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Abstract. Combining elements of the b-calculus and the theory of elliptic
boundary value problems, we solve the gluing problem for b-determinants of
Dirac type operators on manifolds with cylindrical ends. As a corollary of
our proof, we derive a gluing formula for the b-eta invariant and also a rel-
ative invariant formula relating the b-spectral invariants on a manifold with
cylindrical end to the spectral invariants with the augmented APS boundary
condition on the corresponding compact manifold with boundary.

1. Introduction

Two central objects of study in the spectral geometry of Dirac operators are
the eta invariant and ζ-determinant. In particular, the behavior of eta invariants
under “gluing” or “surgery” of the underlying manifolds has enjoyed great research
activity within the past several years, cf. Brüning and Lesch [5], Bunke [7], Dai
and Freed [11], Hassell, Mazzeo, and Melrose [16, 17], Kirk and Lesch [19], Loya
and Park [25], Mazzeo and Melrose [28], Müller [31], Park and Wojciechowski [34],
Wojciechowski [43, 44]; see the survey articles by Bleecker and Booß-Bavnbek [3]
and Mazzeo and Piazza [29]. The gluing problem for the ζ-determinant of Laplace
type operators was pioneered by Burghelea, Friedlander, and Kappeler [8] and has
been further developed by Carron [10], Hassell [15], Hassell and Zelditch [18], Lee
[20], Loya and Park [24], Vishik [42], and others. However, only recently was the
gluing problem for the ζ-determinant of Dirac type operators solved for closed
manifolds by the authors in [25]. The purpose of this paper is to extend this result
to manifolds with cylindrical end. To accomplish this we enhance our technique
initiated in [24, 25] with Melrose’s b-calculus [30] in order to circumvent many new
features and difficulties not found in the compact case, especially in connection to
the presence of continuous spectrum. The technical advantage of this approach
is that we can derive the corresponding gluing formula for the eta invariant as a
simple byproduct of our ζ-determinant proof; this is because the gluing formulas
of these two invariants represent just two facets (the phase and modulus) of one
spectral data.

The set up of our problem is as follows. Let X be a n-dimensional Riemannian
manifold with a cylindrical end, that is, we have a decomposition

X = M ∪ Z,
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where M is a compact manifold with boundary Y and Z = [0,∞)×Y is a half infi-
nite cylinder. We also assume that M has a tubular neighbourhood N = [−1, 0]×Y
of Y . Let D be a Dirac type operator acting on C∞(X, S) where S is a Clifford
bundle over X. We assume that all geometric structures are of product type over
Ẑ := N ∪Z = [−1,∞)u× Y , where u is the cylindrical variable; in particular, over
Ẑ, the Dirac operator takes the product form

D = G(∂u + DY ),

where G is a unitary map on S0 := S|Y and DY is a Dirac type operator acting on
C∞(Y, S0) such that G2 = −Id and DY G = −GDY . Then

D : H1(X, S) −→ L2(X, S)

is self-adjoint and has a finite-dimensional kernel, but in general is not Fredholm,
and even worse, has continuous spectrum equal to all of R! At this point, it is
worth mentioning that the study of Dirac operators on manifolds with cylindrical
ends has intensified since the publication of Atiyah, Patodi, and Singer’s seminal
paper [1] and after Melrose’s [30] recasting of their index theorem in terms of his
b-calculus.

We now discuss the spectral invariants — the eta invariant and ζ-determinant.
Consider first the case of the compact manifold with boundary M . In order to
define the spectral invariants for this case, we need to impose pseudodifferential
boundary conditions at Y . A natural choice is the Calderón projector PM [9],
which is the orthogonal projector onto the closure in L2(Y, S0) of the Cauchy data
space of the restriction of D to M :

{φ |Y | φ ∈ C∞(M, S) , Dφ = 0 } ⊂ C∞(Y, S0).

Then, imposing boundary condition given by PM for D|M , we obtain a self adjoint
Fredholm operator,

(1.1) DPM
: dom(DPM

) −→ L2(M, S),

where dom(DPM ) := {φ ∈ H1(M, S) | PM (φ |Y ) = 0 }. The η-function of DPM and
the ζ-function of D2

PM
are defined through the heat operator e−tD2

PM via

(1.2) ηDPM
(s) =

1
Γ( s+1

2 )

( ∫ 1

0

+
∫ ∞

1

)
t

s−1
2 Tr(DPM

e−tD2
PM ) dt,

(1.3) ζD2
PM

(s) =
1

Γ(s)

( ∫ 1

0

+
∫ ∞

1

)
ts−1 Tr(e−tD2

PM ) dt,

where the integrals
∫ 1

0
are defined a priori for <s À 0 and the integrals

∫∞
1

a priori
for <s ¿ 0 respectively and both of which extend to be meromorphic functions on
C that are regular at s = 0, see Grubb [13], [14] and Wojciechowski [44]; in this
case, the second integrals are actually entire, but we present these general definition
because these work later for b-eta invariants and b-zeta determinant. Then the eta
invariant of DPM

is defined by

η(DPM ) := ηDPM
(0),

and the ζ-determinant of D2
PM

is defined by

(1.4) detζD2
PM

:= exp
(
− d

ds

∣∣∣
s=0

ζD2
PM

(s)
)
.
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The eta invariant was introduced in Atiyah, Patodi, and Singer’s paper [1] as the
boundary correction term in their index formula for manifolds with boundary and
the ζ-determinant was introduced by Ray and Singer in [35] in their study of ana-
lytic torsion.

For the noncompact manifold with cylindrical end X, the heat operators De−tD2

and e−tD2
are not of trace class. In particular, the definitions (1.2) and (1.3) cannot

be used directly to define the corresponding η-function for D and ζ-function for D2.
There are two main routes that one can follow to make sense of these invariants.
One way is to define so-called relative invariants as in Bruneau [6], Carron [10],
and Müller [32], and others, whereby we subtract off certain operators that make
the difference of the heat operators trace class. However, we shall follow Melrose’s
path using the b-trace [30], bTr, which is a natural substitute for the trace. In
particular, De−tD2

and e−tD2
are b-trace class. Moreover, bTrDe−tD2

and bTr e−tD2

have asymptotic expansions in half-integer powers of t as t → 0 and t → ∞. It
follows that the bη-function bηD(s) and bζ-function bζD2(s) can be defined exactly
as in the formulas (1.2) and (1.3), respectively, where we replace DPM with D
and Tr with bTr. Furthermore, bηD(s) and bζD2(s) extend to define meromorphic
functions on C that are regular at s = 0, so we can define the b-eta invariant of
D by bη(D) := bηD(0) and the b-determinant of D2, detbζD2, by the formula (1.4)
using bζD2(s). An introduction to the b-trace is presented in Section 2.

We now discuss the b-spectral invariants on Z, having discussed the spectral
invariants on the whole manifold X and its compact part M . Because Z = [0,∞)×
Y is a manifold with boundary, we need to impose boundary conditions. With this
in mind, we ask: What is the natural boundary condition? The answer is to look
at the “Cauchy data space” of D over the whole manifold X:

{φ |Y | φ ∈ C∞(X,S) , Dφ = 0 } ⊂ C∞(Y, S0).

It turns out (see [30, 31]) that an element ψ of this space is the restriction ψ = φ |Y
of an L2 section φ over X if and only if

(
Π< + Id+σ

2 Π0

)
ψ = 0, where Π< is the

orthogonal projection onto the eigenspaces of DY with negative eigenvalues, Π0

is the orthogonal projection onto ker(DY ), and where σ is the unitary map on
ker(DY ) such that σ2 = Id and σG = −Gσ determined by the scattering matrix.
(Let us note that we have PMΠ0 = Id+σ

2 Π0 by definition of PM .) For more details
about the scattering matrix, we refer to [30, Ch. 6], [31, Sec. 4]. For this reason,
the natural projection on Z is

PZ := Π> +
Id− σ

2
Π0

where Π> is the orthogonal projection onto the eigenspaces of DY with positive
eigenvalues. We can now define

DPZ : dom(DPZ ) −→ L2(Z, S),

where dom(DPZ ) := {φ ∈ H1(Z, S) | PZ(φ |Y ) = 0 }. Using the b-trace, we can
define the b-spectral invariants bη(DPZ ) and detbζD2

PZ
.

We now have all the ingredients necessary to state the gluing problem for our
manifold. The gluing problem is to describe the “defects”

detbζD2

detζD2
PM

· detbζD2
PZ

= ? , bη(D)− η(DPM )− bη(DPZ ) = ?
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in terms of recognizable data. Before describing our solution, we first introduce
some natural operators. The Calderón projectors PM and PZ have the following
matrix forms [37]:

(1.5) PM =
1
2

(
Id κ−1

M

κM Id

)
, PZ =

1
2

(
Id κ−1

Z

κZ Id

)

with respect to the decomposition L2(Y, S0) = L2(Y, S+) ⊕ L2(Y, S−) where S±

are the subbundles of S0 equal to the ±i eigenspaces of G, and where κM and κZ

are isometries from L2(Y, S+) onto L2(Y, S−). In particular, the operator U :=
−κMκ−1

Z is a unitary operator over L2(Y, S−). We denote by Û the restriction of
U to the orthogonal complement of its (−1)-eigenspace. We also put

(1.6) L :=
hX∑

k=1

γ0Uk ⊗ (γ0Uk)∗

where hX = dimkerL2(D) (the L2-kernel of D), γ0 is the restriction map from X
to Y , {Uk} is an orthonormal basis of kerL2(D), and (γ0Uk)∗ := 〈 · , γ0Uk〉Y where
〈 · , · 〉Y is the inner product on L2(Y, S0). Then L is a positive operator on the
finite-dimensional vector space γ0(kerL2(D)). The following theorem is our first
main result.

Theorem 1.1. The following ζ-determinant gluing formula holds:

detbζD2

detζD2
PM

· detbζD2
PZ

= 2
−ζ

D2
Y

(0)−hY(detL)−2 detF

(2Id + Û + Û−1

4

)

where ζD2
Y
(s) is the ζ-function of D2

Y , hY = dim ker(DY ), and detF denotes the
Fredholm determinant.

This formula appears the same as the gluing formula in the compact case [25],
which may seem quite remarkable due to the decidedly nontrivial issue of the con-
tinuous spectrum of D. One of the main accomplishments of this paper is the
analysis of this issue relying in part on certain “miraculous cancellations”, see Sec-
tion 6. The proof of Theorem 1.1 is achieved through two crucial ingredients. The
first is the introduction of an operator K(λ) that links the Cauchy data spaces of
D−λ on the two parts M and Z of X with the resolvents (D−λ)−1, (DPM

−λ)−1,
(DPZ

− λ)−1. The next component is to compare these objects on X with corre-
sponding objects, K̂(λ) and resolvents, for an auxiliary model problem on Ẑ. The
model gluing problem for the partition of Ẑ into N and Z is explicitly solvable (cf.
[26]), and this facilitates the derivation of our gluing formula with no undetermined
constants. This model problem also enables us to establish the trace class nature
of the differences of the resolvents on X and Ẑ.

We can recast the formula in Theorem 1.1 in various ways. For example, some
computations (see Section 2) show that detbζD2

PZ
= 2

1
2 ζ

D2
Y

(0)
, so after substituting

this equality into our main theorem, we can obtain another version of our formula
without the detbζD2

PZ
term. We can get another recasting of our theorem in terms of

the relative ζ-determinant. One can show that detbζD2/detbζD2
PZ

= detζ(D2,D2
PZ

),
the relative ζ-determinant of the pair (D2,D2

PZ
), so that our main formula can be

written with the relative ζ-determinant on the left-hand side. As byproduct of our
proof of Theorem 1.1, we also obtain the gluing formula for the eta invariant.
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Corollary 1.2 (of proof). The following eta invariant gluing formula holds:

bη̃(D)− η̃(DPM
)− bη̃(DPZ

) = bη̃(D)− η̃(DPM
) =

1
2πi

log detF U mod Z

where the tildes denote reduced invariants, e.g. bη̃(D) = (bη(D) + dim kerL2(D))/2.

The second aim of this paper is to study the relative invariant problem (cf. [27],
[37], [36]). Recall that PZ is the natural choice of the projection on the cylinder.
This suggests that the natural boundary projector on M taking into consideration
the infinite cylinder should be

Pσ := Π< +
Id + σ

2
Π0,

instead of the Calderón projector PM . The projector Pσ is called the augmented
APS spectral projector (cf. [17]) and it plays the central role in the gluing problem
of the eta invariant in several of the aforementioned works. We can define DPσ on
M just as we defined DPM

in (1.1). The relative invariant problem is to describe
the “defects”

detbζD2

detζD2
Pσ

= ? , bη(D)− η(DPσ
) = ?

in terms of recognizable data. The following theorem solves this problem for the
ζ-determinant.

Theorem 1.3. The following relative ζ-determinant formula holds:

detbζD2

detζD2
Pσ

= 2
− 1

2 ζ
D2

Y
(0)−hY

(
detL

detLPσ

)−2

,

where LPσ is defined by (1.6) but with {Uk} an orthonormal basis for ker(DPσ ).

As a byproduct of our proof of Theorems 1.1 and 1.3, we also obtain the corre-
sponding formula for the eta invariant.

Corollary 1.4 (of proof). The following formula holds:
bη(D) = η(DPσ ) mod 2Z.

Thus, the b-eta invariant of D and the eta invariant of DPσ are the same modulo
2Z while the ζ-determinants differ by terms on Y and the global data given by the
kernels of D and DPσ . Because the ζ-determinant is highly nonlocal, one would not
expect the ratio to be unity, and one might even conjecture that the ratio involves
some globally defined objects. This is indeed the case as shown in Theorem 1.3.
In the case of compatible Dirac operators, a similar formula for the eta invariant
with DP−σ and without the integer ambiguity was first proved by Müller [31] using
a completely different method.

We now outline our paper. In Section 2, we review some basic material of the
b-trace that is needed to define the b-spectral invariants. With some technical
computations, we also obtain the explicit values of the b-spectral invariants over Z.
In Section 3, we explain the basic theory of elliptic boundary problems for our Dirac
type operator and we introduce the auxiliary model problem over Ẑ. In Section 4
we analyze and examine the structure of the resolvents of our Dirac type operators
and in Section 5, we relate K(λ) and K̂(λ) with the relative trace of the resolvents.
This relation is one of the main ingredients in our proofs of the main results. In
Section 6, we study the asymptotics of detF (K(λ)K̂(λ)−1) for small and large λ.
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In Section 7, we express the relative b-spectral invariants in terms of resolvents.
Finally, in Section 8, we prove the main theorems of this paper combining the
results proved in the previous sections.

The authors express their sincere gratitude to the referee for his or her kind
words and very helpful suggestions, which greatly encouraged us in our research
and helped us to improve the exposition of this paper.

2. The b-trace and the spectral invariants for the cylinder

In this section, we give an elementary introduction to Melrose’s b-trace [30]. We
continue to use the same notation set up in the introduction.

To understand the need for the b-trace, we first describe the restriction of the
heat operator e−tD2

to the cylindrical part Z = [0,∞)u × Y . Restricting the heat
kernel, defined in the spatial variables over all of X2, to the product cylinder Z2,
one can show that (see [30, Ch. 7])

e−tD2
(u, u′, y, y′) =

1√
4πt

e−(u−u′)2/4te−tD2
Y + H(t, u, u′, y, y′),

where, for fixed t > 0, H(t, u, u′, y, y′) = O(e−u/2 e−u′/2) and where the (un)primed
coordinates are the coordinates on the (left)right factor of Z2. Restricting this
Schwartz kernel to the diagonal in Z2 and taking the fiber-wise trace, we obtain

(2.1) tr e−tD2 |Diag =
1√
4πt

tr e−tD2
Y (y, y) + tr H(t, u, u, y, y).

Observe that H(t, u, u, y, y) = O(e−u), which is integrable on the infinite cylinder
Z, but the first term is constant with respect to u, so is not integrable on the infinite
cylinder. In particular, the heat trace defined via the Lidskĭı [22] trace formula is
not defined. This shows that in order to develop heat kernel methods on manifolds
with cylindrical ends, another notion of “trace” is needed. One such notion is the
b-trace introduced by Melrose [30] and is described as follows. Let φ be a locally
integrable function on X and suppose that on the infinite cylinder Z, we can write
φ(u, y) = ϕ(y)+ψ(u, y) where ϕ(y) is constant in u and ψ(u, y) is integrable. Then
the function ϕ(y) is exactly the obstruction to φ being integrable on X. We define
the b-integral of φ by simply omitting this obstruction:

b

∫

X

φ :=
∫

M

φ +
∫

Z

ψ(u, y) du dy,

where dy is the measure on Y , and we say that φ is b-integrable. From the decom-
position (2.1), we see that tr e−tD2 |Diag is b-integrable. We define the b-trace of the
heat operator e−tD2

via the following “b-Lidskĭı formula”:

bTr(e−tD2
) := b

∫

X

tr e−tD2 |Diag.

The b-trace of the heat operator has the long time asymptotic expansion (see [30,
Sec. 7.8] or [15, Appendix])

(2.2) bTr(e−tD2
) ∼

∞∑

k=0

bk t−
k
2 as t →∞,
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where b0 = hX with hX = dim kerL2(D). Also, there is the usual short time
asymptotic expansion (see [30]):

(2.3) bTr(e−tD2
) ∼

∞∑

k=0

ak tk−
n
2 as t → 0,

where n = dimX and the pointwise trace of the heat kernel on the diagonal also
has such an expansion. Using (2.2) and (2.3), a straightforward computation shows
that

bζD2(s) =
1

Γ(s)

( ∫ 1

0

+
∫ ∞

1

)
ts−1 bTr(e−tD2

) dt,

where the first integral is defined a priori for <s À 0 and the second one for <s ¿ 0,
extends to be a meromorphic function on C that is regular at s = 0. This shows
that log detbζ(D2) := − d

ds
bζD2(s)

∣∣
s=0

is well-defined. The b-trace of De−tD2
has a

related long time expansion (see [30, Ch. 9.7]):

(2.4) bTr(De−tD2
) ∼

∞∑

k=0

b̃k t−1− k
2 as t →∞.

There is the short time asymptotic expansion of the same form as (2.3) (this follows
from [23, Cor. 6.20]; cf. also Müller [31, Lem. 1.17]):

(2.5) bTr(De−tD2
) ∼

∞∑

k=0

ãk tk−
n
2 as t → 0;

as before, n = dimX and the pointwise trace of the heat kernel on the diagonal
also has such an expansion. Using (2.4) and (2.5), one can show that

bηD(s) =
1

Γ( s+1
2 )

( ∫ 1

0

+
∫ ∞

1

)
t

s−1
2 bTr(De−tD2

) dt,

where the first integral is defined a priori for <s À 0 and the second one for <s ¿ 0,
extends to be a meromorphic function on C that is regular at s = 0, as long as n
is even. If n is odd and D is compatible, then the expansion (2.5) starts at t1/2 [30,
Sec. 8.13], so for the case of compatible Dirac operators, bηD(s) is also regular at
s = 0. Here, the Dirac operator D is compatible if D = c · ∇ where c(·) is Clifford
multiplication on T ∗X and ∇ is a unitary connection on S (of product type on the
cylinder Ẑ = [−1,∞)u × Y ) such that for φ ∈ C∞(X, T ∗X) and ψ ∈ C∞(X,S),

∇(c(φ)ψ) = c(∇LCφ)ψ + c(φ)∇ψ

where ∇LCφ is the Levi-Civita connection. In Theorem 7.4, we show that bηD(s)
is regular at s = 0 for any n and general Dirac type operators. In all cases,
bη(D) := bηD(0) is well-defined.
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We can also apply the b-trace to the heat operator e−tD2
PZ over Z. In this case,

if {(µk, ϕk)} is the spectral resolution of DY , then we know that [1], [4]

e−tD2
PZ =

∑
µk>0

e−tµ2
k√

4πt

[
e−(u−u′)2/4t − e−(u+u′)2/4t

]
ϕk(y)⊗ ϕk(y′)

+
∑

µk>0

{
e−tµ2

k√
4πt

[
e−(u−u′)2/4t + e−(u+u′)2/4t

]

− µk eµk(u+u′)erfc
(

u + u′

2
√

t
+ µk

√
t

)}
Gϕk(y)⊗Gϕk(y′)

+ Π0
1√
4πt

{
e−(u−u′)2/4t + σ e−(u+u′)2/4t

}
Π0.

(2.6)

Using this formula, we can prove the following

Lemma 2.1. bηDPZ
(s) = 0 for all s ∈ C; in particular, bη(DPZ

) = 0.

Proof. Since
[
∂ue−t(u−u′)2/4t

]|u=u′ = 0, using the explicit formula for e−tD2
PZ in

(2.6) and the fact that D = G(∂u + DY ), we obtain

(De−tD2
PZ )

∣∣∣
u=u′,y=y′

=
∑

µk>0

fk Gϕk(y)⊗ ϕk(y) + gk ϕk(y)⊗Gϕk(y)

−
∑

µk=0

1√
4πt

1
2t

Gσe−u2/tϕk(y)⊗ ϕk(y)

for some scalar functions fk, gk whose exact forms are not important. Since Gϕk

and ϕk are orthogonal and since Gσ = −σG, it follows that

TrY Gϕk ⊗ ϕk = TrY ϕk ⊗GϕY = TrY Gσ = 0,

where TrY is the trace over Y . This implies that TrY (DPZ
e−tD2

PZ ) = 0. Hence,
bTr(DPZ

e−tD2
PZ ) = 0, and so bηDPZ

(s) = 0. ¤

Now restricting e−tD2
PZ in (2.6) to the diagonal, and then integrating over Y

(taking the trace over Y ), and using that TrY ϕk ⊗ ϕk = TrY Gϕk ⊗Gϕk = 1 and
TrY σ = 0, we see that

(2.7) TrY (e−tD2
PZ )(u, u) =

∑
µk>0

e−tµ2
k√

4πt

[
1− e−u2/t

]

+
∑

µk>0

{
e−tµ2

k√
4πt

[
1 + e−u2/t

]
− µke2µkuerfc

(
u√
t

+ µk

√
t

)}
+

hY√
4πt

.

Since the terms involving e−u2/t cancel each other and the b-trace, by definition,
kills the constant term in u, we get

bTr(e−tD2
PZ ) = −

∑
µk>0

µk

∫ ∞

0

e2µkuerfc
(

u√
t

+ µk

√
t

)
du.
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We can simplify this integral using that d
dxerfc(x) = − 2√

π
e−x2

and integration by
parts to obtain

(2.8) bTr(e−tD2
PZ ) =

1
2

∑
µk>0

erfc
(

µk

√
t

)
− 1

2

∑
µk>0

e−µ2
kt.

Using this equation, we can find detbζ(D2
PZ

).

Lemma 2.2. We have
detbζ(D2

PZ
) = 2

1
2 ζ

D2
Y

(0)
.

Proof. We compute∫ ∞

0

ts−1 erfc(µk

√
t) dt =

1
s

∫ ∞

0

d

dt
(ts) erfc(µk

√
t) dt

=
ts

s
erfc(µk

√
t)

∣∣∞
0
− 1

s

∫ ∞

0

ts erfc′(µk

√
t)

µk

2
√

t
dt

= −µk

2s

∫ ∞

0

ts−
1
2

(
− 2√

π
e−µ2

kt
)

dt

=
µk√
πs

∫ ∞

0

ts−
1
2 e−µ2

kt dt =
Γ(s + 1/2)√

πs
µ−2s

k .

Hence,
1

Γ(s)

∫ ∞

0

ts−1erfc
(

µk

√
t

)
dt =

Γ(s + 1/2)√
πΓ(s + 1)

µ−2s
k .

Now taking the Mellin transform of (2.8), and dividing the result by Γ(s), we obtain

bζD2
PZ

(s) =
(

Γ(s + 1/2)
2
√

π Γ(s + 1)
− 1

2

)∑
µk>0

1
µ2s

k

=
1
2

(
Γ(s + 1/2)

2
√

π Γ(s + 1)
− 1

2

)
ζD2

Y
(s).

Therefore,
bζ ′D2

PZ

(0) =
1
4

(
Γ′(1/2)√

π
− Γ′(1)

)
ζD2

Y
(0).

Differentiating both sides of the identity
√

πΓ(2z) = 22z−1 ·Γ(z+ 1
2 )·Γ(z) and setting

z = 1
2 (see p. 1423 in [33] for the details) shows that the number in parenthesis

equals −2 log 2. Thus,

log detbζ(D2
PZ

) =
1
2
ζD2

Y
(0) log 2,

from which our lemma follows after exponentiation. ¤

3. Calderón projectors and the model cylinder

In this section, we introduce some basic theory of elliptic boundary problems for
our Dirac type operator over X. We also introduce the auxiliary model problem
over Ẑ = [−1,∞)u × Y . References for this section include Seeley [38, 39], Grubb
[12], or Booß–Bavnbek and Wojciechowski [4].

Near the cutting hypersurface {0} × Y , the trace map γε is defined by

φ 7→ γε(φ) := φ |Yε : C∞(X,S) −→ C∞(Yε, S0)

where Yε := {ε} × Y ⊂ Ẑ ⊂ X. The trace map γε extends to a well-defined map,

γε : Hk(X,S) −→ Hk− 1
2 (Yε, S0)
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for k > 1
2 . Throughout this paper, we fix a union of sectors Λ ⊂ C of the form

Λ = {λ ∈ C \ {0} | ε0 ≤ arg λ ≤ π − ε0 or π + ε0 ≤ arg λ ≤ 2π − ε0},
where 0 < ε0 < π/8. For λ ∈ Λ, we define

D(λ) = D − λ : H1(X, S) −→ L2(X, S)

and for λ ∈ Λ, its inverse operator D(λ)−1 from L2(X, S) to H1(X,S) is defined.
We now define the Calderón projectors over L2(Y, S0) as follows:

PM (λ) = −γ0−D(λ)−1γ∗0G , PZ(λ) = γ0+D(λ)−1γ∗0G

where γ0± = limε↓0 γ±ε and γ∗0 is the adjoint map of γ0 at {0} × Y . A slight
modification of the work of Seeley [38, Th. 5] (cf. Grubb [12] or copy the proof of
Lemma 3.1) shows that these operators are pseudodifferential projections satisfying

(3.1) PM (λ) + PZ(λ) = Id

and the images of PM (λ) and PZ(λ) coincide with the closures in L2(Y, S0) of the
Cauchy data spaces

HM (λ) =
{
γ0−φM | φM ∈ C∞(M,S) , DM (λ)φM = 0

}
,

HZ(λ) =
{
γ0+φZ | φZ ∈ C∞(Z, S) ∩ L2(Z, S) , DZ(λ)φZ = 0

}
,

respectively, where DM (λ) := D(λ)|M , DZ(λ) := D(λ)|Z . It is evident that HM (λ),
HZ(λ) depend only on the restrictions of D(λ) to M , Z. On the other hand, the
Calderón projectors PM (λ), PZ(λ) onto these spaces depend on the extrinsic data
out of M , Z through D(λ)−1. We remark that PM (λ) and PZ(λ) are not orthogonal
projections, but in some situations we need to make these projections orthogonal.
To do so, we recall that for an arbitrary projection P , the operator (cf. [2], [4])

P o := PP ∗(PP ∗ + (Id− P ∗)(Id− P ))−1

is an orthogonal projection onto the range of P . Using this formula, we can define
the orthogonalized projections of PM (λ), PZ(λ) and we denote them by P o

M (λ),
P o

Z(λ), respectively.
We recall that PM denotes the orthogonal projector onto the closure of the

Cauchy data space HM (0). Let us now define

SM (λ) := PMPM (λ) : L2(Y, S0) −→ L2(Y, S0),

which induces a bijective map between Im(PM (λ)) and Im(PM ) for λ ∈ Λ. We
define SM (λ)−1 over L2(Y, S0) by

SM (λ)−1 := P o
M (λ)[PMP o

M (λ) + (Id− PM )(Id− P o
M (λ))]−1PM ,

then this operator has the following properties:

(3.2) SM (λ)SM (λ)−1 = PM , SM (λ)−1SM (λ) = PM (λ).

Let us remark SM (λ)−1 does not mean the inverse of SM (λ), but the operator
satisfying the relations with SM (λ) in (3.2). This inverse notation, however, seems
to be standard and has been used in [36], [37].

The corresponding operators on Z are defined as follows. Recall that

PZ := Π> +
Id− σ

2
Π0
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where σ is the involution over ker(DY ) determined by the scattering matrix or
by PMΠ0 = Id+σ

2 Π0. Then the corresponding operators SZ(λ) and SZ(λ)−1 over
L2(Y, S0) are defined by

SZ(λ) := PZPZ(λ),
SZ(λ)−1 := P o

Z(λ)[PZP o
Z(λ) + (Id− PZ)(Id− P o

Z(λ))]−1PZ .

These operators satisfy similar identities that are in (3.2).
For the Dirac type operators DM , DZ , we impose the boundary conditions PM ,

PZ , respectively, and denote the resulting operators by

DPM
: dom(DPM

) −→ L2(M, S) and DPZ
: dom(DPZ

) −→ L2(Z, S),

where
dom(DPM

) := { φ ∈ H1(M,S) | PMγ0φ = 0 },
dom(DPZ

) := { φ ∈ H1(Z, S) | PZγ0φ = 0 }.
The boundary conditions PM , PZ imply that DPM

, DPZ
are self-adjoint operators

such that for all λ ∈ Λ, the resolvents DPM
(λ)−1 and DPZ

(λ)−1 exist, where
DPM

(λ) = DPM
− λ and DPZ

(λ) = DPZ
− λ. We can give formulas for these

resolvents as follows. We denote the restriction map from L2(X,S) to L2(M, S),
L2(Z, S) by rM , rZ , respectively. We also define eM , eZ from L2(M,S), L2(Z, S)
to L2(X,S) to be the extension maps by zero out of the concerned submanifolds.
Using these maps, we define

DM (λ)−1 = rMD(λ)−1eM , DZ(λ)−1 = rZD(λ)−1eZ ,

KM (λ) = −rMD(λ)−1γ∗0G , KZ(λ) = rZD(λ)−1γ∗0G.
(3.3)

Then the inverses of DPM (λ), DPZ (λ) are given by (see [12])

DPM
(λ)−1 = DM (λ)−1 −KPM

(λ)PMγ0DM (λ)−1,

DPZ (λ)−1 = DZ(λ)−1 −KPZ (λ)PZγ0DZ(λ)−1.
(3.4)

Here, KPM
(λ) := KM (λ)SM (λ)−1, KPZ

(λ) := KZ(λ)SZ(λ)−1 are the Poisson op-
erators of DPM

(λ), DPZ
(λ), respectively, which satisfy the equalities

PMγ0−KPM (λ) = PMPM (λ) SM (λ)−1 = PM ,

PZγ0+KPZ
(λ) = PZPZ(λ) SZ(λ)−1 = PZ .

Using these equalities, one can check that the images of the right-hand operators in
(3.4) lie in dom(DPM (λ)) := dom(DPM ) and dom(DPZ (λ)) := dom(DPZ ), respec-
tively.

We now consider the model problem on the submanifold Ẑ = [−1,∞)× Y of X

and the decomposition of Ẑ into N = [−1, 0]× Y and Z. The Dirac type operator
D restricts to G(∂u + DY ) over Ẑ. For this operator, we impose the boundary
condition defined by PZ at {−1}×Y . We denote by D̂ the resulting operator with
this boundary condition at {−1} × Y :

D̂ : dom(D̂) −→ L2(Ẑ, S)

where
dom(D̂) := { φ ∈ H1(Ẑ, S) | PZγ−1φ = 0 }.

As with the operator DPZ , the operator D̂ is a self-adjoint operator and for all
λ ∈ Λ, the resolvent D̂(λ)−1 exists, where D̂(λ) = D̂ −λ. We denote by D̂N (λ) and
D̂Z(λ) the restrictions of D̂(λ) to N and Z, respectively. If K̂(λ) = D̂(λ)−1γ∗0G,
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then the usual arguments using the rational symbolic structure of D̂(λ)−1 (see
[38, pp. 795–796] or [4, pp. 84–85]) show that if ϕ ∈ C∞(Y, S0), then K̂(λ)ϕ

∣∣
N,Z

∈
dom(D̂N,Z(λ)) and is smooth up to each side of Y with at most a jump discontinuity
at Y . In particular, we can define the Calderón projectors P̂N (λ) for D̂N (λ) and
P̂Z(λ) for D̂Z(λ) over L2(Y, S0) by

P̂N (λ) = −γ0−D̂(λ)−1γ∗0G , P̂Z(λ) = γ0+D̂(λ)−1γ∗0G.

The rational symbolic structure of D̂(λ)−1 also implies that P̂N (λ) and P̂Z(λ) are
pseudodifferential operators of order zero. The following lemma shows that P̂N (λ)
and P̂Z(λ) deserve to be called Calderón projectors.

Lemma 3.1. For all λ ∈ Λ, the operators P̂N (λ) and P̂Z(λ) over L2(Y, S0) are
projections satisfying

P̂N (λ) + P̂Z(λ) = Id

and their images coincide with the closures in L2(Y, S0) of the Cauchy data spaces

ĤN (λ) =
{
γ0−φN | φN ∈ C∞(N, S) , PZγ−1φN = 0 , D̂N (λ)φN = 0

}
,

ĤZ(λ) =
{
γ0+φZ | φZ ∈ C∞(Z, S) ∩ L2(Z, S) , D̂Z(λ)φZ = 0

}
.

Proof. The proof of this lemma is similar to Seeley [38, Th. 5] (see also Grubb [12])
for the compact case. We shall prove that P̂N (λ) over C∞(Y, S0) is a projection with
image ĤN (λ); a similar proof works for P̂Z(λ). We first show that P̂N (λ) = Id on
ĤN (λ). Let ϕ = γ0−φN , where φN ∈ C∞(N,S), PZγ−1φN = 0 and D̂N (λ)φN = 0,
and define

φ :=

{
φN on N

0 on Ẑ \N.

Since D̂N (λ)φN = 0 and D̂(λ) = G(∂u+DY )−λ, and the derivative of the Heaviside
function is the delta distribution, it follows that

D̂(λ)φ = −δY ⊗Gϕ = −γ∗0Gϕ,

since γ∗0 = δY ⊗ · with δY the delta distribution concentrated at {0} × Y . Thus,
φ = −D̂(λ)−1γ∗0Gϕ, and so

P̂N (λ)ϕ := −γ0−
(D̂(λ)−1γ∗0Gϕ

)
= γ0−

(
φ
)

= ϕ.

Hence, P̂N (λ) = Id on ĤN (λ). We now show that P̂N (λ)2 = P̂N (λ). Let ϕ ∈
C∞(Y, S0). Then by definition of P̂N (λ), we have

P̂N (λ)ϕ = γ0−φN , φN = −(D̂(λ)−1γ∗0Gϕ
)∣∣

N
.

Note that φN ∈ C∞(N, S), PZγ−1φN = 0 and D̂N (λ)φN = 0. Thus, γ0−φN ∈
ĤN (λ), so as we know that P̂N (λ) = Id on ĤN (λ), it follows that

P̂N (λ)2ϕ = P̂N (λ)
(
P̂N (λ)ϕ

)
= P̂N (λ)

(
γ0−φN

)
= γ0−φN = P̂N (λ)ϕ.

We now prove that P̂N (λ) + P̂Z(λ) = Id. Let φ ∈ C∞c ((−1,∞) × Y, S) and let
ψ ∈ C∞(Y, S0). Denote the L2-pairing on Y by 〈 , 〉 and denote the distributional
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pairing on Ẑ by parentheses. If K̂(λ) = D̂(λ)−1γ∗0G, then

(3.5) 〈γ0φ,Gψ〉 = (γ∗0Gψ)(φ) =
(D̂(λ)K̂(λ)ψ

)
(φ)

=
(K̂(λ)ψ

)(D̂(λ)∗φ
)

=
∫ ∞

−1

〈D̂(λ)∗φ, K̂(λ)ψ〉 du.

Since K̂(λ)ψ is smooth off of Y with at most a jump discontinuity at Y , we can
write ∫ ∞

−1

〈D̂(λ)∗φ, K̂(λ)ψ〉 du = lim
ε↓0

∫

|u|>ε

〈D̂(λ)∗φ, K̂(λ)ψ〉 du.

Now observe that∫

|u|>ε

〈D̂(λ)∗φ, K̂(λ)ψ〉 du =
∫

|u|>ε

〈(G(∂u + DY )− λ
)
φ, K̂(λ)ψ〉 du

= −
∫

|u|>ε

〈∂uφ,GK̂(λ)ψ〉 du +
∫

|u|>ε

〈φ,
(
GDY − λ

)K̂(λ)ψ〉 du

= −
∫

|u|>ε

∂u〈φ,GK̂(λ)ψ〉 du +
∫

|u|>ε

〈φ, D̂(λ)K̂(λ)ψ〉 du

= −〈γ−εφ, Gγ−εK̂(λ)ψ〉+ 〈γεφ,GγεK̂(λ)ψ〉,(3.6)

where at the last step we used that D̂(λ)K̂(λ) = 0 off of Y and the fundamental
theorem of calculus, recalling that φ is supported on the interior of Ẑ. Taking ε ↓ 0
in (3.6) and equating this with (3.5), and using the definition of P̂N (λ) and P̂Z(λ),
we conclude that

〈γ0φ,Gψ〉 = 〈γ0φ, GP̂N (λ)ψ〉+ 〈γ0φ,GP̂Z(λ)ψ〉.
Since φ ∈ C∞c ((−1,∞) × Y, S) and ψ ∈ C∞(Y, S0) were arbitrary, it follows that
Id = P̂N (λ) + P̂Z(λ), and our proof is now complete. ¤

Let us note that ĤZ(λ) = HZ(λ), because D(λ)|Z = D̂(λ)|Z . Thus, the projec-
tions P̂Z(λ) and PZ(λ) have the same image, but they are not the same projections
because they are defined through different resolvents.

We put

PN := Id− PZ = Π< +
Id + σ

2
Π0;

this is just the projection Pσ in the introduction. This projection defines a well-
posed boundary condition for D̂N (λ) at {0}×Y and we denote the resulting operator
by D̂PN

(λ). From D̂(λ) we can also define D̂N (λ)−1, D̂Z(λ)−1, K̂N (λ), and K̂Z(λ)
just like in (3.3) and we can define operators ŜN (λ), ŜZ(λ), ŜN (λ)−1, ŜZ(λ)−1,
K̂PN

(λ), and K̂PZ
(λ) with the obvious meanings. As in (3.4), we have

D̂PN
(λ)−1 = D̂N (λ)−1 − K̂PN

(λ)PNγ0D̂N (λ)−1,

D̂PZ
(λ)−1 = D̂Z(λ)−1 − K̂PZ

(λ)PZγ0D̂Z(λ)−1.
(3.7)

Lemma 3.2. We have

∂λKPM (λ) = DPM (λ)−1KPM (λ) , ∂λKPZ (λ) = DPZ (λ)−1KPZ (λ).

The same formulas hold for K̂PN (λ), K̂PZ (λ).
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Proof. Taking the derivatives of the equalities

DM (λ)KPM
(λ) = 0 , PMγ0KPM

(λ) = Id,

we obtain
DM (λ)∂λKPM

(λ) = KPM
(λ) , PMγ0∂λKPM

(λ) = 0.

The second equality means that ∂λKPM
(λ) is in the domain of DPM

(λ). Hence,

∂λKPM
(λ) = DPM

(λ)−1KPM
(λ).

In the same way, we can derive the formula

∂λKPZ (λ) = DPZ (λ)−1KPZ (λ).

The same proof works for the “ ˆ ” case. ¤

4. Relative traces of resolvents

In this section, we study relative traces of resolvents. We begin with the following
proposition.

Proposition 4.1. The following operators are smoothing operators:

PM (λ)− P̂N (λ) , PZ(λ)− P̂Z(λ) : L2(Y, S0) −→ L2(Y, S0).

Proof. We introduce a smooth even function ρ(a, b) : [−1, 1] → [0, 1] equal to 0 for
−a ≤ u ≤ a and equal to 1 for b ≤ |u| . We use ρ(a, b)(u) to define

φ1 = 1− ρ(5/7, 6/7) , ψ1 = 1− ψ2 ,

φ2 = ρ(1/7, 2/7) , ψ2 = ρ(3/7, 4/7)

and then we extend these functions to the whole manifold X in the obvious way.
Now we define a parametrix Q(λ) for the operator D(λ)−1 by

(4.1) Q(λ)(x, z) = φ1(x)D̂(λ)−1(x, z)ψ1(z) + φ2(x)D(λ)−1(x, z)ψ2(z).

Then we have

D(λ)Q(λ)(x, z) = Id + G∂uφ1(x)D̂(λ)−1(x, z)ψ1(z)

+ G∂uφ2(x)D(λ)−1(x, z)ψ2(z).

Since the supports of ∂uφi and ψi are disjoint, it follows that

D(λ)Q(λ) = Id + S(λ),

where S(λ) is a smoothing operator. Thus,

(4.2) D(λ)−1 −Q(λ) = S̃(λ)

where S̃(λ) = −D(λ)−1S(λ) is a smoothing operator. Then by definition of PM (λ)
and P̂N (λ), the equalities (4.1) and (4.2) imply that

PM (λ)− P̂N (λ) = −γ0−(D(λ)−1 − D̂(λ)−1)γ∗0G = −γ0S̃(λ)γ∗0G.

Hence, PM (λ)− P̂N (λ) is a smoothing operator. Similarly,

PZ(λ)− P̂Z(λ) = γ0S̃(λ)γ∗0G

is a smoothing operator. ¤
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We decompose the Hilbert spaces L2(X, S), L2(Ẑ, S) into the following orthog-
onal direct sums:

L2(X,S) = L2(M, S)⊕ L2(Z, S) , L2(Ẑ, S) = L2(N, S)⊕ L2(Z, S).

Then we can consider DPM
(λ)−1, DPZ

(λ)−1, D̂PN
(λ)−1, D̂PZ

(λ)−1, and our other
operators defined on M , Z, N , and Ẑ, as linear operators on L2(X, S) by simply
extending them to be zero off their domains and codomains. Thus, if we put

DP(λ)−1 = DPM
(λ)−1 ⊕DPZ

(λ)−1, D̂P(λ)−1 = D̂PN
(λ)−1 ⊕ D̂PZ

(λ)−1,

then we can consider DP(λ)−1 and D̂P(λ)−1 as operators on L2(X, S). In this view
point, a similar argument as we used to prove Proposition 4.1 gives

Lemma 4.2. The operators PM − PN , SM (λ)− ŜN (λ), SM (λ)−1 − ŜN (λ)−1 are
smoothing on L2(Y, S0) . Also, each difference KM (λ)−K̂N (λ), KPM

(λ)−K̂PN
(λ) :

L2(Y, S0) → L2(M, S) has a smoothing Schwartz kernel apart from a jump discon-
tinuity at {−1} × Y in M , and γ0(DM (λ)−1 − D̂N (λ)−1) : L2(M,S) → L2(M,S)
has the same property. These statements hold when M and N are replaced by Z.

Theorem 4.3. For all λ ∈ Λ, the operator

D(λ)−1 −DP(λ)−1 − (D̂(λ)−1 − D̂P(λ)−1) : L2(X,S) −→ L2(X,S)

is of trace class and the following equality holds:

(4.3) Tr
(D(λ)−1 −DP(λ)−1 − (D̂(λ)−1 − D̂P(λ)−1)

)

= Tr
(KPM

(λ)γ0DM (λ)−1 − K̂PN
(λ)γ0D̂N (λ)−1

)

+ Tr
(KPZ

(λ)γ0DZ(λ)−1 − K̂PZ
(λ)γ0D̂Z(λ)−1

)
.

Proof. By the formulas (3.4) and (3.7), we have

(4.4) D(λ)−1 −DP(λ)−1 − (D̂(λ)−1 − D̂P(λ)−1)

=
(D(λ)−1 −DM (λ)−1 −DZ(λ)−1

)− (D̂(λ)−1 − D̂N (λ)−1 − D̂Z(λ)−1
)

+KPM
(λ)γ0DM (λ)−1 − K̂PN

(λ)γ0D̂N (λ)−1

+KPZ
(λ)γ0DZ(λ)−1 − K̂PZ

(λ)γ0D̂Z(λ)−1.

By Lemma 4.2 and the fact that the Schwartz kernels of DZ(λ)−1 and D̂Z(λ)−1 are
identical up to a smoothing term decaying exponentially along the cylinder cf. [30],
it follows that the last four operators here define an operator of trace class. Notice
that D(λ)−1 −DM (λ)−1 −DZ(λ)−1 is off diagonal with respect to the orthogonal
decomposition L2(X,S) = L2(M, S)⊕L2(Z, S) and D̂(λ)−1−D̂N (λ)−1−D̂Z(λ)−1

is off diagonal with respect to the orthogonal decomposition L2(Ẑ, S) = L2(N, S)⊕
L2(Z, S). Hence, the operator on the first line on the right-hand side of (4.4) is of
trace class with trace zero. It follows that D(λ)−1−DP(λ)−1−(D̂(λ)−1−D̂P(λ)−1)
is of trace class and taking the trace of (4.4) yields the formula (4.3). ¤

5. Linking Calderón projectors and the resolvents

In this section, we define the key operators of this paper, K(λ) and K̂(λ), over
Y , which are defined through our various Calderón projectors. In Theorem 5.3, we
relate these operators with the relative trace of the resolvents D(λ)−1, DPM (λ)−1,
DPZ

(λ)−1, and the resolvents over Ẑ.
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Recalling the maps κM , κZ : L2(Y, S+) → L2(Y, S−) from (1.5) in the introduc-
tion, we define a unitary operator on L2(Y, S0) by

(5.1) V =
(

Id 0
0 −κMκ−1

Z

)

where the matrix is written with respect to L2(Y, S+) ⊕ L2(Y, S−). Then, by
definition, V satisfies

V −1(Id−PM )V = PZ .

For λ ∈ Λ, the following operators, which are pseudodifferential operators of
order zero defined over L2(Y, S0), play the central roles in this paper:

K(λ) = SM (λ)−1V PN + SZ(λ)−1, K̂(λ) = ŜN (λ)−1 + ŜZ(λ)−1.

These operators link the Cauchy data spaces between M and Z, and N and Z,
respectively. We first note that these operators are invertible.

Proposition 5.1. For λ ∈ Λ, the operators K(λ) and K̂(λ) are invertible with
inverses given by

K(λ)−1 = PNV −1SM (λ) + SZ(λ), K̂(λ)−1 = ŜN (λ) + ŜZ(λ).

Proof. First, using that PNPZ = 0 = PZPN and the identities (3.1) and (3.2), we
obtain

K(λ)
(PNV −1SM (λ) + SZ(λ)

)
=

(
SM (λ)−1V PN + SZ(λ)−1

)

◦ (PNV −1SM (λ) + SZ(λ)
)

= SM (λ)−1SM (λ) + SZ(λ)−1SZ(λ) = PM (λ) + PZ(λ) = Id.

Second, using that PM (λ)PZ(λ) = 0 = PZ(λ)PM (λ) which follow from (3.1), we
also have

(PNV −1SM (λ) + SZ(λ)
)
K(λ) =

(PNV −1SM (λ) + SZ(λ)
)

◦ (
SM (λ)−1V PN + SZ(λ)−1

)

= PNV −1PMV PN + PZ = PN + PZ = Id.

A similar (but easier) computation shows that ŜN (λ)+ŜZ(λ) is the inverse of K̂(λ).
This completes the proof. ¤

We next note that K(λ) K̂(λ)−1 is of Fredholm determinant class.

Proposition 5.2. For λ ∈ Λ, K(λ) K̂(λ)−1 − Id is a smoothing operator over
L2(Y, S0).

Proof. Let us observe that

K(λ)− K̂(λ) =SM (λ)−1V PN + SZ(λ)−1 − ŜN (λ)−1 − ŜZ(λ)−1

=SM (λ)−1V PN − ŜN (λ)−1,

because SZ(λ)−1 = ŜZ(λ)−1. By Lemma 4.2, PM − PN = PM + PZ − Id is
smoothing, which implies that V has a form Id + S for a smoothing operator S, so
that V PN −PN is a smoothing operator. Also by Lemma 4.2, SM (λ)−1− ŜN (λ)−1

is a smoothing operator. These facts imply that the difference K(λ) − K̂(λ) is a
smoothing operator. Multiplying this difference by K̂(λ)−1, the claim follows. ¤



GLUING FORMULÆ ON MANIFOLDS WITH CYLINDRICAL ENDS 17

By Proposition 5.2, we can define detF (K(λ)K̂(λ)−1), which is a holomorphic
function over Λ. Since each connected component of Λ is simply connected, we can
henceforth fix a logarithm log detF K(λ) depending holomorphically for λ over each
connected component of Λ. Now we can state the main result of this section.

Theorem 5.3. For λ ∈ Λ, the following variation formula holds:

∂λ log detF (K(λ)K̂(λ)−1) = −Tr
(D(λ)−1 −DP(λ)−1 − (D̂(λ)−1 − D̂P(λ)−1)

)
.

Proof. We have

∂λ log detF (K(λ)K̂(λ)−1) = Tr
(
K(λ)−1∂λK(λ)− K̂(λ)−1∂λK̂(λ)

)
.

Recalling that K(λ)−1 = PNV −1SM (λ) + SZ(λ), we can write

K(λ)−1∂λK(λ)

=
(PNV −1SM (λ) + SZ(λ)

)
∂λ

(
SM (λ)−1V PN + SZ(λ)−1

)

= PNV −1SM (λ) ∂λSM (λ)−1V PN + SZ(λ) ∂λSZ(λ)−1

+ off diagonal terms,

where “off diagonal” means with respect to L2(Y, S0) = Im(PN ) ⊕ Im(PZ). By
definition, we have

γ0KPM
(λ) = γ0KM (λ)SM (λ)−1 = PM (λ)SM (λ)−1 = SM (λ)−1

and by Lemma 3.2, we have ∂λKPM (λ) = DPM (λ)−1KPM (λ). From these equalities,
we obtain

SM (λ) ∂λSM (λ)−1

=SM (λ)γ0

(DM (λ)−1 −KPM (λ)γ0DM (λ)−1
)KPM (λ)

=SM (λ)γ0DM (λ)−1KPM (λ)− PMγ0DM (λ)−1KPM (λ),

where we used the first equality in the identities (3.4). A similar formula holds for
SZ(λ) ∂λSZ(λ)−1, hence

K(λ)−1∂λK(λ)

= PNV −1
(
SM (λ)γ0DM (λ)−1KPM (λ)− PMγ0DM (λ)−1KPM (λ)

)
V PN

+ SZ(λ)γ0DZ(λ)−1KPZ
(λ)− PZγ0DZ(λ)−1KPZ

(λ)
+ off diagonal terms.

Using a similar formula for K̂(λ), we get

∂λ log detF (K(λ)K̂(λ)−1)

=Tr
(PNV −1

(
SM (λ)γ0DM (λ)−1KPM

(λ)− PMγ0DM (λ)−1KPM
(λ)

)
V PN

− ŜN (λ)γ0D̂N (λ)−1KPN (λ)− PNγ0D̂N (λ)−1KPN (λ)
)

+ Tr
(
SZ(λ)γ0DZ(λ)−1KPZ (λ)−PZγ0DZ(λ)−1KPZ (λ)

− ŜZ(λ)γ0D̂Z(λ)−1K̂PZ
(λ)−PZγ0D̂Z(λ)−1K̂PZ

(λ)
)
.
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Thus,

∂λ log detF (K(λ)K̂(λ)−1)

= Tr
(KPM

(λ)SM (λ)γ0DM (λ)−1 −KPN
(λ)ŜN (λ)γ0D̂N (λ)−1

)

− Tr
(KPM

(λ)γ0DM (λ)−1 −KPN
(λ)γ0D̂N (λ)−1

)

+ Tr
(KPZ

(λ)SZ(λ)γ0DZ(λ)−1 − K̂PZ
(λ)ŜZ(λ)γ0D̂Z(λ)−1

)

− Tr
(KPZ

(λ)γ0DZ(λ)−1 − K̂PZ
(λ)γ0D̂Z(λ)−1

)
.

By definition, KPM
(λ) = KM (λ)SM (λ)−1 along with similar formulas for the other

Poisson operators, so we can rewrite the above equation as

∂λ log detF (K(λ)K̂(λ)−1)

= Tr
(KM (λ)PM (λ)γ0DM (λ)−1 −KN (λ)P̂N (λ)γ0D̂N (λ)−1

)

− Tr
(KPM

(λ)γ0DM (λ)−1 −KPN
(λ)γ0D̂N (λ)−1

)

+ Tr
(KZ(λ)PZ(λ)γ0DZ(λ)−1 − K̂Z(λ)P̂Z(λ)γ0D̂Z(λ)−1

)

− Tr
(KPZ (λ)γ0DZ(λ)−1 − K̂PZ (λ)γ0D̂Z(λ)−1

)
.

Finally, a proof similar to Lemma 3.2 shows that

∂λPM (λ) = ∂λγ0KM (λ) = γ0DM (λ)−1KM (λ)

with similar formulas hold for the other Calderón projections, hence recalling that
PM (λ) + PZ(λ) = Id and P̂N (λ) + P̂Z(λ) = Id, we obtain

∂λ log detF (K(λ)K̂(λ)−1)

=
1
2
∂λ Tr

(
PM (λ) + PZ(λ)− (P̂N (λ) + P̂Z(λ))

)

− Tr
(KPM

(λ)γ0DM (λ)−1 −KPN
(λ)γ0D̂N (λ)−1

)

− Tr
(KPZ

(λ)γ0DZ(λ)−1 − K̂PZ
(λ)γ0D̂Z(λ)−1

)

= − Tr
(D(λ)−1 −DP(λ)−1 − (D̂(λ)−1 − D̂P(λ)−1)

)
,

where we used (4.3) at the last line. This completes the proof. ¤

6. Asymptotics of detF (K(λ)K̂(λ)−1)

In this section, we investigate the asymptotics of detF (K(λ)K̂(λ)−1) for small
and large λ, which enable us to extract the L and Û contributions to our main
Theorem 1.1. We begin by studying the asymptotics of PM (λ) and PZ(λ) as λ → 0.

Lemma 6.1. For λ ∈ Λ, we have

PM (λ) = λ−1LG + QM (λ) , PZ(λ) = −λ−1LG + QZ(λ),

where L =
∑hX

k=1 γ0Uk ⊗ (γ0Uk)∗ is defined in (1.6) and QM (λ), QZ(λ) are pseu-
dodifferential operators over Y that are regular at λ = 0.

Proof. From Melrose [30, Ch. 6] or Vaillant [41], we know that

(6.1) (D − λ)−1 = −λ−1
hX∑

k=1

Uk ⊗ U∗
k + R(λ)
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where U∗
k := 〈 · , Uk〉X where 〈 · , · 〉X is the inner product on L2(X, S) and R(λ)

is a b-pseudodifferential operator over X that is regular at λ = 0. Applying this
equality to the definition of PM (λ), we obtain

PM (λ) = −γ0−(D − λ)−1γ∗0G = λ−1
hX∑

k=1

γ0Uk ⊗ U∗
k γ∗0G + QM (λ),

where QM (λ) is regular at λ = 0. This completes our proof for PM (λ). A similar
proof works for PZ(λ). ¤

Remark 6.2. We remark that the operator R(λ) in (6.1) has two analytic continu-
ations to a neighborhood of λ = 0, one from =λ > 0 and the other from =λ < 0, but
when ker(DY ) 6= 0, they have different values at λ = 0! Thus, technically speaking,
we should write Q±M (λ) to emphasize the fact that QM (λ) may have different values
at λ = 0 depending on its continuation from =λ > 0 or =λ < 0. We emphasize,
however, that these different values play no role in the analysis that follows; below
the important fact that we will need is that PM (λ) = λ−1LG modulo bounded at
λ = 0. (A similar remark holds for QZ(λ).)

Let P± = Id∓iG
2 , which are the orthogonal projections onto S±. Next, we need

the following observation.

Lemma 6.3. Let W = Im(PM ) ∩ Im(PZ). Then

W = Im(PM ) ∩ Im(Π>) = γ0(kerL2(D)).

Moreover, dim W = hX = dim kerL2(D) and V = −iG on W ⊕GW .

Proof. By definition of PM and PZ , it follows that Im(PM )∩ Im(PZ) = Im(PM )∩
Im(Π>) and elements of the intersection Im(PM ) ∩ Im(Π>) are exactly the re-
strictions of elements in kerL2(D). This proves that W = Im(PM ) ∩ Im(Π>) =
γ0(kerL2(D)). Thus, dim W = dimkerL2(D) by the unique continuation theorem
for D. From the expressions (1.5) for PM and PZ , it follows that κM = κZ over
P+W = P+GW . Thus, from the definition of V in (5.1), we can see that acting
on W or GW , we have

V =
(

Id 0
0 −Id

)
.

Recalling that G =
(

i 0
0 −i

)
completes our proof. ¤

Since X is a noncompact manifold with cylindrical end, we obtain some unusual
phenomena when we consider the behavior of K(λ) near λ = 0, features which are
nonexistent in the compact case [25]. For instance, consider

Proposition 6.4. Putting Πσ := Id−σ
2 Π0, for small λ near 0, we have

K(λ) ∼=(λ)→±0 PMV PN + Π> + 2P∓Πσ + o(1),

K̂(λ) ∼=(λ)→±0 PN + Π> + 2P∓Πσ + o(1).

Proof. Let us recall the definition K(λ) = SM (λ)−1V PN + SZ(λ)−1. Since M is
compact it follows that SM (λ)−1V PN has the form PMV PN +o(1) for small λ near
0. Now recall that

SZ(λ)−1 := P o
Z(λ)[PZP o

Z(λ) + (Id− PZ)(Id− P o
Z(λ))]−1PZ ,
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which depends only on the intrinsic data over Z. It is not difficult to see that
SZ(λ)−1Π> = Π> + o(1) for small λ near 0. Now it remains to show

SZ(λ)−1Π0 ∼=(λ)→±0 2P∓Πσ + o(1).

To see this, we need to determine the intersection HZ(λ) ∩ Im(Π0). To this end,
let φ ∈ C∞(Z, ker(DY )), and note that (D − λ)φ = (G∂u − λ)φ = 0 if and only
if φ = (ae−iλu, beiλu) for some constants a, b, where φ is decomposed into the ±i
eigenspaces of G. For φ to be in L2 we need a = 0 if =λ > 0 and b = 0 if =λ < 0.
It follows that

HZ(λ) ∩ Im(Π0) =

{
P−Π0 for =λ > 0,
P+Π0 for =λ < 0.

Since P o
Z(λ) is the unique orthogonal projector onto HZ(λ) it follows that P o

Z(λ)Π0

= P∓Π0 for =λ > 0 and =λ < 0, respectively. Thus,

SZ(λ)−1Π0 = P∓[ΠσP∓ + Π−σP±]−1Πσ,

for =λ > 0 and =λ < 0, respectively. An easy computation shows that the right-
hand side is exactly 2P∓Πσ. The same arguments can be applied to K̂(λ). This
completes our proof. ¤

For convenience, from now on we shall use the notation

K(±i0) := lim
=λ→0±

K(λ) = PMV PN + P∓Z where P±Z := Π> + 2P±Πσ.

Let us remark that K(0) is not well-defined if ker(DY ) is nontrivial; this stands
in noteworthy contrast to the compact case considered in [25]. Now we consider a
decomposition of K(±i0), which will be used later.

Proposition 6.5. Let W = W+ ⊕W− where W± = P±W = P±GW with W =
γ0(kerL2(D)) = Im(PM ) ∩ Im(PZ). Then K(±i0) takes the matrix form

K(±i0) =
(

A 0
0 PW⊥K(±i0)PW⊥

)

with respect to the decomposition L2(Y, S0) = W⊕W⊥ and the operator A : W →W
is of the form A =

(
Id 0

κM |W+ 0

)
with respect to the decomposition W = W+⊕W−.

Proof. For ϕ ∈ W = Im(PM ) ∩ Im(PZ) = Im(PM ) ∩ Im(Π>), using the fact that
PMG = G(Id− PM ) and PZG = G(Id− PZ), we have

PMϕ = PZϕ = ϕ , PMGϕ = PZGϕ = 0.

Using these formulas and the fact that V = −iG over W and GW by Lemma 6.3,
we find that

K(±i0)P+ϕ =
(PMV (Id− PZ) + P∓Z

) Id− iG

2
ϕ = ϕ,

K(±i0)P−ϕ =
(PMV (Id− PZ) + P∓Z

) Id + iG

2
ϕ = 0.

(6.2)

These equations show that K(±i0) : W → W, and if A := K(±i0)|W , then with

respect to the decompositionW = W+⊕W−, we have A =
(

Id 0
κM |W+ 0

)
since ϕ =

(P+ϕ, κMP+ϕ). Thus, our proof is finished once we show that PW⊥K(±i0)PW = 0
and PWK(±i0)PW⊥ = 0. That PW⊥K(±i0)PW = 0 follows from the fact that
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K(±i0) : W → W. To prove that PWK(±i0)PW⊥ = 0 it suffices to consider
adjoints and prove that PW⊥K(±i0)∗PW = 0. However, the exact same argument
shown in (6.2) can be used to show that

K(±i0)∗ = (Id−PZ)V −1PM + (P∓Z )∗ : W −→W,

which in turn proves that PW⊥K(±i0)∗PW = 0. ¤

We now consider the asymptotics of K(λ) as λ → 0. To this end, we use Lemma
6.1 to write

K(λ)−1 = PNV −1SM (λ) + SZ(λ)

= PNV −1PM (λ−1LG + QM (λ)) + PZ(−λ−1LG + QZ(λ))

= λ−1(V −1LG− LG) + Q(λ)(6.3)

where Q(λ) is a pseudodifferential operator over Y that is regular at λ = 0. By
Lemma 6.3, V = −iG over the space spanned by {γ0Uk}, that is, the space W , so
if we look at the first term in (6.3) in more detail, we see that

V −1LG− LG = (−iG− Id)LG

= −i(Id + iG)GLG = −2iP−GLG.(6.4)

Now it is straightforward to check that

P±G : γ0(kerL2(D)) −→ P±Gγ0(kerL2(D))

is an isomorphism, and directly from the definition of L, we have

(6.5) L± := −2P−GLGP± = (P−G)L (P±G)−1 : W± −→ W−.

Then in view of (6.3), (6.4), and the definition of L±, we can write

(6.6) K(λ)−1 = iλ−1L+ + iλ−1L− + Q(λ)

where Q(λ) is a pseudodifferential operator on Y that is regular at λ = 0. Then we
have

Corollary 6.6. Let W = W+ ⊕ W−. Then with respect to the decomposition
L2(Y, S0) = W ⊕W⊥, for for =λ > 0 and =λ < 0 small, we have

K(λ) =
(

A(λ) O(λ)
O(λ) PW⊥K(±i0)PW⊥ +O(λ)

)
,

where A(λ) satisfies

A(λ)−1 =
(

Id + b± L−1
− L+ +O(λ) b± +O(λ)

iλ−1L+ + p±(λ) iλ−1L− + q±(λ)

)

with respect to the decomposition W = W+ ⊕W− where p±(λ), q±(λ) are regular
at λ = 0 and b± : W− → W+.

Proof. The statement for K(λ) just follows from Proposition 6.5. To derive the

matrix form of A(λ)−1 recall that a matrix of operators
(

a b
c d

)
, with a invertible,

is invertible if and only if D := d− c a−1b is invertible, in which case [41, p. 53]

(6.7)
(

a b
c d

)−1

=
(

a−1 + a−1bD−1c a−1 −a−1bD−1

−D−1c a−1 D−1

)
.
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From Proposition 6.5, we know that A(λ) =
(

a(λ) λ b(λ)
c(λ) λ d(λ)

)
with respect to the

decomposition W = W+ ⊕ W−, where a(0) = Id. In particular, a(0) = Id is
invertible, so we can apply the formula (6.7) to find A(λ)−1 for λ near 0. Doing this
and using (6.6), we get, after a long and tedious but very elementary computation,
our desired formula for A(λ)−1. ¤

We are now ready to compute the asymptotics of detF (K(λ)K̂(λ)−1) as λ → 0.
First, from Corollary 6.6, it follows that as λ → 0 from =λ > 0 and =λ < 0,

(6.8) detF (K(λ)K̂(λ)−1) = det A(λ) · detF
(
PW⊥K(±i0)PW⊥

)(
1 + o(1)

)
.

To find detA(λ), observe that by Corollary 6.6, we can write

A(λ)−1 =
(

Id 0
0 iλ−1L−

)[(
Id + b± L−1

− L+ b±
L−1
− L+ Id

)
+O(λ)

]
.

From this expression it may seem like limλ→0 detA(λ) depends on the sign of =λ,
but miraculously it does not because of the identity

(
Id + b± L−1

− L+ b±
L−1
− L+ Id

)
=

(
Id b± L−1

−
0 L−1

−

)(
Id 0
L+ L−

)
,

which implies that for small λ near 0,

detA(λ)−1 = (iλ−1)hX (detL−)(detL−1
− )(detL−)

(
1 + o(1)

)

= (iλ−1)hX (detL−)
(
1 + o(1)

)
.

Since L− = (P−G)L (P−G)−1 by the definition (6.5), we have detL− = detL.
Thus, for small λ near 0 we have

det A(λ) = (−iλ)hX (det L)−1
(
1 + o(1)

)
.

Second, by Proposition 6.4, K(±i0) and K̂(±i0) preserve ker(DY ) and with
respect to the decomposition ker(DY ) = Im( Id+σ

2 )⊕ Im( Id−σ
2 ), using the formulas

in Proposition 6.4 one can show that

K(±i0)|ker(DY ) =
(

1 ∓1
0 1

)
, K̂(±i0)|ker(DY ) =

(
1 ∓1
0 1

)
.

These matrices contribute unity to the asymptotics of detF (K(λ)K̂(λ)−1) as =λ →
0. Therefore, we can assume that ker(DY ) = 0 for the remaining computations in
this section. Under this condition K(0) is well defined and we shall use this notation
for the following part of the proof. In particular, in view of (6.8) and our analysis
of detA(λ), for small λ near 0 we have

detF (K(λ)K̂(λ)−1) = (−iλ)hX (det L)−1 detF
(
PW⊥K(0)PW⊥

)(
1 + o(1)

)
.(6.9)

Third, let us consider the equality

K(0) = V (Id− PZ) + PZ =
(PZ PZV (Id− PZ)

0 (Id− PZ)V (Id− PZ)

)
,

which is written with respect to L2(Y, S0) = Im(PZ) ⊕ Im(Id − PZ). Recall that
W = W+ ⊕ W− where W± = P±W = P±GW , and we have the inclusions
W ⊂ Im(PZ) and GW ⊂ Im(Id− PZ). Hence,

(6.10) detF
(
PW⊥K(0)PW⊥

)
= detF

(
PGW⊥(Id− PZ)V (Id− PZ)PGW⊥

)
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where PGW⊥ is the orthogonal projection on GW⊥ ∩ Im(Id − PZ). For ϕ =
(x,−κZx) ∈ Im(Id − PZ) written as a column vector, using the formulas (1.5)
and (5.1) for PM , PZ , and V , we have

(Id−PZ)V (Id− PZ)ϕ =
1
2

(
Id −κ−1

Z

−κZ Id

)(
Id 0
0 −κMκ−1

Z

)(
x

−κZx

)

=
1
2

(
Id −κ−1

Z

−κZ Id

) (
x

κMx

)
=

1
2

(
(Id− κ−1

Z κM )x
(Id− κMκ−1

Z )(−κZx)

)
.

In other words, over Im(Id− PZ),

(6.11) (Id−PZ)V (Id− PZ) =
(

κ−1
Z

1
2

(
Id− κMκ−1

Z

)
κZ 0

0 1
2

(
Id− κMκ−1

Z

)
)

.

We recall that U := −κMκ−1
Z and observe that for ψ ∈ L2(Y, S−),

Uψ = −ψ if and only if ψ ∈ W− = P−W = P−GW.

In other words, the (−1)-eigenspace of U is exactly W−. Thus, if we define Û as the
restriction of U to the orthogonal complement of its (−1)-eigenspace, then Id + Û
is invertible on its domain. Now by (6.10) and (6.11), we obtain

detF
(
PW⊥K(0)PW⊥

)
= detF

( Id + Û

2

)
.

Combining this formula with the expansion (6.9) we conclude

Theorem 6.7. For λ ∈ Λ near 0, we have

detF (K(λ)K̂(λ)−1) = (−iλ)hX (detL)−1 detF
( Id + Û

2

)(
1 + o(1)

)
.

We now consider the limits of K(λ) and K̂(λ) as =λ → ±∞.

Proposition 6.8. For λ ∈ Λ, we have

lim
=λ→∞

K(λ) =
(

Id −κ−1
Z

κZ Id

)
, lim
=λ→−∞

K(λ) =
(

Id κ−1
Z

κM −κMκ−1
Z

)
,

lim
=λ→∞

K̂(λ) =
(

Id −κ−1
Z

κZ Id

)
, lim
=λ→−∞

K̂(λ) =
(

Id κ−1
Z

−κZ Id

)

where the matrices are written with respect to L2(Y, S0) = L2(Y, S+)⊕ L2(Y, S−).

Proof. By Corollary 6.2 in [25], we have

lim
=λ→∞

SM (λ)−1 =
(

Id κ−1
M

0 0

)
, lim
=λ→∞

SZ(λ)−1 =
(

0 0
κZ Id

)
,

lim
=λ→−∞

SM (λ)−1 =
(

0 0
κM Id

)
, lim
=λ→−∞

SZ(λ)−1 =
(

Id κ−1
Z

0 0

)
.

(6.12)

and

lim
=λ→∞

ŜN (λ)−1 =
(

Id −κ−1
Z

0 0

)
, lim
=λ→∞

ŜZ(λ)−1 =
(

0 0
κZ Id

)
,

lim
=λ→−∞

ŜN (λ)−1 =
(

0 0
−κZ Id

)
, lim
=λ→−∞

ŜZ(λ)−1 =
(

Id κ−1
Z

0 0

)
.

(6.13)



24 PAUL LOYA AND JINSUNG PARK

Hence, as =λ →∞,

K(λ) = SM (λ)−1V PN + SZ(λ)−1

→
(

Id κ−1
M

0 0

) (
Id 0
0 −κMκ−1

Z

)
1
2

(
Id −κ−1

Z

−κZ Id

)
+

(
0 0

κZ Id

)

=
(

Id −κ−1
Z

0 0

)
+

(
0 0

κZ Id

)
=

(
Id −κ−1

Z

κZ Id

)
.

The limit as =λ → −∞ can be computed using a similar argument. The limits of
K̂(λ) are obtained in the exact same way, but we use (6.13). ¤

Corollary 6.9. For λ ∈ Λ, we have

lim
=λ→∞

detF (K(λ)K̂(λ)−1) = 1 , lim
=→−∞

detF (K(λ)K̂(λ)−1) = detF U.

Proof. By Proposition 6.8, we have

lim
=λ→∞

detF (K(λ)K̂(λ)−1) = detF

(
Id −κ−1

Z

κZ Id

)(
Id −κ−1

Z

κZ Id

)−1

= detF Id = 1

and

lim
=λ→−∞

detF (K(λ)K̂(λ)−1) = detF

(
Id κ−1

Z

κM −κMκ−1
Z

)(
Id κ−1

Z

−κZ Id

)−1

= detF

(
Id κ−1

Z

κM −κMκ−1
Z

)
1
2

(
Id −κ−1

Z

κZ Id

)

= detF

(
Id 0
0 −κMκ−1

Z

)
= detF (−κMκ−1

Z ) = detF U.

We remark that we can interchange the limits above with detF because K(λ)K̂(λ)−1

converges as =λ → ±∞ within the determinant class operators due to the pseudo-
differential nature of these operators studied in Section 6 of [25]. ¤

This corollary along with the theorem 7.3 in [25] imply the following theorem,

Theorem 6.10. For λ ∈ Λ, we have

detF (K(λ)K̂(λ)−1) ∼=λ→±∞
∞∑

k=0

a±k λ−k,

where a+
0 = 1 and a−0 = detF U .

7. Resolvents and the spectral invariants

In this section, we relate log detF (K(λ)K̂(λ)−1) with the spectral invariants
through the resolvents via Theorem 5.3. As before, let us put

DP = DPM ⊕DPZ , D̂P = D̂PN ⊕ D̂PZ ,

which are considered as (unbounded) operators on L2(X, S). From Theorem 5.3,
we can derive the following result.
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Proposition 7.1. For λ ∈ Λ, we have

∂λ

(
log detF (K(λ)K̂(λ)−1)− log detF (K(λ)K̂(−λ)−1)

)

= − 2Tr
( D
D2 − λ2

− DP
D2
P − λ2

− D̂
D̂2 − λ2

+
D̂P

D̂2
P − λ2

)
,

∂λ

(
log detF (K(λ)K̂(λ)−1) + log detF (K(−λ)K̂(−λ)−1)

)

= − 2 Tr
(

λ

D2 − λ2
− λ

D2
P − λ2

− λ

D̂2 − λ2
+

λ

D̂2
P − λ2

)
.

Proof. The proofs of these formulas are similar, so we shall only prove the second
formula. If F (λ) = log detF (K(λ)K̂(λ)−1), then from Theorem 5.3, we have

∂λ

(
F (λ) + F (−λ)

)
= ∂λF (λ)− (∂λF )(−λ)

=− Tr
(D(λ)−1 −DP(λ)−1 − (D̂(λ)−1 − D̂P(λ)−1)

)

+ Tr
(D(−λ)−1 −DP(−λ)−1 − (D̂(−λ)−1 − D̂P(−λ)−1)

)
.

Since

D(λ)−1 −D(−λ)−1 = (D − λ)−1 − (D + λ)−1 =
2λ

D2 − λ2
,

with similar formulas holding for the resolvents of the other Dirac operators, we
get our second equality. ¤

Since for any holomorphic branch of log around a point c, we have log(c + z) ∼∑∞
k=0 ckzk as z → 0, by Theorem 6.10 it follows that log detF (K(λ)K̂(λ)−1) has

expansions as =λ → ±∞ that resemble the expansions in Theorem 6.10. Replacing
λ by µ with µ = λ2 in Proposition 7.1, then taking k-derivatives of the asymptotic
expansions of log detF (K(λ)K̂(λ)−1) with µ = λ2, we immediately obtain

Corollary 7.2. As |µ| → ∞ for
√

µ ∈ Λ, we have

∂k
µ Tr

( D
D2 − µ

− DP
D2
P − µ

− D̂
D̂2 − µ

+
D̂P

D̂2
P − µ

)
= O(µ−1−k).

∂k
µ Tr

(
1

D2 − µ
− 1
D2
P − µ

− 1
D̂2 − µ

+
1

D̂2
P − µ

)
= O(µ−3/2−k),

This corollary will be used to derive the following estimates.

Lemma 7.3. For 0 < t < 1, we have

| bTr
(De−tD2 −DPe−tD2

P − D̂e−tD̂2
+ D̂Pe−tD̂2

P
) | ≤ c1,

| bTr
(
e−tD2 − e−tD2

P − e−tD̂2
+ e−tD̂2

P
) | ≤ c2

√
t,

for positive constants c1, c2.

Proof. Let Γ be the contour Γ = −1 + {µ ∈ C | arg µ = π/4, 7π/4}. Consider the
first inequality and define

f(t) = De−tD2 −DPe−tD2
P − D̂e−tD̂2

+ D̂Pe−tD̂2
P

=
i

2π

∫

Γ

e−tµ

( D
D2 − µ

− DP
D2
P − µ

− D̂
D̂2 − µ

+
D̂P

D̂2
P − µ

)
dµ,
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where we used Cauchy’s formula to write the heat operators as contour integrals
over Γ. To prove the first inequality, we want to formally pass bTr through the
integral sign. We can justify this by the following integration-by-parts trick. First,
integrating by parts k-times, as an operator we can write

f(t) =
i

2π
· t−kk!

∫

Γ

e−tµ

( D
(D2 − µ)k+1

− DP
(D2

P − µ)k+1

− D̂
(D̂2 − µ)k+1

+
D̂P

(D̂2
P − µ)k+1

)
dµ.

For k sufficiently large, the inner operators are individually b-trace class and vanish
as |µ| → ∞ sufficiently rapidly so that we can interchange the b-trace with the
integral:

bTr(f(t)) =
i

2π
· t−kk!

∫

Γ

e−tµ Tr
( D

(D2 − µ)k+1
− DP

(D2
P − µ)k+1

− D̂
(D̂2 − µ)k+1

+
D̂P

(D̂2
P − µ)k+1

)
dµ.

where we used that the operator inside the integral is of sufficient regularity (cf. the
proof of Theorem 4.3) so the b-trace of this operator reduces to the usual trace. Now
we can integrate by parts k-times reversing what was done before, using Corollary
7.2 to justify this integration, obtaining

bTr(f(t)) =
i

2π

∫

Γ

e−tµ Tr
( D
D2 − µ

− DP
D2
P − µ

− D̂
D̂2 − µ

+
D̂P

D̂2
P − µ

)
dµ.(7.1)

The asymptotics in Corollary 7.2 now imply the first inequality. To prove the
second inequality, we proceed in the same way, defining

F (t) = e−tD2 − e−tD2
P − e−tD̂2

+ e−tD̂2
P

=
i

2π

∫

Γ

e−tµ

(
1

D2 − µ
− 1
D2
P − µ

− 1
D̂2 − µ

+
1

D̂2
P − µ

)
dµ,

and then using the same integration-by-parts trick to write

bTr(F (t)) =
i

2π

∫

Γ

e−tµ Tr
(

1
D2 − µ

− 1
D2
P − µ

− 1
D̂2 − µ

+
1

D̂2
P − µ

)
dµ.(7.2)

The second inequality now follows from this equation and the second estimate in
Corollary 7.2. ¤

In the following two theorems, we express the spectral invariants in terms of the
relative traces of our resolvents.

Theorem 7.4. bηD(s) is regular at s = 0; in particular, bη(D) := bηD(0) is well-
defined. Moreover,

bη(D)− bη(DP) =
2
π

∫ ∞

0

Tr
( D
D2 + ν2

− DP
D2
P + ν2

− D̂
D̂2 + ν2

+
D̂P

D̂2
P + ν2

)
dν.
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Proof. By Lemma 2.1 it follows that bηD̂(s) and bηDPZ
(s) are identically zero and

by Lemmas 2.2 and 2.3 in [21] we also have ηD̂PN
(s) = 0. Thus,

bηD(s)− bηDP (s) = bηD(s)− bηDP (s)− bηD̂(s) + bηD̂P (s)

=
1

Γ( s+1
2 )

∫ 1

0

t
s−1
2 bTr(De−tD2 −DPe−tD2

P − D̂e−tD̂2
+ D̂Pe−tD̂2

P ) dt

+
1

Γ( s+1
2 )

∫ ∞

1

t
s−1
2 bTr(De−tD2 −DPe−tD2

P − D̂e−tD̂2
+ D̂Pe−tD̂2

P ) dt.

Here the small (large) time contribution is defined a priori from the half plane with
<s À 0 (<s ¿ 0). By Lemma 7.3, we know that the integral

∫ 1

0
is absolutely

convergent for s near 0 and by the expansion (2.4), so is the integral
∫∞
1

. In
conclusion, bηD(s)− bηDP (s) = bηD(s)− ηDPM

(s) is regular at s = 0. Since ηDPM
(s)

is also regular at s = 0 by Theorem 5.5 in [27] (see also [13], [14], [44]), it follows
that bηD(s) is regular at s = 0. Moreover, we have

bη(D)− bη(DP)

=
1√
π

∫ ∞

0

t−
1
2 bTr

(De−tD2 −DPe−tD2
P − D̂e−tD̂2

+ D̂Pe−tD̂2
P
)
dt.

Using the equality 1√
π
t−

1
2 = 2

π

∫∞
0

e−tν2
dν, we can write

bη(D)− bη(DP) =
2
π

∫ ∞

0

∫ ∞

0

bTr
(
f(t, ν)

)
dν dt,

where

f(t, ν) = De−t(D2+ν2) −DPe−t(D2
P+ν2) − D̂e−t(D̂2+ν2) + D̂Pe−t(D̂2

P+ν2).

As we already mentioned, bTr
(
f(t, ν)

)
is absolutely integrable, so we can switch

the order of integration, obtaining

(7.3) bη(D)− bη(DP) =
2
π

∫ ∞

0

( ∫ ∞

0

bTr(f(t, ν)) dt

)
dν.

We can relate bTr(f(t, ν)) to the resolvents as follows. Let Υ ⊂ C be the contour
Υ = ν2/2 + {µ ∈ C | arg µ = π/4, 7π/4}. Then just as we proved (7.1), we find
that

bTr(f(t, ν)) =
i

2π

∫

Υ

e−tµ Tr
( D
D2 + ν2 − µ

− DP
D2
P + ν2 − µ

− D̂
D̂2 + ν2 − µ

+
D̂P

D̂2
P + ν2 − µ

)
dµ.

Hence, bTr(f(t, ν)) = ∂tg(t, ν), where

g(t, ν) = − i

2π

∫

Υ

e−tµ

µ
Tr

( D
D2 + ν2 − µ

− DP
D2
P + ν2 − µ

− D̂
D̂2 + ν2 − µ

+
D̂P

D̂2
P + ν2 − µ

)
dµ.
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By the first estimate in Corollary 7.2 it follows that limt→∞ g(t, ν) = 0 and g(t, ν)
is continuous at t = 0 with value given by setting t = 0 in the previous integral and
then applying Cauchy’s formula:

g(0, ν) = −Tr
( D
D2 + ν2

− DP
D2
P + ν2

− D̂
D̂2 + ν2

+
D̂P

D̂2
P + ν2

)
.

Finally, using that bTr(f(t, ν)) = ∂tg(t, ν) and applying the fundamental theorem
of calculus to (7.3) proves our theorem. ¤

Theorem 7.5. We have

(1) lim
ν→∞

[
log

(
detbζ(D2 + ν2) detbζ(D2

P + ν2)−1
)

− log
(
detbζ(D̂2

P + ν2) detbζ(D̂2 + ν2)−1
) ]

= 0,

(2) ∂ν

[
log

(
detbζ(D2 + ν2) detbζ(D2

P + ν2)−1
)

− log
(
detbζ(D̂2

P + ν2) detbζ(D̂2 + ν2)−1
) ]

= 2Tr
(

ν

D2 + ν2
− ν

D2
P + ν2

− ν

D̂2 + ν2
+

ν

D̂2
P + ν2

)
.

Proof. First let us put

F (t, ν) = e−t(D2+ν2) − e−t(D2
P+ν2) − e−t(D̂2+ν2) + e−t(D̂2

P+ν2).

Then, by Proposition A.1 in [33], the meromorphic extension of
∫ ∞

0

ts−1 bTr(F (t, ν)) dt,

which is a priori defined for <(s) À 0, is regular at s = 0. Hence, denoting the
difference of the logarithms in (1) by F (ν), according to Singer’s formula [40], we
can write

F (ν) = −
∫ ∞

0

t−1 bTr(F (t, ν)) dt.

By the second estimate in Lemma 7.3 and the asymptotics (2.2) and (2.8), it follows
that the integrand in F (ν) is absolutely integrable and vanishes exponentially as
ν →∞. This implies (1). To prove (2), we take the derivative of F (ν):

(7.4) ∂νF (ν) = 2ν

∫ ∞

0

bTr(F (t, ν)) dt.

Let Υ ⊂ C be the contour Υ = ν2/2 + {µ ∈ C | arg µ = π/4, 7π/4}. Then exactly
as we proved (7.2), we can show that

bTr(F (t, ν)) =
i

2π

∫

Υ

e−tµ Tr
(

1
D2 + ν2 − µ

− 1
D2
P + ν2 − µ

− 1
D̂2 + ν2 − µ

+
1

D̂2
P + ν2 − µ

)
dµ.
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Hence, bTr(F (t, ν)) = ∂tG(t, ν), where

G(t, ν) = − i

2π

∫

Υ

e−tµ

µ
Tr

(
1

D2 + ν2 − µ
− 1
D2
P + ν2 − µ

− 1
D̂2 + ν2 − µ

+
1

D̂2
P + ν2 − µ

)
dµ.

By the first estimate in Corollary 7.2 it follows that limt→∞G(t, ν) = 0 and G(t, ν)
is continuous at t = 0 with value given by setting t = 0 in the previous integral and
then applying Cauchy’s formula:

G(0, ν) = −Tr
(

1
D2 + ν2

− 1
D2
P + ν2

− 1
D̂2 + ν2

+
1

D̂2
P + ν2

)
.

Finally, using that bTr(F (t, ν)) = ∂tG(t, ν) and applying the fundamental theorem
of calculus to (7.4) proves our theorem. ¤

The following corollary, which follows from Propositions 7.1, 7.4, and 7.5, relates
the spectral invariants to log detF (K(λ)K̂(λ)−1).

Corollary 7.6. We have

(1) bη(D)− bη(DP) = − 1
πi

∫ ∞

0

∂ν

(
log detF (K(iν)K̂(iν)−1)

− log detF (K(−iν)K̂(−iν)−1)
)

dν,

(2) ∂ν

[
log

(
detbζ(D2 + ν2) detbζ(D2

P + ν2)−1
)

− log
(
detbζ(D̂2

P + ν2) detbζ(D̂2 + ν2)−1
) ]

= ∂ν

(
log detF (K(iν)K̂(iν)−1) + log detF (K(−iν)K̂(−iν)−1)

)
.

8. Proof of the main Theorems

In this section we prove Theorems 1.1 and 1.3. To do so, we first need to prove
two lemmas.

Lemma 8.1. As ν → 0+, we have

log detbζ(D2 + ν2) = 2hX log ν + log detbζD2 + o(1),

log detbζ(D2
P + ν2) = log detbζD2

P + o(1).

Proof. By definition, bζ(s,D2 + ν2) = bζ1(s, ν) + bζ2(s, ν) + hXν−2s, where

bζ1(s, ν) =
1

Γ(s)

∫ 1

0

ts−1 e−tν2( bTr(e−tD2
)− hX

)
dt,

bζ2(s, ν) =
1

Γ(s)

∫ ∞

1

ts−1 e−tν2( bTr(e−tD2
)− hX

)
dt

where the first (second) one has the meromorphic extensions over C from <s À 0
(<s ¿ 0). Since bTr(e−tD2

)−hX = O(t−1/2) as t →∞ by (2.2), bζ1(s, ν)+ bζ2(s, ν)
converges uniformly to bζD2(s) as ν → 0+ for s in a compact neighborhood of 0 in
C. Then, taking the derivative with respect to s for the equality bζ(s,D2 + ν2) =
bζ1(s, ν) + bζ2(s, ν) + hXν−2s, we obtain the first equality.
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We now prove the second equality. To do so, observe that

log detbζ(D2
P + ν2) = log detbζ(D2

PM
+ ν2) + log detbζ(D2

PZ
+ ν2).

By definition, DPM
is invertible so that log detζ(D2

PM
+ ν2) = log detζD2

PM
+ o(1).

By (2.8) we can write

bTr(e−tD2
PZ ) =

1√
π

∑
µk>0

∫ ∞

µk

√
t

e−x2
dx− 1

2

∑
µk>0

e−µ2
kt

where {µk} are the positive eigenvalues of DY . Everything here is exponentially
decreasing as t →∞. This implies that

bζ(D2
PZ

+ν2)(s) =
1

Γ(s)

∫ ∞

0

ts−1 e−tν2 bTr(e−tD2
PZ ) dt

is smooth in ν down to ν = 0. Taking the derivative with respect to s and using
that the µk’s are positive, prove our theorem. ¤
Lemma 8.2. As ν → 0+, we have

log detbζ(D̂2 + ν2) = log detbζD̂2 + o(1),

log detbζ(D̂2
P + ν2) = log detbζD̂2

P + o(1).

Proof. Using the explicit expression (2.7) for the trace of e−tD̂2
PZ and the corre-

sponding formula involving e−tD̂2
obtained by replacing u with u + 1, we find that

(8.1) bTr(e−tD̂2
)− bTr(e−tD̂2

PZ ) =
1√
4πt

TrY

(
e−tD2

Y
)
.

At the end of the proof of Lemma 8.1, we found that log detbζ(D̂2
PZ

+ ν2) =
log detbζD̂2

PZ
+ o(1); then from Equation (8.1) it follows that the same must hold

for D̂2. This proves our first equality. Since

log detbζ(D̂2
P + ν2) = log detζ(D̂2

PN
+ ν2) + log detbζ(D̂2

PZ
+ ν2),

where D̂PN is invertible and log detbζ(D̂2
PZ

+ ν2) = log detbζD̂2
PZ

+ o(1), our second
equality follows. ¤
Proof of Theorem 1.1: From the second formula in Corollary 7.6, we have

(8.2)
[ detbζ(D2 + ν2)
detbζ(D2

P + ν2)
· detbζ(D̂2

P + ν2)

detbζ(D̂2 + ν2)

]

= C · detF (K(iν)K̂(iν)−1) · detF (K(−iν)K̂(−iν)−1)

where C is a constant. By Theorem 7.5, we know that the left-hand side approaches
to 1 as ν →∞, and by Corollary 6.9, we know that

(8.3) lim
ν→∞

detF (K(iν)K̂(iν)−1) = 1 , lim
ν→∞

detF (K(−iν)K̂(−iν)−1) = detF U.

Therefore, C = detF U−1 = (−1)hX detF Û−1. Substituting this value of C into the
identity (8.2), and then using the asymptotics as ν → 0+:

detF (K(iν)K̂(iν)−1) = νhX (detL)−1detF
( Id + Û

2

)(
1 + o(1)

)
,

detF (K(−iν)K̂(−iν)−1) = (−ν)hX (detL)−1detF
( Id + Û

2

)(
1 + o(1)

)
,

(8.4)
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which come from Theorem 6.7, we see that for ν > 0 small,

(8.5)
[ detbζ(D2 + ν2)
detbζ(D2

P + ν2)
· detbζ(D̂2

P + ν2)

detbζ(D̂2 + ν2)

]

= ν2hX (detL)−2detF Û−1detF
( Id + Û

2

)2(
1 + o(1)

)

= ν2hX (detL)−2detF
(2Id + Û + Û−1

4

)(
1 + o(1)

)
.

According to Lemmas 8.1 and 8.2, for ν > 0 small, we have
[ detbζ(D2 + ν2)
detbζ(D2

P + ν2)
· detbζ(D̂2

P + ν2)

detbζ(D̂2 + ν2)

]
= ν2hX

[ detbζ(D2)
detbζ(D2

P)
· detbζ(D̂2

P)

detbζ(D̂2)

](
1 + o(1)

)
.

Substituting these expressions into the left-hand side of the equation (8.5), and
then taking ν → 0+, we obtain

(8.6)
[ detbζ(D2)
detbζ(D2

P)
· detbζ(D̂2

P)

detbζ(D̂2)

]
= (detL)−2 detF

(2Id + Û + Û−1

4

)
.

In the following lemma, we compute the ratio of ζ-determinants over the cylinder;
this also completes the proof for the ζ-determinant gluing formula in Theorem 1.1.

Lemma 8.3. We have
detbζ(D̂2)

detbζ(D̂2
P)

= 2
−ζ

D2
Y

(0)−hY
.

Proof. Let us consider a Dirac operator defined by G(∂u+DY ) over the half infinite
cylinder [−R,∞) × Y (with R > 1). We impose the boundary condition given by
PZ at {−R}×Y and denote the resulting operator by DR. We also denote by DR,P
the Dirac operator obtained by the restrictions of DR to [−R, 0]× Y t [0,∞)× Y
with the boundary conditions given by PN tPZ at the two copies of {0}×Y . Now
we apply the equality (8.6) to the pairs (D2

R,D2
R,P), (D̂2, D̂2

P). Then the equality
(8.6) in this case is

detbζ(D2
R)

detbζ(D2
R,P)

=
detbζ(D̂2)

detbζ(D̂2
P)

.

This equality means that the ratio of the b-determinants
detbζ

(D2
R)

detbζ
(D2

R,P)
is independent

of R! To compute this ratio we take R →∞ and use [33], [34] to get 2
−ζ

D2
Y

(0)−hY .
Since these computations are explained thoroughly in [33], we omit the computa-
tions, but we refer the reader to [26] for a tutorial on the adiabatic method. ¤

Proof of Theorem 1.3: In Lemma 2.2 we showed that detbζD2
PZ

= 2
1
2 ζ

D2
Y

(0)
.

Thus, combining this with Theorem 1.1, we have

(8.7)
detbζD2

detζD2
PM

= 2
− 1

2 ζ
D2

Y
(0)−hY (detL)−2 detF

(2Id + Û + Û−1

4

)
.

We now determine detζD2
Pσ

where Pσ = Π< + Id+σ
2 Π0. To do so, for R > 0 we

define MR := M ∪ ZR, where ZR := [0, R]× Y , with the Dirac operator DR which
is D restricted to MR with the boundary condition Pσ at {u = R}. We shall apply
the gluing formula of [25] to the compact manifold MR decomposed into M and
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ZR. Here, the gluing formula of [25] is identical to that of Theorem 1.1 but for
the compact situation. (Although the details in [25] were proved for the compact
boundaryless case, the proof easily goes through for the situation of a compact
manifold with boundary where a well-posed boundary condition is imposed, which
is what we have here.) Since DR has the boundary condition Pσ = Π< + Id+σ

2 Π0 at
{u = R}, one can check that the Calderón projector at {u = 0} of the restriction
of DR over ZR is exactly PZ = Π> + Id−σ

2 Π0. Thus, by the main result of [25], we
have

(8.8)
detζD2

R

detζD2
PM

· detζD2
R,PZ

= 2
−ζ

D2
Y

(0)−hY (detLR)−2 detF

(2Id + Û + Û−1

4

)
,

where

LR :=
hX∑

k=1

γ0Uk(R)⊗ (γ0Uk(R))∗

with {Uk(R)} an orthonormal basis for ker(DR) and (γ0Uk(R))∗ := 〈 · , γ0Uk(R)〉MR

where 〈 · , · 〉MR
is the inner product on L2(MR, S). Since DR,PZ

is the Dirac
operator G(∂u+DY ) over [0, R]×Y with the boundary condition Pσ = Π<+ Id+σ

2 Π0

at {u = R} and PZ = Π> + Id−σ
2 Π0 at {u = 0}, by the main result of [26], we have

detζD2
R,PZ

= eCR 2
ζ

D2
Y

(0)+hY , C = −(2
√

π)−1(Γ(s)−1Γ(s− 1/2)ζD2
Y
(s− 1/2))′(0).

Substituting this equation into (8.8), we find that

detζD2
R

detζD2
PM

= eCR (detLR)−2 detF

(2Id + Û + Û−1

4

)
.

As R → 0, detζD2
R → detζD2

Pσ
and detLR → detL0 =: detLPσ , so we conclude

that

(8.9)
detζD2

Pσ

detζD2
PM

= (detLPσ )−2 detF

(2Id + Û + Û−1

4

)
.

Finally, taking the quotient of (8.7) and (8.9), we obtain Theorem 1.3.
Proof of Corollaries 1.2 and 1.4: We now prove Corollaries 1.2 and 1.4 by
following almost verbatim the proofs for the ζ-determinant. First, from formula (1)
in Corollary 7.6, we have

bη(D)− bη(DP)

= − 1
πi

(
lim

ν→∞
(

log detF (K(iν)K̂(iν)−1)− log detF (K(−iν)K̂(−iν)−1)
)

− lim
ν→0+

(
log detF (K(iν)K̂(iν)−1)− log detF (K(−iν)K̂(−iν)−1)

) )
.

In view of the limits (8.3) as ν →∞, we have, modulo 2πiZ,

lim
ν→∞

(
log detF (K(iν)K̂(iν)−1)− log detF (K(−iν)K̂(−iν)−1)

)
= − log detF U

and in view of the asymptotics (8.4) for positive ν near 0, we have, modulo 2πiZ,

lim
ν→0+

(
log detF (K(iν)K̂(iν)−1)− log detF (K(−iν)K̂(−iν)−1)

)
= −hXπi.

These equalities imply that

(8.10) bη(D)− η(DPM )− bη(DPZ ) =
1
πi

log detF U − hX mod 2Z.



GLUING FORMULÆ ON MANIFOLDS WITH CYLINDRICAL ENDS 33

This completes the proof of Corollary 1.2 combining bη(DPZ ) = 0 proved in Lemma
2.1. By the main result in [27] we have

η(DPσ )− η(DPM
) =

1
πi

log detF U − hX mod 2Z.

From this equality and the equality (8.10), we conclude that bη(D) = η(DPσ
) mod

2Z. This completes the proof of Corollary 1.4.
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