.

Theorem 2.1 Let L ⊂ V be an arbitrary Lagrangian subspace of V and define P
and L as in (2.5) from the matrices A and B defining L. Then the ζ -function ζ(s,ΔL)

extends from 	s > n
2 to a holomorphic function on C \ (−∞,0]. Moreover, ζ(s,ΔL)

can be written in the form

ζ(s,ΔL) = ζreg(s,ΔL) + ζsing(s,ΔL),

where ζreg(s,ΔL) has possible “regular” poles at the “usual” locations s = n−k
2 /∈

−N0 for k ∈ N0 and at s = 0 if dimΓ > 0, and where ζsing(s,ΔL) has the following
expansion:

ζsing(s,ΔL) = sin(πs)

π

{
(j0 − q0)e

−2s(log 2−γ ) log s

+
∑
ξ∈P

fξ (s)

(s + ξ)|pξ |+1
+
∑
ξ∈L

gξ (s) log(s + ξ)

}
, (2.6)

where j0 appears in (2.2) and fξ (s) and gξ (s) are entire functions of s such that:

fξ (−ξ) = (−1)|pξ |+1cpξ ξ ξ
|pξ |!
2|pξ |
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and near s = −ξ ,

gξ (s) =
⎧⎨
⎩

c�0,0
2�0

(�0−1)! s
�0 +O(s�0+1) if ξ = 0,

−c�ξ ξ
ξ2�ξ

(�ξ −1)! (s + ξ)�ξ −1 +O((s + ξ)�ξ ) if ξ > 0.

Remark 2.2 The zeta function ζreg(s,ΔL) will only have possible poles at s = n−k
2 /∈

−N0 in the case that Γ is the only boundary component of M and the residue of
ζreg(s,ΔL) at s = 0 is given by Ress=0ζreg(s,ΔL) = − 1

2 Res
s=− 1

2
ζ(s,AΓ ); in partic-

ular, this vanishes if ζ(s,AΓ ) is in fact analytic at s = − 1
2 . Later in Theorems 2.5 and

2.7, we shall present corresponding resolvent and heat kernel expansions. In general,
L may contain the origin, so that the logarithm part in (2.6), which has the branch
cut at s = 0, is given by:

sin(πs)

π
((j0 − q0)e

−2s(log 2−γ ) + g0(s)) log s

where g0(s) depends on A,B. Also, it is easy to check that when there are no − 1
4

eigenvalues, then there are no logarithmic singularities and the “unusual” poles occur
with multiplicity at most one. Finally, the expansion (2.6) means that for any N ∈ N:

ζsing(s,ΔL) = sin(πs)

π

{
(j0 − q0)e

−2s(log 2−γ ) log s +
∑

ξ∈P , ξ≤N

fξ (s)

(s + ξ)|pξ |+1

+
∑

ξ∈L, ξ≤N

gξ (s) log(s + ξ)

}
+ FN(s),

where FN(s) is holomorphic for 	s ≥ −N .

2.2 Examples

Via examples we show the ease and efficiency at which Theorem 2.1 computes the
exact meromorphic structure of ζsing(s,ΔL) (note that ζreg(s,ΔL) is “uninteresting,”
which is why we focus on ζsing(s,ΔL)).

Example 1 (Taken from [18]) The article by Falomir et al. [18] (along with Seeley et
al. [17] and Mooers’ [54]) is in many ways the inspiration for our article and is the
very first article to find explicit formulas for the “unusual” poles of Laplacians; cf.
[19] for the infinite interval. [18] studies the operator

Δ = − d2

dr2
+ 1

r2
λ over [0,1]

with − 1
4 ≤ λ < 3

4 . In this case, V = C
2, therefore Lagrangians L ⊂ C

2 are deter-
mined by 1×1 matrices (numbers) A = α and B = β . Fix such an (α,β); we shall de-
termine the strange singularity structure of ζ(s,ΔL). Let us assume that − 1

4 < λ < 3
4
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so there are no − 1
4 eigenvalues (we will come back to the λ = − 1

4 in a moment).

Then with ν :=
√

λ + 1
4 and τ := 22ν Γ (1+ν)

Γ (1−ν)
,

p(x, y) := det

(
α β

τy2ν 1

)
= α − βτy2ν = α

(
1 − τβ

α
y2ν

)
,

where we assume that α,β �= 0 (the α = 0 or β = 0 cases can be handled easily), and
we write p(x, y) as in (2.2). Forming the power series (2.3), we see that

log

(
1 − τβ

α
y2ν

)
=

∞∑
k=1

(−1)k−1

k

(
−τβ

α
y2ν

)k

=
∞∑

k=1

c0,νkx
0y2νk,

where c0,νk = − 1
k
(
τβ
α

)k . Using the definitions (2.4) and (2.5) for pξ , �ξ , P , and L,
we immediately see that �νk never exists so L = ∅, while

pνk = min{� ≤ 0 | c�,νk �= 0} = 0, P = {νk | k ∈ N}.
Therefore, by Theorem 2.1:

ζsing(s,ΔL) = sin(πs)

π

∞∑
k=1

fk(s)

s + νk

with fk(s) an entire function of s such that fk(−νk) = ν(
τβ
α

)k . In particular,
ζsing(s,ΔL) has possible poles at each s = −νk with the residue equal to:

Ress=−νkζsing(s,ΔL) = sin(π(−νk))

π
ν

(
τβ

α

)k

= −ν sin(πνk)

π

(
τβ

α

)k

,

which is the main result of [18] (see (7.11) of loc. cit.).
Assume now that λ = − 1

4 . In this case:

p(x, y) := det

(
α β

x 1

)
= α − βx = α

(
1 − β

α
x

)
,

where we assume that α,β �= 0 (the α = 0 or β = 0 cases can be handled easily), and
we write p(x, y) as in (2.2). Forming the power series (2.3), we see that

log

(
1 − β

α
x

)
=

∞∑
�=1

c�,0x
�y2·0, c�,0 = −1

�

(
β

α

)�

.

Using the definitions (2.4) and (2.5) for pξ , �ξ (there is only one “ξ” in the present
situation, ξ = 0), P , and L, we immediately see that p0 never exists so P = ∅, while

�0 = min{� > 0 | c�,0 �= 0} = 1, L = {0}.
Therefore, by Theorem 2.1,

ζsing(s,ΔL) = sin(πs)

π
{−e−2s(log 2−γ ) log s + g0(s) log s},
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g0(s) is an entire function of s such that g0(s) = O(s). Hence ζ(s,ΔL) has a genuine
logarithmic singularity at s = 0. This corrects unfortunate errors from the beauti-
ful article [18] (and [54]), which states that ζ(s,ΔL) has the “usual” meromorphic
structure.1 When β = 0, one can easily see that we still have a logarithmic singular-
ity at s = 0, and when α = 0, one can easily check that there is only the “regular”
part ζreg(s,ΔL) and no “singular” part; in fact, the case α = 0 corresponds to the
Friedrichs extension (see [4]); thus we can see that ζ(s,ΔL) has a logarithmic singu-
larity for all extensions except the Friedrichs.

Example 2 (The Laplacian on R
2) If Δ is the Laplacian on a compact region in R

2,
then as we saw before in Sect. 1.1, AΓ has a − 1

4 eigenvalue of multiplicity one and no
eigenvalues in (− 1

4 , 3
4 ). Therefore, the exact same argument we used in the λ = − 1

4
case of the previous example shows that ζ(s,ΔL) has a logarithmic singularity for
all extensions except the Friedrichs.

Example 3 Consider now the case of a regular singular operator Δ over a compact
manifold and suppose that AΓ has two eigenvalues in [− 1

4 , 3
4 ), the eigenvalue − 1

4
and another eigenvalue − 1

4 < λ < 3
4 , both of multiplicity one. In this case, V = C4,

therefore Lagrangians L ⊂ C
4 are determined by 2 × 2 matrices A and B. Consider

the specific examples:

A =
(

0 1
−1 0

)
, B = Id.

Then with ν :=
√

λ + 1
4 and τ := 22ν Γ (1+ν)

Γ (1−ν)
, we have:

p(x, y) := det

⎛
⎜⎝

0 1 1 0
−1 0 0 1
x 0 1 0
0 τy2ν 0 1

⎞
⎟⎠= 1 + τxy2ν.

Forming the power series (2.3), we see that:

log(1 + τxy2ν) =
∞∑

k=1

(−1)k−1

k
(τxy2ν)k =

∞∑
k=1

ck,νkx
ky2νk,

where ck,νk = (−1)k−1 τk

k
. Using the definitions (2.4) and (2.5) for pξ , �ξ , P , and L,

we immediately see that pνk never exists so P = ∅, while

�νk = min{� > 0 | c�,νk �= 0} = k, L = {νk | k ∈ N}.
Therefore, by Theorem 2.1:

ζsing(s,ΔL) = sin(πs)

π

{
−e−2s(log 2−γ ) log s +

∞∑
k=1

gk(s) log(s + νk)

}
,

1The error in [18] occurs in (A13) where certain antiderivatives (specifically, xN1(x) and x2N1(x)2) were
accidentally set equal to zero at x = 0.
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with gk(s) an entire function of s such that near s = −νk,

gk(s) = (−1)k
τ k2kν

(k − 1)! (s + νk)k−1 +O((s + νk)k).

In particular, ζsing(s,ΔL) has countably many logarithmic singularities!

Example 4 With the same situation as considered in Example 3, consider

A =
(−1 1

0 0

)
, B =

(
0 0
1 −1

)
.

Then with ν :=
√

λ + 1
4 and τ := 22ν Γ (1+ν)

Γ (1−ν)
, we have

p(x, y) := det

⎛
⎜⎝

−1 1 0 0
0 0 1 −1
x 0 1 0
0 τy2ν 0 1

⎞
⎟⎠= x − τy2ν = x(1 − τx−1y2ν).

Forming the power series (2.3), we see that:

log(1 − τx−1y2ν) =
∞∑

k=1

(−1)k−1

k
(−τx−1y2ν)k =

∞∑
k=1

c−k,νkx
−ky2νk,

where c−k,νk = − τk

k
. Using the definitions (2.4) and (2.5) for pξ , �ξ , P , and L, we

immediately see that �νk never exists so L = ∅, while

pνk = min{� ≤ 0 | c−�,νk �= 0} = −k, P = {νk | k ∈ N}.

Therefore, by Theorem 2.1:

ζsing(s,ΔL) = sin(πs)

π

∞∑
k=1

fk(s)

(s + νk)k+1

with fk(s) an entire function of s such that fk(−νk) = (−1)k τkk!ν
2k . In particular,

ζsing(s,ΔL) has poles of arbitrarily large order!

Example 5 Consider one last example, the case of a regular singular operator Δ over
a compact manifold such that AΓ has three eigenvalues in [− 1

4 , 3
4 ), the eigenvalue

− 1
4 with multiplicity two and another eigenvalue − 1

4 < λ < 3
4 of multiplicity one.

In this case, V = C
6 and Lagrangians L ⊂ C

6 are determined by 3 × 3 matrices A
and B. Consider the specific examples:

A =
(0 1 −1

1 0 0
1 0 0

)
, B = Id.
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Then with ν :=
√

λ + 1
4 and τ := 22ν Γ (1+ν)

Γ (1−ν)
, we have

p(x, y) := det

⎛
⎜⎜⎜⎜⎜⎝

0 1 −1 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
x 0 0 1 0 0
0 x 0 0 1 0
0 0 τy2ν 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

= −x + τy2ν − τx2y2ν = −x(1 + (x − x−1)τy2ν).

Forming the power series (2.3), we see that:

log(1 + (x − x−1)τy2ν)

=
∞∑

k=1

(−1)k−1

k
τk(x − x−1)ky2νk

=
∞∑

k=1

k∑
j=0

(−1)j−1

k
τk

(
k

j

)
x2j−ky2νk =

∑
�,k

c�,νkx
�y2νk, (2.7)

where for each k, � runs from −k to k. Using the definitions (2.4) and (2.5) for pξ ,
�ξ , P , and L, we immediately see that:

pνk = min{� ≤ 0 | c�,νk �= 0} = −k,

�νk = min{� > 0 | c�,νk �= 0} =
{

1 if k is odd,

2 if k is even,

and P = L = {νk | k ∈ N}. Therefore, by Theorem 2.1:

ζsing(s,ΔL) = sin(πs)

π

{
−e−2s(log 2−γ ) log s +

∞∑
k=1

fk(s)

(s + νk)k+1

+
∞∑

k=1

gk(s) log(s + νk)

}
, (2.8)

where fk(s) and gk(s) are entire functions of s such that fk(−νk) = (−1)k τkk!ν
2k and

gk(s) = 2ν(−1)m+1τ k

(
k

m + 1

)

×
{

1 +O((s + νk)) if k = 2m + 1 is odd,

2(s + νk) +O((s + νk)2) if k = 2m is even.

In particular, ζsing(s,ΔL) has poles of arbitrarily high orders and in addition to a
logarithmic singularity at the origin, countably many logarithmic singularities at the
same locations of the poles!
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2.3 Special Lagrangian Subspaces

Theorem 2.1 simplifies considerably when the conditions given by the Lagrangian L

over − 1
4 eigenspaces are separated from the conditions over λ eigenspaces with λ in

(− 1
4 , 3

4 ). We shall call a Lagrangian subspace L ⊂ V decomposable if L = L0 ⊕ L1

where L0 is an arbitrary Lagrangian subspace of
⊕

λ�=− 1
4
E� ⊕ E� and L1 is an

arbitrary Lagrangian subspace of
⊕

− 1
4 <λ�<

3
4
E� ⊕ E�. As described in Proposit-

ion 3.3, the Lagrangian subspace L0 is determined by two q0 × q0 matrices A0, B0

where q0 = dimL0, that is, the multiplicity of the eigenvalues λ� = − 1
4 . Similarly,

the Lagrangian subspace L1 is determined by two q1 × q1 matrices A1, B1 where
q1 = dimL1, that is, the multiplicity of the eigenvalues λ� with − 1

4 < λ� < 3
4 .

Two polynomials which are explicitly determined by the matrices A0,B0 and
A1,B1 play peculiar roles in the statement of our result. First, consider the poly-
nomial p0(z) in the single variable z defined by:

p0(z) := det

(
A0 B0
Idq0 (log 2 − γ − z)Idq0

)
. (2.9)

Using the definition of determinant, it is easy to see that p0(z) is a polynomial of
degree at most q0 in z. Since the degree of p′

0(z) is one less than the degree of p0(z),
we can write:

p′
0(z)

p0(z)
=

∞∑
k=1

βk

zk
, βk ∈ C, (2.10)

where the series on the right is absolutely convergent for |z| sufficiently large. Second,
consider the polynomial in (2.1) (and (2.2)) using A1 and B1 in place of A and B:

p1(y) := det

⎛
⎜⎜⎝

A1 B1
τ1y

2ν1 0 0

0
. . . 0

0 0 τq1 y2νq1

Idq1

⎞
⎟⎟⎠= aα0y

2α0
(

1 +
∑

bβy2β
)
, (2.11)

where the β’s are positive. Then as in (2.3), write

log
(

1 +
∑

bβy2β
)

=
∑

cξ y
2ξ , (2.12)

and let P := {ξ | cξ �= 0}. Then Theorem 2.1 simplifies to the following.

Theorem 2.3 For an arbitrary decomposable Lagrangian L ⊂ V , the ζ -function
ζ(s,ΔL) has the following form:

ζ(s,ΔL) = ζreg(s,ΔL) + ζsing(s,ΔL), (2.13)

where ζreg(s,ΔL) has the “regular” poles at the “usual” locations s = n−k
2 /∈ −N0

for k ∈ N0 and at s = 0 if dimΓ > 0, and where ζsing(s,ΔL) has the following ex-
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pansion:

ζsing(s,ΔL) = − sin(πs)

π
f (s) log s + sin(πs)

π

∑
ξ∈P

fξ (s)

s + ξ
, (2.14)

where f (s) is the entire function defined explicitly by f (s) = ∑∞
k=1 βk

(−2s)k−1

(k−1)! , and
the fξ (s)’s are entire functions of s such that

fξ (−ξ) = −cξ ξ.

For certain types of Lagrangians, the formula for f (s) becomes very simple. We
shall call the Lagrangian L0 split-type if it can be written as

⊕
λ�=− 1

4
L� with L� a

Lagrangian subspace of E� ⊕ E�. As explained in Proposition 3.6, each component
L� of L0 is determined by an angle θ� ∈ [0,π). Moreover, in this case, the coefficients
βk in (2.10) are given by (as follows from Corollary 5.4)

βk =
∑
θ� �= π

2

κk−1
� , k = 1,2,3,4, . . . (for split-type L0) (2.15)

where κ� = log 2 − γ − tan θ� with θ� the angle defining L� in L0 and γ is the Euler-
Mascheroni constant. Then when L0 is of split-type, we have the following.

Theorem 2.4 For a decomposable Lagrangian L ⊂ V such that L0 is of split-type,
ζ(s,ΔL) has the form as in (2.13) with f (s) =∑

θ� �= π
2

e−2sκ� in (2.14).

Example 6 Consider the case when AΓ has exactly one eigenvalue in [− 1
4 , 3

4 ), the
eigenvalue − 1

4 . Then Theorem 2.4 shows the result stated in (1.2).

2.4 Unusual Resolvent and Heat Kernel Expansions

Besides establishing exotic ζ -expansions, we also derive equally exotic resolvent and
heat kernel expansions.

Theorem 2.5 Let � ⊂ C be any sector (solid angle) not intersecting the positive
real axis and choose N ∈ N with N ≥ n

2 . Then for an arbitrary Lagrangian L, as
|λ| → ∞ with λ ∈ � we have:

Tr(ΔL − λ)−N−1 ∼
∞∑

k=0

ak(−λ)
n−k

2 −N−1 + b(−λ)−N−1 log(−λ)

+ 1

N !
dN

dλN

{
q0 − j0

(−λ)(log(−λ) − 2γ̃ )

}

− 1

N !
dN+1

dλN+1

{∑
2�c�ξ (−λ)−ξ (2γ̃ − log(−λ))−�

}
(2.16)

where the ak and b coefficients are independent of L, the c�ξ ’s are the coefficients in
(2.3), and γ̃ = log 2 − γ .
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From the explicit formula (2.16) and from the binomial theorem for � > 0:

(2γ̃ − log(−λ))−� = (− log(−λ))−�

(
1 − 2γ̃

log(−λ)

)−�

= (− log(−λ))−�
∞∑

j=0

(−�

j

)
(−2γ̃ )j

(log(−λ))j
, (2.17)

it is obvious that when AΓ has − 1
4 eigenvalues, the resolvent trace expansion

has, in general, log(−λ) terms of arbitrarily high multiplicity and inverse pow-
ers (log(−λ))−1 with infinite multiplicity! This phenomenon is new and even for
pseudodifferential operators on compact manifolds, with or without boundary, and
even conic, “regular” (not inverse powers of) log(−λ) terms occur with at most mul-
tiplicity two [21–23, 29, 30, 47, 48]. See [25, 42, 58] for studies of resolvents for
closed extensions of general cone operators in the sense of B.W. Schulze [59, 60].
Here is a concrete example illustrating this discussion.

Example 7 For the self-adjoint extension ΔL considered in Example 5, from the
explicit formula (2.7), we immediately get:

Tr(ΔL − λ)−N−1 ∼
∞∑

k=0

ak(−λ)
n−k

2 −N−1 + b(−λ)−N−1 log(−λ)

+ 1

N !
dN

dλN

{
1

(−λ)(log(−λ) − 2γ̃ )

}

− 1

N !
dN+1

dλN+1

{ ∞∑
k=1

k∑
j=0

22j−k(−1)j−1

k
τk

(
k

j

)

×(−λ)−2νk
(
2γ̃ − log(−λ)

)k−2j

}
.

In this very simple example, we see unusual powers (−λ)−2νk−N−1 (after taking N +
1 derivatives) and log terms log(−λ) of arbitrarily high multiplicity (each unusual
power (−λ)−2νk−N−1 with a log term of highest power (log(−λ))k), and inverse
powers (log(−λ))−1 with infinite multiplicity because of the formula (2.17).

When L is decomposable, the last two terms in (2.16) can be made very explicit.

Theorem 2.6 Let � ⊂ C be any sector (solid angle) not intersecting the positive real
axis and choose N ∈ N with N ≥ n

2 . Then for an arbitrary decomposable Lagrangian
L, as |λ| → ∞ with λ ∈ � we have:

Tr(ΔL − λ)−N−1 ∼
∞∑

k=0

ak(−λ)
n−k

2 −N−1 + b(−λ)−N−1 log(−λ)
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− 1

N !
dN+1

dλN+1

{∑
ξ∈P

cξ (−λ)−ξ

}

+ 1

N !
dN

dλN

{
(−λ)−1

∞∑
k=1

2k−1βk

(log(−λ))k

}
, (2.18)

where the ak and b coefficients are independent of L, the βk’s are the coefficients in
(2.10), and the cξ ’s are the coefficients in (2.12).

In the case when L0 is of split-type, the second-to-last term in (2.18) can be made
even more explicit because of the formula (2.15) for βk . We also prove a correspond-
ing heat kernel expansion.

Theorem 2.7 For an arbitrary Lagrangian L, the heat kernel e−tΔL has the follow-
ing trace expansion as t → 0:

Tr(e−tΔL) ∼
∞∑

k=0

ãkt
−n+k

2 + b log t +
∞∑

k=0

b̃k(log t)−1−k

+
∑
ξ∈P

|pξ |+1∑
k=0

c̃ξkt
ξ (log t)k +

∑
ξ∈L

∞∑
k=0

d̃ξkt
ξ (log t)−�ξ −k,

with c̃10 = 0 and c̃ξ(|pξ |+1) = 0 for ξ /∈ N0.

Thus, the heat trace expansion, in general, has powers of log t with finite multiplic-
ity and inverse powers (log t)−1 with infinite multiplicity. The c̃ξk and d̃ξk coefficients
can be expressed in terms of the coefficients in the resolvent expansion (2.16) but not
so explicitly. For decomposable Lagrangians we have the following.

Theorem 2.8 For an arbitrary decomposable Lagrangian L, the heat kernel e−tΔL

has the following trace expansion as t → 0:

Tr(e−tΔL) ∼
∞∑

k=0

ãk t
−n+k

2 + b̃ log t +
∑
ξ∈P

c̃ξ t ξ +
∞∑

k=1

d̃k(log t)−k.

3 Hermitian Symplectic Formalism of Self-Adjoint Extensions

To orient the reader to the various terminologies used throughout this article, in this
section we briefly review well known results from the classical theory of self-adjoint
extensions. For more on this classical theory, see for example [32, 33, 41, 55, 66, 67]
and for its use to analyze second order regular singular operators, see [10, 11, 38–40,
49, 54, 56], and see Gil and Mendoza [24] and Lesch [44] for the analysis of more
general Fuchs type or cone operators in the sense of Schulze [59, 60]; finally, see [16]
for applications of self-adjoint extensions to quantum physics.
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3.1 The maximal Domain and Self-Adjoint Extensions

To analyze self-adjoint extensions of Δ, the idea is to find the “largest” domains
D ⊂ dommax(Δ) that make the Hermitian quadratic form:

〈Δφ,ψ〉 − 〈φ,Δψ〉, φ,ψ ∈ D,

vanish. To determine the extensions of Δ, we first describe dommax(Δ). Recall that
Δ|U = −∂2

r + 1
r2 AΓ (see (1.3)), where U ∼= [0, ε)r × Γ denotes a tubular neighbor-

hood of Γ and AΓ is a Laplace-type operator over Γ such that AΓ ≥ − 1
4 . Recall

that:

−1

4
= λ1 = λ2 = · · · = λq0︸ ︷︷ ︸

=− 1
4

< λq0+1 ≤ λq0+2 ≤ · · · ≤ λq0+q1︸ ︷︷ ︸
− 1

4 <λ�<
3
4

denotes the eigenvalues of AΓ in [− 1
4 , 3

4 ) with corresponding orthonormal eigenvec-
tors {φ�}. Then, as shown by Cheeger [10, 11], we have the following.

Proposition 3.1 A section φ ∈ L2(M,E) is in

dommax(Δ) := {φ ∈ L2(M,E) | Δφ ∈ L2(M,E)},

where “Δφ ∈ L2(M,E)” is in the distributional sense, if and only if φ is in H 2 away
from the boundary Γ , and near Γ we can write:

φ =
q0∑

�=1

{c+
� (φ)r

1
2 φ� + c−

� (φ)r
1
2 log rφ�}

+
q1∑

�=1

{
c+
q0+�(φ)√

2ν�

rν�+ 1
2 φq0+� + c−

q0+�(φ)√
2ν�

r−ν�+ 1
2 φq0+�

}
+ φ̃, (3.1)

where the c±
� (φ)’s are constants, ν� :=

√
λq0+� + 1

4 > 0, φ̃ ∈ H 2 and φ̃ = O(r
3
2 ).

To state the well-known correspondence between self-adjoint extensions and La-

grangian subspaces we define ψ+
� := r

1
2 +ν�φ� for 0 ≤ ν� < 1, and

ψ−
� :=

{
r

1
2 −ν�φ� for 0 < ν� < 1,

r
1
2 log r φ� for ν� = 0,

and furthermore we define

V :=
⊕

− 1
4 ≤λ�<

3
4

E+
� ⊕ E−

�
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where E±
� := 〈ψ±

� 〉 with 〈ψ±
� 〉 := spanC{ψ±

� }. We endow V with the symplectic
structure ω : V × V → C defined by:

ω(ψ±
� ,ψ∓

� ) =
{∓1 when ν� = 0

±1 when ν� �= 0;
ω(ψ±

� ,ψ±
j ) = 0 otherwise, (3.2)

and extending to V ×V linearly in the first factor and conjugate linearly in the second
factor. Then we have:

〈Δφ,ψ〉 − 〈φ,Δψ〉 = ω( �φ, �ψ)

where �φ :=∑{
c+
� (φ)ψ+

� +c−
� (φ)ψ−

�

} ∈ V , �ψ is defined similarly, and the following
theorem is an easy consequence.

Theorem 3.2 Self-adjoint extensions of Δ are in one-to-one correspondence with
Lagrangian subspaces of V in the sense that given any Lagrangian subspace L ⊂ V ,
defining:

domL(Δ) := {φ ∈ dommax(Δ) | �φ ∈ L},
the operator

ΔL := Δ : domL(Δ) → L2(M,E)

is self-adjoint and any self-adjoint extension of Δ is of the form ΔL for some La-
grangian L ⊂ V .

3.2 Characterizations of Lagrangian Subspaces

Recall now the following classical characterization of all Lagrangian subspaces in
complex Euclidean space.

Proposition 3.3 A subset L ⊂ C
2k is Lagrangian (with respect to the standard

Euclidean symplectic form) if and only if it can be described by a system of equa-
tions:

L = {�c ∈ C
2k | (A B)�c = 0} ⊂ C

2k,

where A and B are k × k matrices such that the rank of (A B) is k and AB∗ = BA∗.

As seen in (3.2), V can be identified with C
2q = C

2q0 × C
2q1 , where q = q0 +

q1, with minus the standard symplectic form on the C
2q0 factor and the standard

symplectic form on the C2q1 factor. Using this fact, we have the following.

Corollary 3.4 A Lagrangian subspace L ⊂ V can be characterized by q × q matri-
ces A and B via

L ∼= {�c ∈ C
2q | (A B)�c = 0} ⊂ C

2q,

where (A B) has rank q and A′B∗ is self-adjoint where A′ is the matrix A with the
first q0 columns of A multiplied by −1.



852 K. Kirsten et al.

As seen in the formula (3.1) of Proposition 3.1, the λ� = − 1
4 eigenvalues of AΓ

and the − 1
4 < λ� < 3

4 eigenvalues of AΓ give rise to rather distinct components of
dommax(Δ). For this reason, it is natural to separate Lagrangian subspaces of V into
λ� = − 1

4 components and − 1
4 < λ� < 3

4 components. With this discussion in mind,
we call a Lagrangian subspace L ⊂ V decomposable if L = L0 ⊕ L1 where L0 is
an arbitrary Lagrangian subspace of

⊕
λ�=− 1

4
E+

� ⊕ E−
� and L1 is an arbitrary La-

grangian subspace of
⊕

− 1
4 <λ�<

3
4
E+

� ⊕ E−
� .

The characterization of all such L0,L1 follows from Proposition 3.3.

Corollary 3.5 The components L0 and L1 of a decomposable Lagrangian L = L0 ⊕
L1 ⊂ V can be characterized by matrices (A0 B0) (with A0 and B0 q0 ×q0 matrices)
and (A1 B1) (with A1 and B1 q1 × q1 matrices) via

L0 ∼= {�c ∈ C
2q0 | (A0 B0)�c = 0} ⊂ C

2q0,

and

L1 ∼= {�c ∈ C
2q1 | (A1 B1)�c = 0} ⊂ C

2q1

where the matrix (A0 B0) has rank q0 and A0B∗
0 = B0A∗

0, and (A1 B1) has rank q1

and A1B∗
1 = B1A∗

1.

In the Introduction we discussed split-type Lagrangians. Here, we say that the La-
grangian L0 ⊂⊕

λ�=− 1
4
E+

� ⊕ E−
� is of split-type if it can be written as

⊕
λ�=− 1

4
L�

with L� a Lagrangian subspace of E+
� ⊕E−

� . Such Lagrangians L�, restricting Propo-
sition 3.3 to k = 1, are characterized as follows.

Proposition 3.6 L ⊂ C
2 is Lagrangian if and only if L = Lθ for some θ ∈ [0,π)

where

Lθ = {(x, y) ∈ C
2 | cos θx + sin θy = 0}.

4 The Model Problems

For the rest of this article, unless stated otherwise, we fix an arbitrary Lagrangian L

in V . In this section we analyze the eigenvalue equation for the model problem.

4.1 The Model Operator

In the last section we saw that only the eigenvalues of AΓ in the interval [− 1
4 , 3

4 ) are
involved in the various self-adjoint extensions of Δ. For this reason, in this section as
a first step to prove our main results we shall analyze the projection of:

Δ|U = − d2

dr2
+ 1

r2
AΓ
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onto the eigenspaces of AΓ with eigenvalues in [− 1
4 , 3

4 ). Recall from Corollary 3.4,
with q = q0 + q1, that the Lagrangian L can be identified with the null space of a
q × 2q matrix (A B) of full rank with A and B q × q matrices such that A′B∗ is
self-adjoint. Then writing AΓ as a diagonal matrix with respect to its eigenfunctions
with eigenvalues in [− 1

4 , 3
4 ), we shall consider the operator:

L := − d2

dr2
+ 1

r2
A over [0,R],

where R > 0 is arbitrary, but fixed, and A is the q × q matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1
4 Idq0 0

0

λq0+1 0 0 · · · 0
0 λq0+2 0 · · · 0
0 0 λq0+3 · · · 0

0 0 0
. . . 0

0 0 0 · · · λq0+q1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We put Dirichlet conditions at the right end r = R of the interval [0,R]. Then ac-
cording to Proposition 3.1, we have the following.

Proposition 4.1 φ ∈ Dmax, the maximal domain of L, if and only if φ(R) = 0 and φ

has the following form:

φ =
q0∑

�=1

{c�(φ)r
1
2 e� + cq+�(φ)r

1
2 log re�}

+
q1∑

�=1

{cq0+�(φ)rν�+ 1
2 eq0+� + cq+q0+�(φ)r−ν�+ 1

2 eq0+�} + φ̃, (4.1)

where νj :=
√

λq0+j + 1
4 > 0, e� is the column vector with 1 in the �-th slot

and 0’s elsewhere, the cj (φ)’s are constants, and the φ̃ is continuously differ-

entiable on [0,R] such that φ̃(r) = O(r
3
2 ) and φ̃′(r) = O(r

1
2 ) near r = 0, and

Lφ̃ ∈ L2([0,R],C
q).

We dropped the factors 1√
2ν�

, which appear in the statement of Proposition 3.1,
from the terms in (4.1) for φ. Then as a consequence of Theorem 3.2, we know that:

LL : DL → L2([0,R],C
q) is self-adjoint, DL = {φ ∈ Dmax | �φ ∈ L},

where φ has the form in (4.1) with �φ = (c1(φ), c2(φ), . . . , c2q(φ))t . In terms of the
matrices A and B, we can also write

DL = {φ ∈ Dmax | (A B) �φ = 0}. (4.2)
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4.2 Eigenvalue Equation

To analyze the ζ -function of LL, we derive an equation for the eigenvalues of LL.
For this, we first find solutions to the equation:

(LL − μ2)φ = 0.

As the reader can easily check, this is just a system of Bessel equations as described
in [1, p. 362], whose solution (after judiciously choosing the constants for later con-
venience) can be taken to be of the form:

φ =
q0∑

�=1

{c�(φ)r
1
2 J0(μr)e� + cq+�(φ)r

1
2 J̃0(μr)e�}

+
q1∑

�=1

{2ν�Γ (1 + ν�)cq0+�(φ)μ−ν�r
1
2 Jν�

(μr)eq0+�

+2−ν�Γ (1 − ν�)cq+q0+�(φ)μν�r
1
2 J−ν�

(μr)eq0+�}, (4.3)

where Jv(z) denotes the Bessel function of the first kind and

J̃0(μr) := π

2
Y0(μr) − (logμ − log 2 + γ )J0(μr), (4.4)

with Y0(z) the Bessel function of the second kind. For notational convenience let us
introduce J+0(μR) = J0(μR) and J−0(μR) = J̃0(μR).

Define q × q matrices J+(μ), J−(μ) by

J±(μ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

J±0(μR)Idq0 0 · · · 0

0 2±ν1 Γ (1 ± ν1)μ∓ν1 J±ν1 (μR) · · · 0
0 0 · · · 0

0 0
.
.
. 0

0 0 · · · 2
±νq1 Γ (1 ± νq1 )μ

∓νq1 J±νq1
(μR)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In the following proposition, we determine an eigenvalue equation for the μ’s.

Proposition 4.2 μ2 is an eigenvalue of LL if and only if

F(μ) := det

(
A B

J+(μ) J−(μ)

)
= 0.

Proof Imposing the Dirichlet condition at r = R on φ of the form (4.3), we obtain

c�(φ)J0(μR) + cq+�(φ) J̃0(μR) = 0, � = 1, . . . , q0,

and

2ν�Γ (1 + ν�)cq0+�(φ)μ−ν�Jν�
(μR)

+2−ν�Γ (1 − ν�)cq+q0+�(φ)μν�J−ν�
(μR) = 0, � = 1, . . . , q1.
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We can summarize these two equations as:

(J+(μ) J−(μ)) �φ = 0, (4.5)

where �φ = (c1(φ), c2(φ), . . . , c2q(φ))t . Now recall that [1, p. 360]

z−vJv(z) =
∞∑

k=0

(−1)kz2k

2v+2kk!Γ (v + k + 1)
∼ 1

2vΓ (1 + v)

(
1 − z2

4(1 + v)
+ · · ·

)
, (4.6)

and

π

2
Y0(z) = (log z − log 2 + γ )J0(z) −

∞∑
k=1

Hk(− 1
4z2)k

(k!)2
, (4.7)

where Hk := 1 + 1
2 + · · · + 1

k
. Combining (4.4), (4.6) with v = 0, and (4.7), we get:

J̃0(μr) = (log r)J0(μr) −
∞∑

k=1

Hk(− 1
4 (μr)2)k

(k!)2
= log r +O(r). (4.8)

From (4.3), (4.6) and (4.8), it follows that:

φ ∼
q0∑

�=1

{c�(φ)r
1
2 e� + cq+�(φ)r

1
2 log re�}

+
q1∑

�=1

{cq0+�(φ)rν�+ 1
2 eq0+� + cq+q0+�(φ)r−ν�+ 1

2 eq0+�} near r = 0.

In particular, by (4.2), φ in DL satisfies (A B) �φ = 0, and therefore, in view of (4.5),
we conclude that: (

A B
J+(μ) J−(μ)

)
�φ = 0.

For nontrivial �φ, this equation can hold if and only if the matrix in front of �φ is
singular. This completes our proof. �

4.3 Asymptotics of F(μ)

In order to find relevant properties of the resolvent, the heat-trace and the ζ -function,
we shall need the asymptotics of F(μ) as |μ| → ∞.

Proposition 4.3 Let Υ ⊂ C be a sector (closed angle) in the right-half plane. Then
as |x| → ∞ with x ∈ Υ , we have:

F(ix) ∼ (2πR)−
q
2

q1∏
j=1

2−νj Γ (1 − νj )x
|ν|− q

2 eqxR(γ̃ − logx)q0

×p((γ̃ − logx)−1, x−1)(1 +O(x−1)), (4.9)
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where γ̃ = log 2 − γ , p(x, y) is given in (2.1), O(x−1) is a power series in x−1, and

d

dx
logF(ix) ∼ qR + q0 − j0

x(logx − γ̃ )

+
∑

c�ξ x
−2ξ−1{�(γ̃ − logx)−�−1 − 2ξ(γ̃ − logx)−�}

+O(x−1), (4.10)

with the same meaning for O(x−1) and where the c�ξ ’s are the constants in (2.3).

Proof Using the identity (iz)−vJv(iz) = z−vIv(z), where Iv(z) is the modified
Bessel function of the first kind, we can write

F(ix) = det

(
A B

J+(ix) J−(ix)

)

where (we use the notation I±0(xR) = J±0(ixR))

J±(ix) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I±0(xR)Idq0 0 · · · 0

0 2±ν1 Γ (1 ± ν1)x∓ν1 I±ν1 (xR) · · · 0
0 0 · · · 0

0 0
.
.
. 0

0 0 · · · 2
±νq1 Γ (1 ± νq1 )x

∓νq1 I±νq1
(xR)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Factoring out 2−νj Γ (1 − νj )x
νj I−νj

(xR) from the (q + q0 + j)-th row of the matrix

(
A B

J+(ix) J−(ix)

)

we obtain

F(ix) = ρ

q1∏
j=1

xνj I−νj
(xR)

× det

( A B
I0(xR)Idq0 0

0 A(x)

J̃0(ixR)Idq0 0
0 Idq1

)
, (4.11)

where ρ =∏q1
j=1 2−νj Γ (1 − νj ) and

A(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

τ1x−2ν1
Iν1 (xR)

I−ν1 (xR)
0 · · · 0

0 τ2x−2ν2
Iν2 (xR)

I−ν2 (xR)
· · · 0

0 0
. . . 0

0 0 · · · τq1x
−2νq1

Iνq1
(xR)

I−νq1
(xR)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with τj = 22νj
Γ (1+νj )

Γ (1−νj )
. In order to find the asymptotics of F(ix) in (4.11), we shall

determine the asymptotics of A(x) and then of J̃0(x). To determine the asymptotics
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of A(x), we recall (see [1, p. 377]) that as z → ∞ with z ∈ Υ , we have:

Iv(z) ∼ ez

√
2πz

(
1 − 4v2 − 1

8z
+O(z−2)

)
∼ ez

√
2πz

(
1 +O

(
1

z

))
, (4.12)

where O( 1
z
) is a power series in 1

z
and where only v2’s occur in O( 1

z
). In particular,

as x → ∞ with x ∈ Υ , we have
Iνj

(xR)

I−νj
(xR)

∼ 1. Therefore,

A(x) ∼

⎛
⎜⎜⎝

τ1x
−2ν1 0 · · · 0
0 τ2x

−2ν2 · · · 0

0 0
. . . 0

0 0 · · · τq1x
−2νq1

⎞
⎟⎟⎠ . (4.13)

To determine the asymptotics of J̃0(ix), note that J0(iz) = I0(z) and

π

2
Y0(iz) = (log(iz) − log 2 + γ )J0(iz) −

∞∑
k=1

Hk(− 1
4 (iz)2)k

(k!)2

=
(

log z + i
π

2
− log 2 + γ

)
I0(z) −

∞∑
k=1

Hk(
1
4z2)k

(k!)2

= i
π

2
I0(z) − K0(z),

where

K0(z) := −(log z − log 2 + γ )I0(z) +
∞∑

k=1

Hk(
1
4z2)k

(k!)2

is the modified Bessel function of the second kind. Thus, we can write:

J̃0(ixR) = π

2
Y0(ixR) − (log(ix) − log 2 + γ )J0(ixR)

= i
π

2
I0(xR) − K0(xR) −

(
i
π

2
+ logx − log 2 + γ

)
I0(xR)

= −(logx − γ̃ )I0(xR) − K0(xR).

By [1, p. 378], K0(x) is exponentially decaying as x → ∞ in Υ , so

J̃0(ixR) = −(logx − γ̃ )I0(xR) − K0(xR) ∼ (γ̃ − logx)I0(xR).

Summarizing our work so far, we see from (4.11) that:

F(ix) ∼ ρx|ν|
q1∏

j=1

I−νj
(xR)

× det

( A B
I0(xR)Idq0 0

0 A(x)

(γ̃ − logx)I0(xR)Idq0 0
0 Idq1

)
,
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where ρ =∏q1
j=1 2−νj Γ (1 − νj ), |ν| = ν1 +· · ·+ νq1 , and A(x) satisfies (4.13). Now

factoring out (γ̃ − logx)I0(xR) from F(ix) and using the definition of p(x, y) in
(2.1) (with “x” replaced with (γ̃ − logx)−1 and “y” replaced with x−1), we obtain:

F(ix) ∼ ρx|ν|
q1∏

j=1

I−νj
(xR)I0(xR)q0(γ̃ − logx)q0p((γ̃ − logx)−1, x−1).

In view of the asymptotics (4.12) for Iv(z), we get:

F(ix) ∼ ρx|ν|((2π)−
1
2 (xR)−

1
2 exR)q0+q1(γ̃ − logx)q0

×p((γ̃ − logx)−1, x−1)(1 +O(x−1)),

which is equivalent to:

F(ix) ∼ (2πR)−
q
2

q1∏
j=1

2−νj Γ (1 − νj )x
|ν|− q

2 eqxR(γ̃ − logx)q0

×p((γ̃ − logx)−1, x−1)(1 +O(x−1)),

and the proof of our first asymptotic formula is complete. To prove our second for-
mula, recall from (2.2) that:

p(x, y) = aj0α0 xj0 y2α0
(

1 +
∑

bkβxky2β
)
,

so that (with “x” replaced with (γ̃ − logx)−1 and “y” replaced with x−1)

F(ix) ∼ const × x|ν|− q
2 −2α0eqxR(γ̃ − logx)q0−j0

×
(

1 +
∑

bkβ(γ̃ − logx)−kx−2β
)
(1 +O(x−1)).

As in (2.3), log(1+∑
bkβxky2β) =∑

c�ξ x
�y2ξ so taking the logarithm of F(ix) we

see that

logF(ix) ∼ const + qxR +
(

|ν| − q

2
− 2α0

)
logx + (

q0 − j0
)

log(γ̃ − logx)

+
∑

c�ξ (γ̃ − logx)−�x−2ξ +O(x−1),

and taking the derivative of both sides completes our proof. �

4.4 The Log Terms Only Case

Suppose that q1 = 0 so that the only eigenvalues of AΓ in the critical interval [− 1
4 , 3

4 )

are the − 1
4 eigenvalues. In this case, we shall denote A by A0 and B by B0 so that:

F(μ) = det

(
A0 B0

J0(μR)Idq0 J̃0(μR)Idq0

)
.
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Recall from Sect. 2.3 (see (2.9)) the polynomial:

p0(z) := det

(
A0 B0
Idq0

(
γ̃ − z

)
Idq0

)
, where γ̃ = log 2 − γ,

which is a polynomial in the complex variable z ∈ C of degree at most q0. Then we
can write:

p′
0(z)

p0(z)
=

∞∑
k=1

βk

zk
,

where the series is absolutely convergent for |z| sufficiently large and where β1 =
degp0. In the case that q1 = 0, Proposition 4.3 can be written as follows.

Proposition 4.4 Suppose that q1 = 0 and let Υ ⊂ C be a sector (closed angle) in the
right-half plane. Then as |x| → ∞ with x ∈ Υ , we have:

F(ix) ∼ (2πxR)−
q0
2 eq0xRp0(logx)(1 +O(x−1)), (4.14)

where O(x−1) is a power series in x−1, and

d

dx
logF(ix) ∼

∞∑
k=1

βk

x(logx)k
+ q0R − q0

2x
+O(x−2), (4.15)

where O(x−2) is a power series in x−1 starting from x−2.

Proof A direct application of (4.9) in Proposition 4.3 with q1 = 0 gives

F(ix) ∼ (2πxR)−
q0
2 eq0xR(γ̃ − logx)q0p((γ̃ − logx)−1)(1 +O(x−1)),

where O(x−1) is a power series in x−1 and

p(x) := det

(
A0 B0

x Idq0 Idq0

)
.

By definition of p0, we have (γ̃ − logx)q0p((γ̃ − logx)−1) = p0(logx). This proves
(4.14) and then taking the logarithmic derivative of (4.14) gives (4.15). �

5 The Zeta Function for the Model Problems

Working with the fixed Lagrangian L, we now analyze the zeta-function of LL. The
Appendix by Boris Vertman proves by a careful asymptotic analysis the integral rep-
resentation of the zeta-function

ζ(s,LL) = 1

2πi

∫
C

μ−2s d

dμ
logF(μ)dμ = 1

2πi

∫
C

μ−2s F ′(μ)

F (μ)
dμ,
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Fig. 1 The contour C for the
zeta function. The ×’s represent
the zeros of F(μ). The squares
of the ×’s on the imaginary axis
represent the negative
eigenvalues of LL. Here, t is on
the imaginary axis and |t |2 is
larger than the absolute value of
the negative eigenvalue of LL

(if one exists). The contour Ct

goes from t to −t

where C is a contour in the plane shown in Fig. 1. It is only formally an application
of the Argument Principle, since the contour C is not closed. Here we used that μ2 is
an eigenvalue of LL if and only if μ is a zero of F(μ). By Proposition 4.3, the zeta
function ζ(s,LL) is well-defined for 	s > 1

2 .

5.1 A Basic Lemma

In order to determine the exact structure of the analytic continuation of ζ(s,LL), we
need the following fundamental result.

Lemma 5.1 Let c be a constant and let |t | be sufficiently large so that logx > c for
x ≥ |t |. Then for any k ≥ 0 we can write:

∫ ∞

|t |
x−2s−2ξ−1(c − logx)kdx ≡

k∑
j=0

σkj

(s + ξ)j+1
, (5.1)

modulo an entire function, where σkj = (−1)k
(
k
j

) j !
2j+1 (−c)k−j , and for any k > 0 we

can write:

∫ ∞

|t |
x−2s−2ξ−1(c − logx)−kdx ≡ 2k−1

(k − 1)! (s + ξ)k−1e−2(s+ξ)c log(s + ξ) (5.2)

modulo an entire function.

Proof Replacing s by s − ξ , we can assume that ξ = 0 from the start. To analyze the
first integral we first expand (c − logx)k using the binomial theorem:

∫ ∞

|t |
x−2s−1(c − logx)kdx =

k∑
j=0

(−1)k
(

k

j

)
(−c)k−j

∫ ∞

|t |
x−2s−1(logx)j dx.
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Thus, we are left to prove that:

∫ ∞

|t |
x−2s−1(logx)j dx ≡ j !

2j+1
· 1

sj+1
(5.3)

modulo an entire function. However, since the integral
∫ |t |

1 x−2s−1(logx)j dx is en-
tire, we can assume that the lower limit of the integral in (5.3) is 1. Now taking j

derivatives of both sides of the equality
∫∞

1 x−2s−1dx = 1
2s

with respect to s, we
obtain:

(−2)j
∫ ∞

1
x−2s−1(logx)j dx = (−1)j j !

2sj+1
,

which proves (5.3).
To prove the second claim in this proposition, we make the change of variables

y = 2s(logx − c) or x = ecey/2s , and obtain:

∫ ∞

|t |
x−2s−1(c − logx)−kdx = (−1)ke−2sc(2s)k−1

∫ ∞

2sC

e−y dy

yk
,

where C := log |t | − c. Recall that the exponential integral is defined by (see [1,
p. 228] or [27, Sec. 8.2])

Eik(z) :=
∫ ∞

1
e−zu du

uk
= zk−1

∫ ∞

z

e−y dy

yk
.

Therefore,

∫ ∞

|t |
x−2s−1(c − logx)−kdx = (−1)ke−2sc

Ck−1
Eik(2sC). (5.4)

Also from [1, p. 229] or [27, p. 877], we have:

Eik(z) = (−z)k−1

(k − 1)! {− log z + ψ(k)} −
∞∑

j=0, j �=k−1

(−z)j−1

(j − k + 1)j ! ,

where ψ(1) := −γ and ψ(k) := −γ +∑k−1
j=1

1
j

for k > 1. Hence,

Eik(2sC) = Ck−1 (−2s)k−1

(k − 1)! {− log(2sC) + ψ(k)} −
∞∑

j=0, j �=k−1

(−2sC)j−1

(j − k + 1)j ! .

Replacing this into (5.4) and simplifying, we obtain:

∫ ∞

|t |
x−2s−1(c − logx)−kdx ≡ (2s)k−1

(k − 1)!e
−2sc log s

modulo an entire function. This completes our proof. �
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5.2 The ζ -Function

We now prove the “model problem version” of Theorem 2.1 via the contour integra-
tion method [35–37].

Proposition 5.2 Let L ⊂ V be an arbitrary Lagrangian subspace of C
2q and define

P and L as in (2.5) from the matrices A and B defining L. Then the ζ -function
ζ(s,LL) extends from 	s > 1

2 to a holomorphic function on C \ (−∞,0]. Moreover,
ζ(s,LL) can be written in the form:

ζ(s,LL) = ζreg(s,LL) + ζsing(s,LL),

where ζreg(s,LL) has the “regular” poles at the “usual” locations s = 1
2 − k for

k ∈ N0, and where ζsing(s,LL) has the following expansion:

ζsing(s,LL) = sin(πs)

π

{
(j0 − q0)e

−2s(log 2−γ ) log s +
∑
ξ∈P

fξ (s)

(s + ξ)|pξ |+1

+
∑
ξ∈L

gξ (s) log(s + ξ)

}
,

where j0 appears in (2.2) and fξ (s) and gξ (s) are entire functions of s such that

fξ (−ξ) = (−1)|pξ |+1cpξ ξ ξ
|pξ |!
2|pξ |

and

gξ (s) =
⎧⎨
⎩

c�0,0
2�0

(�0−1)! s
�0 +O(s�0+1) if ξ = 0,

−c�ξ ξ
ξ2�ξ

(�ξ −1)! (s + ξ)�ξ −1 +O((s + ξ)�ξ ) if ξ > 0,

where the c�ξ ’s are the coefficients in (2.3).

Proof With Fig. 1 in mind, we write:

∫
C

= −
∫ 0+i∞

t

+
∫ 0−i∞

−t

+
∫
Ct

,

where Ct is the curvy part of C from t to −t , and second, using that:

i−2s = (eiπ/2)−2s = e−iπs and (−i)−2s = (e−iπ/2)−2s = eiπs,

we obtain the integral:

ζ(s,LL) = 1

2πi

∫
C

μ−2s d

dμ
logF(μ)dμ

= 1

2πi

{
−
∫ ∞

|t |
(ix)−2s d

dx
logF(ix)dx
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+
∫ ∞

|t |
(−ix)−2s d

dx
logF(−ix)dx

}
+ 1

2πi

∫
Ct

μ−2s F ′(μ)

F (μ)
dμ

= 1

2πi
(−e−iπs + eiπs)

∫ ∞

|t |
x−2s d

dx
logF(ix)dx

+ 1

2πi

∫
Ct

μ−2s F ′(μ)

F (μ)
dμ,

or,

ζ(s,LL) = sin(πs)

π

∫ ∞

|t |
x−2s d

dx
logF(ix)dx + 1

2πi

∫
Ct

μ−2s F ′(μ)

F (μ)
dμ, (5.5)

a formula that will be analyzed in a moment. The second integral here is over a
bounded contour so is an entire function of s ∈ C, so we are left to analyze the ana-
lytic properties of the first integral in (5.5). To do so, recall the asymptotics (4.10) in
Proposition 4.3, which states that for x → ∞ we have:

d

dx
logF(ix) ∼ q0 − j0

x(logx − γ̃ )
+ G1(x) + G2(x) + G3(x), (5.6)

where γ̃ = log 2 − γ , G3(x) is a power series in x−1 starting with the constant term
qR,

G1(x) :=
∑
ξ

∑
�≤0

c�ξ x
−2ξ−1{�(γ̃ − logx)−�−1 − 2ξ(γ̃ − logx)−�},

and

G2(x) :=
∑
ξ

∑
�>0

c�ξ x
−2ξ−1{�(γ̃ − logx)−�−1 − 2ξ(γ̃ − logx)−�}.

Since

sin(πs)

π

∫ ∞

|t |
x−2s−k dx = sin(πs)

π

x−2s−k+1

−2s − k + 1

∣∣∣∣
∞

x=|t |
= sin(πs)

π

|t |−2s−k+1

2s + k − 1

which has poles at s = 1−k
2 for s /∈ Z, it follows that

sin(πs)

π

∫ ∞

|t |
x−2s d

dx
logG3(ix)dx (5.7)

will contribute to the function ζreg(s,LL) in the statement of this proposition. Setting
ξ = 0 and k = 1 in (5.2) in Lemma 5.1 we see that:

∫ ∞

|t |
x−2s q0 − j0

x(logx − γ̃ )
dx ≡ −(q0 − j0)e

−2sγ̃ log s

modulo an entire function, which gives us the first term in ζsing(s,LL).
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We now analyze
∫∞
|t | x−2sG2(x) dx. To do so, we apply (5.2) term-by-term to

∫ ∞

|t |
x−2sG2(x)dx

=
∫ ∞

|t |
x−2s

∑
ξ

∑
�>0

c�ξ x−2ξ−1{�(γ̃ − logx)−�−1 − 2ξ(γ̃ − logx)−�}dx,

and we see that, modulo an entire function,
∫ ∞

|t |
x−2sG2(x)dx

≡
∑
ξ

∑
�>0

c�ξ

{
�2�

�! e−2(s+ξ)γ̃ (s + ξ)� log(s + ξ)

− ξ2�

(� − 1)!e
−2(s+ξ)γ̃ (s + ξ)�−1 log(s + ξ)

}

=
∑
ξ

(
e−2(s+ξ)γ̃

∑
�>0

c�ξ

{
�2�

�! (s + ξ)� − ξ2�

(� − 1)! (s + ξ)�−1
})

log(s + ξ),

which can be written in the form
∑

ξ gξ (s) log(s + ξ) where

gξ (s) = e−2(s+ξ)γ̃
∑
�>0

c�ξ

{
2�

(� − 1)! (s + ξ)� − ξ2�

(� − 1)! (s + ξ)�−1
}
.

From this explicit formula for gξ (s), we see that:

gξ (s) =
⎧⎨
⎩

c�0,0
2�0

(�0−1)! s
�0 +O(s�0+1) if ξ = 0,

−c�ξ ξ
ξ2�ξ

(�ξ −1)! (s + ξ)�ξ −1 +O((s + ξ)�ξ ) if ξ > 0,

where we recall that �ξ := min{� > 0 | c�ξ �= 0}.
We now analyze

∫∞
|t | x−2sG1(x) dx. With σkj = (−1)k

(
k
j

) j !
2j+1 (−γ̃ )k−j , from

(5.1) in Lemma 5.1 we can write, modulo an entire function,

∫ ∞

|t |
x−2s

(∑
�≤0

c�ξ x−2ξ−1{�(γ̃ − logx)−�−1 − 2ξ(γ̃ − logx)−�}
)

dx

=
∑
�≤0

c�ξ

{|�|−1∑
j=0

�σ|�|−1,j

(s + ξ)j+1
−

|�|∑
j=0

2ξσ|�|j
(s + ξ)j+1

}
= fξ (s)

(s + ξ)|pξ |+1
, (5.8)

where

pξ := min{� ≤ 0 | c�ξ �= 0} �⇒ |pξ | = max{|�| | � ≤ 0 and c�ξ �= 0}
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and

fξ (s) :=
∑
�≤0

c�ξ

{|�|−1∑
j=0

�σ|�|−1,j (s + ξ)|pξ |−j −
|�|∑

j=0

2ξσ|�|j (s + ξ)|pξ |−j

}

is entire. It follows that:∫ ∞

|t |
x−2sG1(x)dx

=
∫ ∞

|t |
x−2s

∑
ξ

∑
�≤0

c�ξ x−2ξ−1{�(γ̃ − logx)−�−1 − 2ξ(γ̃ − logx)−�}dx

=
∑
ξ

fξ (s)

(s + ξ)|pξ |+1
.

Moreover, from the above explicit formula for fξ (s) we see that:

fξ (−ξ) = −2cpξ ξ ξσ|pξ |,|pξ | = −2cpξ ξ ξ(−1)|pξ | |pξ |!
2|pξ |+1

= (−1)|pξ |+1cpξ ξ ξ
|pξ |!
2|pξ | .

This completes our proof. �

5.3 The Decomposable Case

Suppose now that L = L0 ⊕ L1 is decomposable where as in Corollary 3.5 L0 is
given by q0 × q0 matrices A0 and B0 and L1 is given by q1 × q1 matrices A1 and
B1. Let us recall the polynomial p0(z) introduced in (2.9) in Sect. 2.3 and consider
the following result.

Lemma 5.3 For |t | sufficiently large so that p0(logx) has no zeros for x ≥ |t |, we
can write: ∫ ∞

|t |
x−2s

p′
0(logx)

xp0(logx)
dx ≡ −f (s) log s

modulo an entire function, where f (s) is the entire function given explicitly by:

f (s) =
∞∑

k=1

βk

(−2s)k−1

(k − 1)!

with the βk’s the coefficients of the expansion of
p′

0(z)

p0(z)
=∑∞

k=1
βk

zk in (2.10).

Proof Using the expansion
p′

0(z)

p0(z)
=∑∞

k=1
βk

zk , we can write:

∫ ∞

|t |
x−2s

p′
0(logx)

xp0(logx)
dx =

∞∑
k=1

βk

∫ ∞

|t |
x−2s 1

x(logx)k
dx. (5.9)
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To analyze this integral we put ξ = c = 0 in formula (5.2) from Lemma 5.1 to see

∫ ∞

|t |
x−2s 1

x(logx)k
dx ≡ − (−2)k−1

(k − 1)! sk−1 log s = − (−2s)k−1

(k − 1)! log s,

modulo an entire function. Replacing this formula into (5.9) and simplifying, we
obtain our result. �

Let us apply this theorem to the case when q0 = 1. In this case, by Proposition 3.6
we have A0 = cos θ and B0 = sin θ for an angle θ ∈ [0,π), therefore:

p0(z) := det

(
cos θ sin θ

1 (γ̃ − z)

)
= − cos θ · z + γ̃ · cos θ − sin θ.

Hence, with κ := γ̃ − tan θ = log 2 − γ − tan θ , we have:

p′
0(z)

p0(z)
= − cos θ

− cos θ · z + γ̃ · cos θ − sin θ
= 1

z − γ̃ + tan θ
=

∞∑
k=1

κk−1

zk
. (5.10)

Thus, βk = κk−1, so:

f (s) =
∞∑

k=1

βk

(−2s)k−1

(k − 1)! =
∞∑

k=1

(−2sκ)k−1

(k − 1)! = e−2sκ .

Therefore, Lemma 5.3 reduces to the following.

Corollary 5.4 Suppose that q0 = 1, q1 = 0 and θ �= π
2 . Then the coefficients βk in

the expansion
p′

0(z)

p0(z)
are given by βk = κk−1. In particular, for |t | sufficiently large so

that p0(logx) has no zeros for x ≥ |t |, we can write

∫ ∞

|t |
x−2s

p′
0(logx)

xp0(logx)
dx ≡ −e−2sκ log s

modulo an entire function, where κ = log 2 − γ − tan θ .

From (2.11) and (2.12) in Sect. 2.3, let us recall that the polynomial p1(y) has the
expression:

p1(y) = aα0 y2α0
(

1 +
∑

bβy2β
)
,

where the β’s are positive and

log
(

1 +
∑

bβy2β
)

=
∑

cξ y
2ξ , (5.11)

and let P := {ξ | cξ �= 0}. We now prove the model problem versions of Theorems 2.3
and 2.4.
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Proposition 5.5 For an arbitrary decomposable Lagrangian L ⊂ V , the ζ -function
ζ(s,LL) has the following form:

ζ(s,LL) = ζreg(s,LL) + ζsing(s,LL)

where ζreg(s,L) has the “regular” poles at the “usual” locations s = 1
2 − k for k ∈

N0, and where ζsing(s,LL) has the following expansion:

ζsing(s,LL) = − sin(πs)

π
f (s) log s + sin(πs)

π

∑
ξ∈P

fξ (s)

s + ξ
,

where f (s) is the entire function defined explicitly by f (s) = ∑∞
k=1 βk

(−2s)k−1

(k−1)! , and
the fξ (s)’s are entire functions such that fξ (−ξ) = −cξ ξ with the cξ ’s the coefficients
in (5.11).

Proof Since L = L0 ⊕ L1 is decomposable, it follows that

ζ(s,LL) = ζ(s,LL0) + ζ(s,LL1),

where LL0 is the operator LL restricted to the − 1
4 eigenspaces of A and LL1 is

the operator LL restricted to the eigenspaces of A in (− 1
4 , 3

4 ). From (5.11), we can
observe that pξ = 0 for any ξ and L = ∅ for the operator LL1 . Hence, there are only
terms G1(x) with � = 0 and G3(x) in (5.6), that is,

d

dx
logF(ix) ∼

∞∑
k=0

bkx
−k +

∑
−2ξcξx

−2ξ−1 (5.12)

where cξ ’s are the coefficients in (5.11). It follows from the proof of Proposition 5.2,
in particular, (5.8) with � = 0 that:

ζ(s,LL1) = ζreg(s,LL1) + ζsing(s,LL1)

where ζreg(s,LL1) has poles at s = 1
2 − k for k ∈ N0 and

ζsing(s,LL1) = sin(πs)

π

∑
ξ∈P

fξ (s)

s + ξ
,

where the fξ (s)’s are entire functions of s such that fξ (−ξ) = −cξ ξ .
Thus, it remains to analyze ζ(s,LL0). To do so, we follow the proof of Proposit-

ion 5.2 up to (5.5), for |t | 
 0 we can write:

ζ(s,LL0) ≡ sin(πs)

π

∫ ∞

|t |
x−2s d

dx
logF0(ix)dx

modulo an entire function, where F0(μ) is the function F(μ) defined in Proposit-
ion 4.2 in the case that q1 = 0, A = A0, and B = B0. By (4.15) in Proposition 4.4,
we have:

d

dx
logF0(ix) ∼ p′

0(logx)

x p0(logx)
+ G(x),
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where G(x) is a power series in x−1 starting with a constant term. Just as we no-
ticed in (5.7) for G3(x) (which has the same asymptotics as G(x)) in the proof of
Proposition 4.4, the integral sin(πs)

π

∫∞
|t | x−2sG(ix) dx will contribute to the function

ζreg(s,LL0) in the statement of this proposition. Finally, invoking Lemma 5.3:
∫ ∞

|t |
x−2s

p′
0(logx)

xp0(logx)
dx ≡ −f (s) log s

modulo an entire function, where f (s) =∑∞
k=1 βk

(−2s)k−1

(k−1)! , completes the proof. �

Corollary 5.4 implies

Corollary 5.6 Suppose that q0 = 1, q1 = 0 and θ �= π
2 . Then the zeta function

ζ(s,Δθ ) can be written in the form

ζ(s,Δθ ) = − sin(πs)

π
e−2sκ log s + ζθ (s),

where κ = log 2−γ − tan θ and ζθ (s) extends from 	s > 1
2 to a holomorphic function

on C with poles at s = 1
2 − k for k ∈ N0. In particular, ζ(s,Δθ ) has s = 0 as a

logarithmic branch point. In the case that θ = π
2 , the ζ -function ζ(s,Δθ ) has the

properties of ζθ (s).

The last statement for θ = π
2 in Corollary 5.6 follows from the results in [18].

6 The Resolvent and Heat Kernel for the Model Problems

In this section we analyze the resolvent and heat kernel expansions for the model
problems, which will be of great use for the general case.

6.1 The Resolvent

Using the new contour C shown in Fig. 2, we see that if {μ2
j } denote the eigenvalues

of LL, then by an application of the Argument Principle, we have

2 Tr(LL + x2)−1 = 2
∞∑

j=1

1

μ2
j + x2

= 1

2πi

∫
γ

(μ2 + x2)−1 d

dμ
logF(μ)dμ,

where |x|2 is larger than the absolute value of the negative eigenvalues of LL (if
one exists). The factor of 2 on the left hand side is a result of all eigenvalues being
enclosed twice. Using this formula we can express the trace of the resolvent in terms
of F(ix) in the following theorem.

Theorem 6.1 We have:

2x Tr(LL + x2)−1 = d

dx
logF(ix)

for all complex x ∈ C for which either (and hence both) sides make sense.
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Fig. 2 The new contour C

Fig. 3 Deforming the contour C

Proof Deforming the contour as in Fig. 3 and using Cauchy’s formula, we obtain:

2 Tr(LL + x2)−1 = 1

2πi

∫
γ

1

(μ − ix)(μ + ix)

F ′(μ)

F (μ)
dμ

= − 1

2ix

F ′(ix)

F (ix)
− 1

−2ix

F ′(−ix)

F (−ix)
= i

x

F ′(ix)

F (ix)
= 1

x

d

dx
logF(ix),

where we used the fact that F(μ) is an even function of μ. Indeed, to see this observe
that, by definition, F(μ) is expressed in terms of μvJ−v(μR) with appropriate v’s
and the function J̃0(μR), which are even functions by (4.4), (4.6) and (4.7). This
proves that 2x Tr(LL + x2)−1 = d

dx
logF(ix) at least when x is real and x 
 0.

However, by analytic continuation, both sides must still be equal for all complex x

for which both sides are defined. �

Using this theorem, we can now prove the following.
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Proposition 6.2 Let L ⊂ V be an arbitrary Lagrangian subspace of C
2q and let

Λ ⊂ C be any sector (solid angle) not intersecting the positive real axis. Then as
|λ| → ∞ with λ ∈ Λ, we have:

Tr(LL − λ)−1 ∼
∞∑

k=1

ak(−λ)−
k
2 + q0 − j0

(−λ)(log(−λ) − 2γ̃ )

− d

dλ

{∑
2�c�ξ (−λ)−ξ (2γ̃ − log(−λ))−�

}
,

where the ak coefficients are independent of L and the c�ξ ’s are given in (2.3).

Proof By Proposition 4.3 (see (4.10)), we have:

d

dx
logF(ix) ∼

∞∑
k=0

bkx
−k + q0 − j0

x(logx − γ̃ )

+
∑

c�ξ x−2ξ−1{�(γ̃ − logx)−�−1 − 2ξ(γ̃ − logx)−�}
for some coefficients bk that, by the proof of Proposition 4.3, are independent of L.
Therefore, by Theorem 6.1, we have:

2x Tr(LL + x2)−1 ∼
∞∑

k=0

bkx
−k + q0 − j0

x(logx − γ̃ )

+
∑

c�ξ x−2ξ−1{�(γ̃ − logx)−�−1 − 2ξ(γ̃ − logx)−�}.

Dividing by 2x and then setting x = (−λ)
1
2 , with ak = (1/2)bk−1 we obtain:

Tr(LL − λ)−1 ∼
∞∑

k=1

ak(−λ)−
k
2 + q0 − j0

(−λ)(log(−λ) − 2γ̃ )

− d

dλ

{∑
c�ξ (−λ)−ξ

(
γ̃ − 1

2
log(−λ)

)−�}
,

which is equivalent to our desired result. �

For decomposable L, we have the following.

Proposition 6.3 Let Λ ⊂ C be any sector (solid angle) not intersecting the positive
real axis. Then for an arbitrary decomposable Lagrangian L, as |λ| → ∞ with λ ∈ Λ

we have:

Tr(LL − λ)−1 ∼
∞∑

k=1

ak(−λ)−
k
2 − d

dλ

{∑
ξ∈P

cξ (−λ)−ξ

}

+
{

(−λ)−1
∞∑

k=1

2k−1βk

(log(−λ))k

}
,
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where the ak coefficients are independent of L, the cξ ’s are the coefficients in (2.12)
and the βk’s are the coefficients in (2.10).

Proof Since L = L0 ⊕ L1 is decomposable, it follows that

(LL − λ)−1 = (LL0 − λ)−1 + (LL1 − λ)−1

where LL0 is the operator LL restricted to the − 1
4 eigenspaces of A and LL1 is the

operator LL restricted to the eigenspaces of A in (− 1
4 , 3

4 ). For the operator LL1 , recall
(5.12),

d

dx
logF(ix) ∼

∞∑
k=0

bkx
−k +

∑
−2ξcξ x−2ξ−1.

Combining this with Theorem 6.1, we have:

Tr(LL1 − λ)−1 ∼
∞∑

k=1

dk(−λ)−
k
2 − d

dλ

{∑
cξ (−λ)−ξ

}

where the dk coefficients are independent of L1 and the cξ ’s are the coefficients in
(2.12) or (5.11). Let F0(μ) denote the function F(μ) in Proposition 4.2 in the case
that q1 = 0, A = A0, and B = B0 where (A0 B0) defines L0. Then just as in the proof
of Proposition 6.2, in conjunction with Proposition 4.4 (see (4.15)):

d

dx
logF0(ix) ∼

∞∑
k=1

βk

x(logx)k
+

∞∑
k=0

ekx
−k,

where the βk’s are the coefficients in (2.10), using again Theorem 6.1, we obtain

Tr(LL0 − λ)−1 ∼
∞∑

k=1

fk (−λ)−
k
2 +

{
(−λ)−1

∞∑
k=1

2k−1βk

(log(−λ))k

}
.

Combining this with Tr(LL1 − λ)−1 analyzed just before completes our proof. �

6.2 The Heat Kernel

Now we consider the asymptotics of the trace of e−tLL as t → 0. For this, we use

Tr(e−tLL) = i

2π

∫
Ch

e−tλ Tr(LL − λ)−1dλ (6.1)

where Ch is a counter-clockwise contour in the plane surrounding eigenvalues of LL;
see Fig. 4. Then the small-time asymptotics of the heat trace is determined by the
large-spectral parameter asymptotics of Tr(LL −λ)−1 as we will see in the following
proposition.
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Fig. 4 The contour Ch

Proposition 6.4 For an arbitrary Lagrangian subspace L ⊂ C
2q , as t → 0 we have:

Tr(e−tLL) ∼
∞∑

k=0

ãk t
−1+k

2 +
∞∑

k=0

b̃k(log t)−1−k

+
∑
ξ∈P

|pξ |+1∑
k=0

c̃ξkt
ξ (log t)k +

∑
ξ∈L

∞∑
k=0

d̃ξkt
ξ (log t)−�ξ −k,

with c̃10 = 0 and c̃ξ(|pξ |+1) = 0 for ξ /∈ N0.

Proof By Proposition 6.2, we have:

Tr(LL − λ)−1 ∼
∞∑

k=1

ak(−λ)−
k
2 + q0 − j0

(−λ)(log(−λ) − 2γ̃ )

− d

dλ

{∑
2�c�ξ (−λ)−ξ (2γ̃ − log(−λ))−�

}
(6.2)

as |λ| → ∞ with λ in a sector not intersecting the positive real axis. We use (6.1) for
each term on the right hand side. For the first term, making the change of variables
λ �→ t−1λ, ∫

Ch

e−tλ(−λ)−
k
2 dλ = t

k
2 −1

∫
tCh

e−λ(−λ)−
k
2 dλ.

The integral part depends on t via tCh, but is smooth at t = 0. Hence, the first part∑∞
k=1 ak(−λ)− k

2 contributes

∞∑
k=0

a′
kt

−1+k
2 . (6.3)

For the third term on the right-hand side of (6.2), using integration by parts, we have:
∫
Ch

e−tλ d

dλ
{(−λ)−ξ (2γ̃ − log(−λ))−�}dλ

= t

∫
Ch

e−tλ{(−λ)−ξ (2γ̃ − log(−λ))−�}dλ.
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Deforming Ch to the real line, we find

t

∫
Ch

e−tλ{(−λ)−ξ (2γ̃ − log(−λ))−�}dλ

= t

(∫ 1

∞
e−tx(−(x + i0))−ξ (2γ̃ − log(−(x + i0)))−�dx

+
∫ ∞

1
e−tx(−(x − i0))−ξ (2γ̃ − log(−(x − i0)))−�dx + h(t)

)

= t

(
e−iπξ

∫ ∞

1
e−txx−ξ (2γ̃ − logx − iπ)−�dx

− eiπξ

∫ ∞

1
e−txx−ξ (2γ̃ − logx + iπ)−�dx + h(t)

)
,

where h(t) is a smooth function at t = 0. Since for any complex number z we have
i(z − z̄) = −2�z, we see that modulo a term that is a smooth function of t at t = 0,

i

2π

∫
Ch

e−tλ d

dλ
{(−λ)−ξ (2γ̃ − log(−λ))−�}dλ = − t

π
��(t)

where

�(t) = e−iπξ

∫ ∞

1
e−txx−ξ (2γ̃ − logx − iπ)−�dx; (6.4)

we shall compute the asymptotics of �(t) as t → 0. To do so, let j ≥ ξ > j − 1,
j ∈ N0; observe that the j -th derivative �(j)(t) of �(t) is given by

�(j)(t) = e−iπξ (−1)j
∫ ∞

1
e−txxj−ξ (2γ̃ − logx − iπ)−�dx.

Note that xj−ξ · (2γ̃ − logx − iπ)−� is integrable near x = 0, so we can write

�(j)(t) = e−iπξ (−1)j (f (t) + g(t))

with

f (t) :=
∫ ∞

0
e−tx xj−ξ (2γ̃ − logx − iπ)−�dx

and

g(t) = −
∫ 1

0
e−txxj−ξ (2γ̃ − logx − iπ)−�dx.

Note that g(t) is smooth at t = 0. We will now determine the asymptotics of f (t)

near t = 0. To this end, we make the change of variables x �→ t−1x:

f (t) = t ξ−j−1
∫ ∞

0
e−x xj−ξ (2γ̃ − logx + log t − iπ)−�dx.
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We need to consider two cases; � ≤ 0 and � > 0. For � ≤ 0 we use the binomial
expansion to find

f (t) = t ξ−j−1
|�|∑

k=0

(|�|
k

)
(log t)|�|−k

∫ ∞

0
e−xxj−ξ (2γ̃ − logx − iπ)kdx

= t ξ−j−1
|�|∑

k=0

cξ,k,�(log t)k,

with suitable coefficients cξ,k,�. For � > 0 we first write

f (t) = t ξ−j−1(log t)−�

∫ ∞

0
e−xxj−ξ

(
1 − logx + iπ − 2γ̃

log t

)−�

dx.

Since (1 − r)−1 = ∑N
k=0 rk + rN+1(1 − r)−1 for any N ∈ N, we see that for any

N ∈ N,

(1 − r)−� =
N−�+1∑

k=0

ak,�r
k + rN−�+2

�−1∑
k=0

bk,�

rk

(1 − r)k+1
.

For f (t) this implies

f (t) = t ξ−j−1(log t)−�
N−�+1∑

k=0

ak,�(log t)−k

∫ ∞

0
e−xxj−ξ (logx + iπ − 2γ̃ )kdx

+ t ξ−j−1(log t)−�(log t)−(N−�+2)

�−1∑
k=0

bk,�(log t)−k

×
∫ ∞

0
e−xxj−ξ (logx + iπ − 2γ̃ )N−�+2+k

(1 − logx+iπ−2γ̃
log t

)k+1
dx.

The last integral is bounded as t → 0; as N ∈ N was arbitrary, we conclude for � > 0

f (t) ∼ t ξ−j−1
∞∑

k=0

ãξ,k,�(log t)−k−�.

In summary: for � ≤ 0 we have shown

�(j)(t) ∼ e−iπξ

(
t ξ−j−1

|�|∑
k=0

cξ,k,�(log t)k +
∞∑

k=0

γξ,k,�t
k

)
, (6.5)

while for � > 0, we found

�(j)(t) ∼ e−iπξ

(
t ξ−j−1

∞∑
k=0

ãξ,k,�(log t)−k−� +
∞∑

k=0

γ̃ξ,k,�t
k

)
. (6.6)
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In order to find the small-t asymptotics of �(t) we need to integrate j times. Using
[27], (2.722),

∫
tn(log t)mdt = tn+1

m + 1

m∑
k=0

(−1)k(m + 1) · m · · · (m − k + 1)
(log t)m−k

(n + 1)k+1
,

for n �= −1, m �= −1, and [27], (2.724), in the form:

∫
tn

(log t)m
dt = tn+1

(n + 1)(log t)m
+ m

n + 1

∫
tn

(log t)m+1
dt,

for n �= −1, m �= 0, in addition:
∫

t−1(log t)−1dt = log | log t |,
∫

t−1(log t)−k−1dt = −1

k
(log t)−k for k �= 0,

we obtain for � ≤ 0, ξ /∈ N0, that:

��(t) ∼ t ξ−1
|�|∑

k=0

c′
ξ,k,�(log t)k +

∞∑
k=0

γ ′
ξ,k,�t

k, (6.7)

whereas for ξ ∈ N0 the first summation extends up to |l| + 1 and c′
1,0,� = 0.

For l > 0 the answer reads:

��(t) ∼ t ξ−1
∞∑

k=0

c̃ ′
ξ,k,�(log t)−k−� +

∞∑
k=0

γ̃ ′
ξ,k,�t

k. (6.8)

Contributions from the second term in (6.2) are found from (6.8) with ξ = 1 and
� = 1,

∞∑
k=0

c̃k(log t)−k−1 +
∞∑

k=0

γ̃kt
k. (6.9)

Combining (6.3), (6.7), (6.8) and (6.9) completes the proof. �

Using Proposition 6.3 and repeating the proof of Proposition 6.4, we have the
following.

Proposition 6.5 For an arbitrary decomposable Lagrangian L, the heat kernel
e−tLL has the following trace expansion as t → 0:

Tr(e−tLL) ∼
∞∑

k=0

ãkt
−1+k

2 +
∑
ξ∈P

c̃ξ t
ξ +

∞∑
k=1

d̃k(log t)−k.
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7 Proofs of the Main Theorems

We now prove our main results starting with the resolvent expansion.

7.1 The Resolvent Expansion—Theorems 2.5 and 2.6

We work under the assumptions of Theorem 2.5, so Λ ⊂ C denotes a sector not inter-
secting the positive real axis and L ⊂ V denotes a given, but arbitrary, Lagrangian
subspace of V . We cut the manifold M at the hypersurface r = R in the collar
[0, ε)r × Γ with 0 < R < ε, giving a decomposition:

M = X ∪ Y,

where X = [0,R]r ×Γ and Y is a manifold with a collared neighborhood [R,ε)r ×Γ

near its boundary, which we identify with Γ . Let ΔY denote the restriction of Δ to Y

with the Dirichlet condition at r = R and let ΔX,L denote the restriction of Δ to X:

ΔX,L := −∂2
r + 1

r2
AΓ

with domain the restriction of dom(ΔL) to X and with the Dirichlet condition at
r = R. It is well-known that the Schwartz kernel of the resolvent (ΔY − λ)−1(y, y′),
where (y, y′) ∈ Y × Y , is a smooth function of (y, y′) and vanishes to infinite order
as |λ| → ∞ with λ ∈ Λ as long as y �= y′ (see for instance [63]). In the following
lemma we prove a similar statement for the operator ΔX,L on the generalized cone.

Lemma 7.1 If ϕ,ψ ∈ C∞(X) have disjoint supports, then for any differential oper-
ator P that vanishes near ∂M , the operator

ϕP (ΔX,L − λ)−1ψ

is a trace-class operator that vanishes, with all derivatives, to infinite order (in the
trace-class norm) as |λ| → ∞ with λ ∈ Λ.

Proof If we prove this theorem for ψ(ΔX,L − λ)−1P ∗ϕ, then taking adjoints we get
our theorem. Hence, we just have to prove the corresponding statement for ϕ(ΔX,L −
λ)−1Pψ , where Pψ is the operator f �→ P(ψf ). We prove this lemma using the heat
kernel e−tΔX,L , whose structure is found in [54]. To this end, observe that:

(ΔX,L − λ)−1 =
∫ 1

0
etλe−tΔX,L dt + eλ(ΔX,L − λ)−1e−ΔX,L .

Then

ϕ(ΔX,L − λ)−1Pψ =
∫ 1

0
etλϕe−tΔX,LPψdt + eλϕ(ΔX,L − λ)−1e−ΔX,LPψ. (7.1)

Assume for the moment that Λ ⊂ C is contained entirely in the left-half plane (so that
	λ → −∞ as |λ| → ∞ with λ ∈ Λ). Now, the operator e−ΔX,LP is of trace-class and
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(ΔX,L −λ)−1 is a bounded operator which decays like |λ|−1 as |λ| → ∞ with λ ∈ Λ.
Therefore, since the trace-class operators form an ideal within the bounded operators,
the operator

(ΔX,L − λ)−1e−ΔX,LP

is of trace-class and it decays like |λ|−1 as |λ| → ∞ with λ ∈ Λ. Hence,

eλ(ΔX,L − λ)−1e−ΔX,LP

decays exponentially, with all derivatives, in the trace-class operators as |λ| → ∞
with λ ∈ Λ (recall that 	λ → −∞ as |λ| → ∞ with λ ∈ Λ). Therefore, the second
operator in (7.1) decays exponentially in the trace-class operators as |λ| → ∞ with
λ ∈ Λ. By the main theorem of [54] (see also Theorem 4.1 of loc. cit.), since the
supports of ϕ and Pψ are disjoint, it follows that the operator

ϕe−tΔX,LPψ

is a trace-class operator that vanishes to infinite order at t = 0 (within the trace-class
operators). Therefore, the operator

∫ 1
0 etλϕe−tΔX,LPψ dt in (7.1) decays exponen-

tially, with all derivatives, in the trace-class operators as |λ| → ∞ with λ ∈ Λ.
Summarizing: We have proved our theorem when Λ ⊂ C is contained entirely in

the left-half plane (so that 	λ → −∞ as |λ| → ∞ with λ ∈ Λ). Our proof is finished
once we finish the cases when Λ ⊂ C is contained entirely in the upper-half plane and
lower-half plane; for concreteness, let us focus on the upper-half plane. Then we can
fix a complex number a ∈ C with positive real part (and positive imaginary part) such
that a · Λ ⊂ C is entirely contained in the left-half plane. Then one can construct the
heat kernel e−taΔX,L (cf. [51, p. 282–284]) which has the same trace-class properties
as e−tΔX,L as described in [54, Th. 4.1]. Now we proceed as above: Just as we wrote
(7.1), one can check that:

ϕ(ΔX,L − λ)−1Pψ = a

∫ 1

0
etλϕe−taΔX,LPψdt + eaλϕ(ΔX,L − λ)−1e−aΔX,LPψ.

(7.2)
By the choice of a, note that as |λ| → ∞ with λ ∈ Λ, we have 	(aλ) → −∞ as
|λ| → ∞ with λ ∈ Λ. Therefore, analyzing (7.2) by repeating the argument we used
in the previous paragraph to analyze (7.1) proves our lemma in the case when Λ ⊂ C

is contained entirely in the upper-half plane. �

Let us fix 0 < a < R and R < b < ε, and define:

M0 := [a, b] × Γ, M1 := [a,R] × Γ, M2 := [R,b] × Γ.

For j = 0,1,2, let Δj denote the Laplacian on Mj with the Dirichlet boundary condi-
tion at the boundaries of Mj ; see Fig. 5. The importance of the operators Δ0,Δ1,Δ2
is that they are smooth (not singular) Laplace-type operators on compact manifolds
with boundary with local boundary conditions, the properties of which are completely
understood [62, 63]. The idea to prove Theorem 2.5 is to compare the resolvents on
M , X, and Y to those on M0, M1, and M2.
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Fig. 5 The maps Δ0,Δ1,Δ2

Lemma 7.2 The differences of resolvents

S(λ) := (ΔL − λ)−1 − (ΔX,L − λ)−1 − (ΔY − λ)−1

− ((Δ0 − λ)−1 − (Δ1 − λ)−1 − (Δ2 − λ)−1)

is trace-class and vanishes, with all derivatives, to infinite order (in the trace-class
norm) as |λ| → ∞ with λ ∈ Λ.

Proof Let �(r) ∈ C∞(R) be a non-decreasing function such that �(r) = 0 for r ≤
1/4 and �(r) = 1 for r ≥ 3/4. For real numbers α < β , we define �α,β(r) := �( r−α

β−α
).

The main properties of �α,β we will use below are that �α,β(r) = 0 on a neighborhood
of {r ≤ α} and �α,β(r) = 1 on a neighborhood of {r ≥ β}. Let us choose real numbers
a1, a2, b1, b2 such that:

a < a1 < a2 < R < b1 < b2 < b.

We define

ψ1(r) := 1 − �a1,a2(r), ψ2(r) := �b1,b2(r),

ψ0(r) := 1 − ψ1(r) − ψ2(r),

and

ϕ1(r) := 1 − �a2,R(r), ϕ2(r) := �R,b1(r),

ϕ0(r) := 1 − �a,a1(r) − �b2,b(r).

The functions {ψi}, {ϕi} extend either by 0 or 1 to define smooth functions on all of
M and {ψi} forms a partition of unity of M such that ϕi = 1 on supp(ψi). Now to
prove this lemma, we first claim that each of the following equalities holds modulo a
trace-class operator vanishing to infinite order as |λ| → ∞ with λ ∈ Λ:

(ΔL − λ)−1 = ϕ1(ΔX,L − λ)−1ψ1 + ϕ0(Δ0 − λ)−1ψ0 + ϕ2(ΔY − λ)−1ψ2,

(ΔX,L − λ)−1 = ϕ1(ΔX,L − λ)−1ψ1 + ϕ0(Δ1 − λ)−1ψ0, (7.3)

(ΔY − λ)−1 = ϕ0(Δ2 − λ)−1ψ0 + ϕ2(ΔY − λ)−1ψ2.

For instance, let us verify the first claim in (7.3); the other claims are verified using a
similar argument. Define:

Q(λ) := ϕ1(ΔX,L − λ)−1ψ1 + ϕ0(Δ0 − λ)−1ψ0 + ϕ2(ΔY − λ)−1ψ2.
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Then observe that (ΔL − λ)Q(λ) = Id + K(λ) where

K(λ) = [(ΔL − λ),ϕ1](ΔX,L − λ)−1ψ1

+[(ΔL − λ),ϕ0](Δ0 − λ)−1ψ0 + [(ΔL − λ),ϕ2](ΔY − λ)−1ψ2,

where [ , ] denotes the “commutator”. Now, because the supports of

[(ΔL − λ),ϕi] = −[∂2
r , ϕi] = −(ϕ′′

i + 2ϕ′ ∂r)

and ψi are disjoint, it follows that each of the three operators making up K(λ) is trace-
class and vanishes to infinite order (in the trace-class norm) as |λ| → ∞ with λ ∈ Λ;
indeed, this statement for [(ΔL − λ),ϕ1](ΔX,L − λ)−1ψ1 follows from Lemma 7.1
and the statements for [(ΔL −λ),ϕ0](Δ0 −λ)−1ψ0 and [(ΔL −λ),ϕ2](ΔY −λ)−1ψ2
are well known (see, e.g., [63]). Therefore, K(λ) is trace-class and vanishes to infinite
order (in the trace-class norm) as |λ| → ∞ with λ ∈ Λ. Now applying (ΔL −λ)−1 to
both sides of (ΔL − λ)Q(λ) = Id + K(λ), we obtain:

(ΔL − λ)−1 = Q(λ) − (ΔL − λ)−1K(λ),

which establishes our claim for the first equality in (7.3). A similar argument works
to prove that the other equalities in (7.3) hold modulo trace-class with infinite decay
(with all derivatives as |λ| → ∞ with λ ∈ Λ). From (7.3), it follows that modulo
trace-class with infinite decay,

(ΔL − λ)−1 − (ΔX,L − λ)−1 − (ΔY − λ)−1

= ϕ0(Δ0 − λ)−1ψ0 − ϕ0(Δ1 − λ)−1ψ0 − ϕ0(Δ2 − λ)−1ψ0. (7.4)

On the other hand, very similar arguments used to establish (7.3) show that modulo
trace-class with infinite decay:

(Δ0 − λ)−1 = ϕ1(Δ1 − λ)−1ψ1 + ϕ0(Δ0 − λ)−1ψ0 + ϕ2(Δ2 − λ)−1ψ2,

(Δ1 − λ)−1 = ϕ1(Δ1 − λ)−1ψ1 + ϕ0(Δ1 − λ)−1ψ0,

(Δ2 − λ)−1 = ϕ0(Δ2 − λ)−1ψ0 + ϕ2(Δ2 − λ)−1ψ2.

Combining these identities we can write, modulo trace-class with infinite decay,

(Δ0 − λ)−1 − (Δ1 − λ)−1 − (Δ2 − λ)−1

= ϕ0(Δ0 − λ)−1ψ0 − ϕ0(Δ1 − λ)−1ψ0 − ϕ0(Δ2 − λ)−1ψ0.

Comparing this with (7.4) completes the proof of our lemma. �

Using our standard notation, let {λ�} denote the set of all eigenvalues of AΓ and
let E� denote the span of the λ�-th eigenvector. Let Π and Π⊥ denote, respectively,
the orthogonal projections of L2(Γ,EΓ ) onto W := ⊕

− 1
4 ≤λ�<

3
4
E� and W⊥. Using

the isometry between

L2([0,R] × Γ,E) ∼= L2([0,R],L2(Γ,EΓ ))
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where EΓ := E|Γ , we obtain the corresponding projections on L2([0,R] × Γ,E),
which we denote by the same notations Π and Π⊥. Let LL denote the model operator
introduced in Sect. 4 (specifically, Sect. 4.1), and define

Δ′
X := −∂2

r + 1

r2
A′

Γ , where A′
Γ :=

{
3
4 over W ,

AΓ over W⊥.

Proposition 7.3 We have:

(ΔL − λ)−1 = Π(LL − λ)−1Π + Π⊥(Δ′
X − λ)−1Π⊥ + (ΔY − λ)−1

+ (Δ0 − λ)−1 − (Δ1 − λ)−1 − (Δ2 − λ)−1 + S(λ)

where S(λ) is trace-class and vanishes, with all derivatives, to infinite order as
|λ| → ∞ with λ ∈ Λ.

Proof Observe that:

(ΔX,L − λ)−1 = Π(ΔX,L − λ)−1Π + Π⊥(ΔX,L − λ)−1Π⊥,

since ΔX,L preserves W and W⊥, and

Π(ΔX,L − λ)−1Π = Π(LL − λ)−1Π.

Also, observe that:

Π⊥(ΔX,L − λ)−1Π⊥ = Π⊥(Δ′
X − λ)−1Π⊥.

Hence,

(ΔX,L − λ)−1 = Π(LL − λ)−1Π + Π⊥(Δ′
X − λ)−1Π⊥.

Now solving for (ΔL − λ)−1 in Lemma 7.2, we obtain:

(ΔL − λ)−1 = (ΔX,L − λ)−1 + (ΔY − λ)−1

+ (Δ0 − λ)−1 − (Δ1 − λ)−1 − (Δ2 − λ)−1 + S(λ)

= Π(LL − λ)−1Π + Π⊥(Δ′
X − λ)−1Π⊥ + (ΔY − λ)−1

+ (Δ0 − λ)−1 − (Δ1 − λ)−1 − (Δ2 − λ)−1 + S(λ)

where S(λ) is trace-class and vanishes, with all derivatives, to infinite order as
|λ| → ∞ with λ ∈ Λ. This completes our proof. �

We can now prove Theorem 2.5. Let N ≥ n
2 with n = dimM . Then taking N

derivatives of both sides of the preceding equality we see that

(ΔL − λ)−N−1 = Π(LL − λ)−N−1Π + Π⊥(Δ′
X − λ)−N−1Π⊥

+ (ΔY − λ)−N−1 + (Δ0 − λ)−N−1 − (Δ1 − λ)−N−1

− (Δ2 − λ)−N−1 + S(N)(λ), (7.5)
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where S(N)(λ) = dN

dλN S(λ). We now analyze each term on the right. First, taking N

derivatives in the asymptotic expression of Proposition 6.2, we know that as |λ| → ∞
with λ ∈ Λ we have:

Tr(LL − λ)−N−1 ∼
∞∑

k=0

bk(−λ)
1−k

2 −N−1 + 1

N !
dN

dλN

{
q0 − j0

(−λ)(log(−λ) − 2γ̃ )

}

− 1

N !
dN+1

dλN+1

{∑
2�c�ξ (−λ)−ξ (2γ̃ − log(−λ))−�

}
. (7.6)

It follows from [48] that the operator Π⊥(Δ′
X − λ)−N−1Π⊥ is trace-class and

Tr(Π⊥(Δ′
X − λ)−N−1Π⊥) ∼

∞∑
k=0

ck(−λ)
n−k

2 −N−1 + b(−λ)−N−1 log(−λ); (7.7)

in principle (see [51, Chap. 7]), one can derive this resolvent expansion with a lot of
work from the corresponding heat kernel expansion [4, 5, 11, 12]. From the work of
Seeley [63], we also know that each of (ΔZ − λ)−N−1, where Z = Y,0,1,2, is trace
class, and

Tr((ΔZ − λ)−N−1) ∼
∞∑

k=0

cZ,k(−λ)
n−k

2 −N−1. (7.8)

Finally, we know that S(N)(λ) is trace-class and vanishes, with all derivatives, to
infinite order as |λ| → ∞ with λ ∈ Λ. In conclusion, in view of the expression (7.5)
and our discussions around (7.6), (7.7) and (7.8), we see that (ΔL − λ)−N−1 is trace-
class, and

Tr(ΔL − λ)−N−1 ∼
∞∑

k=0

ak(−λ)
n−k

2 −N−1 + b(−λ)−N−1 log(−λ)

+ 1

N !
dN

dλN

{
q0 − j0

(−λ)(log(−λ) − 2γ̃ )

}

− 1

N !
dN+1

dλN+1

{∑
2�c�ξ (−λ)−ξ (2γ̃ − log(−λ))−�

}
.

This completes the proof of Theorem 2.5. Theorem 2.6 is established by replacing
the trace expansion (7.6) with the trace expansion found in Proposition 6.3.

7.2 Proofs of Theorems 2.1, 2.3, 2.4

We now prove the ζ -function theorem. We start off with Proposition 7.3, which states
that:

(ΔL − λ)−1 = Π(LL − λ)−1Π + Π⊥(Δ′
X − λ)−1Π⊥ + (ΔY − λ)−1

+ (Δ0 − λ)−1 − (Δ1 − λ)−1 − (Δ2 − λ)−1 + S(λ)
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where S(λ) is trace-class and vanishes, with all derivatives, to infinite order as |λ| →
∞ with λ ∈ Λ. Therefore, by the definition of the ζ -function:

ζ(s,ΔL) := Tr(Δ−s
L P ⊥

0 ),

Tr(Δ−s
L P ⊥

0 ) =
∑
λ�<0

λ−s
� +

∫
	λ=δ

λ−s(ΔL − λ)−1dλ,

where P0 is the orthogonal projection onto kerΔL and δ > 0 is any positive num-
ber sufficiently small so that the spectrum of ΔL intersected with (0, δ] is empty, it
follows that

ζ(s,ΔL) ≡ ζ(s,LL)+ ζ(s,Δ′
X)+ ζ(s,ΔY )+ ζ(s,Δ0)− ζ(s,Δ1)− ζ(s,Δ2) (7.9)

modulo an entire function. The ζ -function ζ(s,LL) is studied thoroughly in Propo-
sition 5.2. Also, by the standard relation between the asymptotics of the resolvent
and the poles of the ζ -function (see e.g. [31]) it follows from the resolvent expan-
sions (7.7) and (7.8) that ζ(s,Δ′

X), ζ(s,ΔY ), ζ(s,Δ0), ζ(s,Δ1), and ζ(s,Δ2) have
the “regular" poles at the “usual” locations s = n−k

2 /∈ −N0 for k ∈ N0 and, only for
ζ(s,Δ′

X), at s = 0 if dimΓ > 0. These facts together with Proposition 5.2 prove The-
orem 2.1. Note that Theorems 2.3 and 2.4 follow from applying Proposition 5.5 and
Corollary 5.6 to ζ(s,LL) in (7.9).

7.3 Proof of Theorems 2.7 and 2.8

Finally, it remains to prove the heat expansion. As with the proof for the ζ -function,
we start off with Proposition 7.3:

(ΔL − λ)−1 = Π(LL − λ)−1Π + Π⊥(Δ′
X − λ)−1Π⊥ + (ΔY − λ)−1

+ (Δ0 − λ)−1 − (Δ1 − λ)−1 − (Δ2 − λ)−1 + S(λ)

where S(λ) is trace-class and vanishes, with all derivatives, to infinite order as
|λ| → ∞ with λ ∈ Λ. Then by the definition of the heat operator:

e−tΔL := i

2π

∫
Ch

e−tλ(ΔL − λ)−1dλ,

where Ch is a contour as in Fig. 4, it follows that

e−tΔL = Πe−tLLΠ + Π⊥e−tΔ′
XΠ⊥ + e−tΔY

+ e−tΔ0 − e−tΔ1 − e−tΔ2 + T (t)

where T (t) is trace-class and smooth at t = 0. Hence,

Tr(e−tΔL) = Tr(e−tLL) + Tr(e−tΔ′
X) + Tr(e−tΔY )

+ Tr(e−tΔ0) − Tr(e−tΔ1) − Tr(e−tΔ2)
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modulo a function that is smooth at t = 0. The heat trace Tr(e−tLL) is studied thor-
oughly in Proposition 6.4 and for decomposable Lagrangians in Proposition 6.5.
Also, by the standard relation between the asymptotics of the resolvent and the heat
trace expansion (see e.g. [31] or Sect. 6.2) it follows from the resolvent expansions
(7.7) and (7.8) that Tr(e−tΔ′

X), Tr(e−tΔY ), Tr(e−tΔ0), Tr(e−tΔ1) and Tr(e−tΔ2) have
the “regular” expansion except that Tr(e−tΔ′

X) may have a log t term if dimΓ > 0.
These facts together with Propositions 6.4 and 6.5 prove Theorems 2.7 and 2.8.

Acknowledgements Boris Vertman was supported by the Graduiertenkolleg 1269 “Globale Strukturen
in Geometrie und Analysis”.

Appendix A: The Contour-Integral Method on a Bounded Generalized Cone

The goal of the Appendix is to verify the validity of the contour integration method
in the setup of a bounded generalized cone:

Proposition A.1 Let L be any fixed Lagrangian and LL the associated self-adjoint
realization of the Laplacian L. For C being the contour in Fig. 1 we have

ζ(s,LL) = 1

2πi

∫
C

μ−2s d

dμ
logF(μ)dμ, 	s >

1

2
.

Remark A.2 The integral representation of the zeta-function above is formally an
application of the Argument Principle. However the contour C is not closed, so the
asymptotic behavior of the implicit eigenvalue function F(z) needs to be analyzed.

Proof Fix an angle θ ∈ (0,π/2) and put Ω := {z ∈ C||arg(z)| ≤ θ}. Then [1,
9.2.1,9.2.2] but also [27, 8.451] provide the standard asymptotic behavior of Bessel
functions as |z| → ∞, z ∈ Ω . Inserting these asymptotics into the definition of F(z)

in Proposition 4.2 we obtain the following uniform expansion:

F(z) =
q1∏
l=1

{
2−νl�(1 − νl)z

νl−1/2

√
2

πR
cos

(
zR + νlπ

2
− π

4

)}

×
{√

2

πzR
(γ̃ − log z) cos

(
zR − π

4

)}q0

· detM(z).

Here the matrix M(z) is given as follows:

M(z) =
( A B

b(z) · Idq0 0 c(z) · Idq0 0
0 diag[a+

l (z)] 0 diag[a−
l (z)]

)
,

where for l = 1, . . . , q1 we have

a+
l (z) = 22νl

�(1 + νl)

�(1 − νl)
z−2νl

cos(zR − νlπ
2 − π

4 )

cos(zR + νlπ
2 − π

4 )
·
(

1 + f +
l (z)

cos(zR − νlπ
2 − π

4 )

)
,
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a−
l (z) = 1 + f −

l (z)

cos(zR + νlπ
2 − π

4 )
, b(z) = 1

γ̃ − log z
·
(

1 + fb(z)

cos(zR − π
4 )

)
,

c(z) = 1 + fc(z)

cos(zR − π
4 )

,

and the functions f ±
l (z) and fb(z) with their derivatives are of the asymptotics

e|�(zR)|O(1/|z|) as |z| → ∞, z ∈ Ω . The function fc(z) and its derivative are of the
asymptotics e|�(zR)|O(1/| log z|) as |z| → ∞, z ∈ Ω . Similar calculations are pro-
vided in [65, Sect. 4.2].

Next put for the fixed angle θ ∈ (0,π/2) and any a ∈ R
+:

δ(a) := {z ∈ C|	z = a, | arg(z)| ≤ θ},
ρ(a) := {z ∈ C||z| = a/ cos(θ), | arg(z)| ∈ [θ,π/2]},
γ (a) := δ(a) ∪ ρ(a),

where the contour γ (a) is oriented counter-clockwise. The logarithmic form of the
asymptotics in Proposition 4.3 together with the symmetry of the implicit eigenvalue
function F(z), imply for 	s > 1/2:∫

ρ(an)

z−2s d

dz
logF(z)dz

n→∞−→ 0, (A.1)

for any sequence (an)n∈N of positive real numbers with an → ∞ as n → ∞. Thus it
remains to find a sequence (an)n∈N ⊂ R

+ which goes to infinity and further ensures
that ∫

δ(an)

z−2s d

dz
logF(z)dz

n→∞−→ 0, (A.2)

where for each n ∈ N the integral is well-defined. In order to construct such a se-
quence, fix a > 0 subject to the following conditions

cos

(
aR − π

4

)
�= 0, cos

(
aR ± νlπ

2
− π

4

)
�= 0, l = 1, . . . , q1. (A.3)

Such a choice is always possible, due to discreteness of zeros of the meromorphic
functions. Given such an a > 0, we define

Δ(a) :=
⋃
k∈N

δ

(
a + 2π

R
k

)
.

Observe for any ξ ∈ R that cos(zR + ξ) = e|�(zR)|O(1) as |z| → ∞, z ∈ Δ(a), where
the asymptotic term O(1) is bounded with the bounds depending only on the sign of
�z, a > 0 and ξ ∈ R. Putting α = (α1, . . . , αq1) ∈ {0,1}q1, q1 = q − q0, we obtain for
the asymptotic behavior of detM(z) as |z| → ∞, z ∈ Δ(a):

detM(z) =
q0∑

j=0

∑
α∈{0,1}q1

q∑
β=0

const(j,α,β,L)

[
1

γ̃ − log z

]j
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×
q1∏
l=1

[
z−2νl

cos(zR − νlπ
2 − π

4 )

cos(zR + νlπ
2 − π

4 )

]αl

· [1 + fj,α,β(z)
]
, fj,α,β(z)

= O

(
1

| log z|
)

,

where the derivative f ′
j,α,β(z) is of the asymptotics O(1/| log z|) as |z| → ∞, z ∈

Δ(a).
Next we make the following auxiliary observation. Under the condition (A.3) on

the choice of a > 0, there exist constants C1 > 0 and C2 > 0, depending only on a,
such that for z ∈ Δ(a) and for all l = 1, . . . , q1 we have:

C1 ≤
∣∣∣∣cos(zR − νlπ

2 − π
4 )

cos(zR + νlπ
2 − π

4 )

∣∣∣∣≤ C2. (A.4)

Further details are provided in [65, Sect. 4.2]. In particular the cosine terms in
detM(z) are not relevant for its asymptotic behavior as |z| → ∞, z ∈ Δ(a). Now
let us consider the summands in detM(z) of slowest decrease as |z| → ∞, z ∈ Δ(a):

[
1

γ̃ − log z

]j0

z−α0 ·
{

q∑
β=0

∑
α∈I

const(j0, α0, β,L)

q1∏
l=1

[
cos(zR − νlπ

2 − π
4 )

cos(zR + νlπ
2 − π

4 )

]αl

}

=:
[

1

γ̃ − log z

]j0

z−α0g(z),

I :=
{

α

∣∣∣∣
q1∑
l=1

2νlαl = α0

}
,

where the coefficients j0, α0 correspond to those in (2.2). By similar arguments as
behind (A.4), see also [65, Sect. 4.2], we can choose a > 0 sufficiently large, still
subject to the condition (A.3), such that there exist constants C′

1 > 0 and C′
2 > 0,

depending only on a > 0 and for z ∈ Δ(a)

C
′
1 ≤ |g(z)| ≤ C

′
2. (A.5)

Moreover (A.4) implies that |g′(z)| is bounded above for z ∈ Δ(a). For q = q0 we
simply put g(z) ≡ 1 and the bounding statements on g(z), g′(z) are then trivial. Using
(A.5) we finally obtain for detM(z) as |z| → ∞, z ∈ Δ(a)

detM(z) =
[

1

γ̃ − log z

]j0 g(z)

zα0

(
1 +

[ 1
γ̃−log z

]j0 g(z)
zα0 · O(1/| log(z)|) + · · ·

[ 1
γ̃−log z

]j0 g(z)
zα0 + · · ·

)

=
[

1

γ̃ − log z

]j0

z−α0g(z)(1 + f (z)), f (z) = O(1/| log(z)|),

where the dots denote terms that decrease faster than the corresponding leading terms,
as |z| → ∞, z ∈ Δ(a). Using the asymptotics of fj,α,β(z), the observation (A.4) and
boundedness of g(z), g′(z), we find that f ′(z) = O(1/| log z|).
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In total we have derived the asymptotic behavior of F(z) as |z| → ∞, z ∈ Δ(a):

F(z) =
q1∏
l=1

{
2−νl�(1 − νl)z

νl−1/2

√
2

πR
cos

(
zR + νlπ

2
− π

4

)}

×
{√

2

πzR
(γ̃ − log z) cos

(
zR − π

4

)}q0
[

1

γ̃ − log z

]j0

× z−α0g(z)(1 + f (z)),

where there exist positive constants C′
1,C

′
2,C

′′, depending only on a > 0, such that for
z ∈ Δ(a) we have C′

1 ≤ |g(z)| ≤ C′
2, |g′(z)| ≤ C′′ and f (z) = O(1/| log z|), f ′(z) =

O(1/| log z|) as |z| → ∞, z ∈ Δ(a).
Note that for N ∈ N sufficiently large, the asymptotics above, together with the

conditions (A.3) and (A.5), imply that F(a + 2πk/R) �= 0 for all k ∈ N, k ≥ N . Put
an := a + 2π(N + n)/R,n ∈ N. Then we infer from the asymptotics of F(z) above,
that for 	s > 1/2 ∫

δ(an)

z−2s d

dz
logF(z)dz

n→∞−→ 0, (A.6)

where by construction for each n ∈ N we have F(an) �= 0, and hence the integrals are
well-defined. Together with (A.1) this finally proves the statement of the proposition
by an application of the Argument Principle. �
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