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Abstract. In this paper we combine elements of the b-calculus and
elliptic boundary problems to solve the decomposition problem for the
(regularized) ζ-determinant of the Laplacian on a manifold with cylin-
drical end into the ζ-determinants of the Laplacians with Dirichlet con-
ditions on the manifold with boundary and on the half infinite cylinder.
We also compute all the contributions to this formula explicitly.

1. Introduction

We investigate the ‘Mayer-Vietoris’ or ‘cut and paste’ decomposition for-
mula of the ζ-determinant for a Laplacian on a manifold with cylindrical end
into the ζ-determinants of the Laplacians with Dirichlet conditions on the
manifold with boundary and on the half infinite cylinder. We also introduce
a new method to attack such surgery problems by comparing the problem to
a corresponding model problem. This approach works for compact manifolds
as well as manifolds with cylindrical ends and will be used to solve related
decomposition problems for the spectral invariants of Dirac type operators in
[12], [13]. We remark that the noncompactness of the underlying manifold
introduces many new facets and obstacles not found in the compact case, as
we will explain later. We begin with a brief account of zeta determinants.

The ζ-determinant of a Laplace type operator was pioneered in the seminal
paper [21] by Ray and Singer. They were seeking an analytic version of the so-
called Reidemeister torsion, a combinatorial-topological invariant introduced
by Reidemeister [22] and Franz [6]. They conjectured that their analytic in-
variant was the same as the Reidemeister torsion. Later, this conjecture was
proved independently by Cheeger [4] and Müller [17]. The ζ-determinants
have also been of great use in quantum field theory where they are being
used to develop rigorous models for Feynman path integral techniques [10].
Because of their use in differential topology and quantum field theory, much
work has been done on understanding the nature of ζ-determinants, especially
their behavior under ‘cutting and pasting’ of manifolds. This was initiated
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on compact manifolds by Burghelea, Friedlander, and Kappeler [2]. Their
method can be considered as a modification of Forman’s [5] variation argu-
ment of the ζ-determinant to the decomposition problem of the ζ-determinant.
Recently the second author and Wojciechowski proved the adiabatic decom-
position formula of the ζ-determinant [19], where adiabatic means that the
length of the neck near the cutting hypersurface is stretched longer and longer
and the limit of the ratio of the ζ-determinants of the whole manifold and the
decomposed manifolds under this process is investigated. This approach has
a close relation with scattering theory over the manifold with cylindrical end
obtained in the limit. In a similar way, one can examine ζ-determinants on
manifolds with boundary by attaching a half infinite cylinder to the boundary
and considering the corresponding invariant for the manifold with cylindrical
end; one must then be able to relate this new invariant to the invariant for
the original manifold with boundary. This approach was employed in the
seminal book of Melrose [15] in the framework of index theory for manifolds
with cylindrical end and further developed in joint work with Hassell and
Mazzeo [8] where extensive analytic tools were developed to study ‘analytic
surgery,’ cf. [14]. Using these analytic tools, Piazza [20] derived surgery for-
mulas for determinant bundles and Hassell [7] proved a b-surgery formula for
the b-analytic torsion. The present paper falls into this ‘b-category’ approach,
as we now explain.

Let X be a manifold with cylindrical end of arbitrary dimension, that is,
we have a decomposition

X = M ∪ Z,

where M is a manifold with boundary Y and Z = [0,∞)×Y is a half infinite
cylinder. We also assume that M has a tubular neighbourhood N = [−1, 0]×Y
of Y . Let ∆X be a Laplace type operator acting on C∞(X, E) where E is
a Hermitian vector bundle over X. We assume that the Riemannian metric
over X and the Hermitian metric of E have product structures over Ẑ :=
N ∪Z = [−1,∞)u×Y , where u is the cylindrical variable. Hence ∆X has the
following form over Ẑ:

∆X |Ẑ = −∂2
u + ∆Y

where ∆Y is a Laplace type operator over Y . Then by restriction, ∆X induces
Laplace operators over M,Z and we denote these operators by ∆M , ∆Z , re-
spectively. For ∆M , ∆Z , we impose Dirichlet boundary conditions and denote
the resulting operators by ∆M,d, ∆Z,d, respectively. Finally, we assume that
the Dirichlet operator on M , ∆M,d, is invertible. This last assumption is sat-
isfied by many operators, for example, if X is connected and ∆X is a Dirac
Laplacian such as the Hodge Laplacian acting on C∞(X,∧qT ∗X⊗Vρ), where
(ρ, Vρ) is a unitary representation of π1(X).
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The ζ-determinant of ∆M,d is defined in the standard way,

detζ∆M,d := exp
(
− d

ds

∣∣∣
s=0

ζ(s, ∆M,d)
)
,

where the ζ-function ζ(s,∆M,d) is defined by means of the heat operator
through the integral

ζ(s,∆M,d) :=
1

Γ(s)

∫ ∞

0

ts−1 Tr(e−t∆M,d) dt.

Here the ζ-function ζ(s, ∆M,d) is a priori defined for <s À 0 and has a mero-
morphic extension over C with the origin as a regular point. For the manifold
with cylindrical end X, the heat operator e−t∆X is not of trace class. To define
the corresponding ζ-determinant, it is therefore necessary to introduce an ap-
propriate regularization of the trace. One natural regularization is Melrose’s
b-trace [15], which leads to the b-determinant. Thus, bTr e−t∆X is well-defined
and, see Section 2, this b-heat trace has asymptotic expansions in half-integer
powers of t as t → 0 and t → ∞. The bζ-function bζ(s, ∆X) is defined as the
sum of the meromorphic extensions of the functions

1
Γ(s)

∫ 1

0

ts−1 bTr(e−t∆X ) dt,

defined a priori for <s À 0, and
1

Γ(s)

∫ ∞

1

ts−1 bTr(e−t∆X ) dt,

defined a priori for <s ¿ 0. Then the (b-) ζ-determinant of ∆X is defined as

detbζ∆X := exp
(
− d

ds

∣∣∣
s=0

bζ(s,∆X)
)
.

Similarly, one can define the b-determinant detbζ∆Z,d. An elementary intro-
duction to the b-trace is presented in Section 2.

The main concern of this paper is the decomposition of detbζ∆X in terms
of detζ∆M,d and detbζ∆Z,d, which can be considered as a decomposition of
the ζ-determinant over X into contributions from the compact part M and
the cylindrical part Z in the spirit of Burghelea, Friedlander and Kappeler
[2]. A related idea can be found in the paper of Hassell and Zelditch [9] where
they considered a similar problem for an exterior domain in R2.

To derive the decomposition formula of the ζ-determinant over X, we de-
velop a new method by introducing an auxiliary model problem over the cylin-
drical part. That is, we consider the corresponding problem for the decom-
position of Ẑ = N ∪ Z into N and Z and the core of our approach is to
compare the original problem with this model problem. One advantage of
our approach is that the difference of the operators on X and the operators
of the model problem is of trace class; this allows us to avoid certain trace
class issues in [2]. Moreover, the explicit computations of the ζ-determinants
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over the cylindrical part enable us to get the explicit value of the (a priori
unknown) BFK constant present in the original formula found in [2].

There are new features of our final result not present in the compact case
due to the noncompactness of X, but before explaining this we recall some
results in [2]. When the Laplacian ∆ acting on functions over a compact
2-dimensional manifold without boundary has a nontrivial kernel (which is
automatically an L2-solution over the compact manifold), the formula proved
in [2] contains an additional term originating from the kernel of ∆. The corre-
sponding phenomenon appears in the case considered in [9] where the bounded
solution of the Laplacian — the constant function over R2 — contributes to
their final formula. Hence one may conjecture that both L2-solutions and
bounded solutions of ∆X would contribute to our formula; in fact, this con-
jecture is indeed true. To discuss this phenomenon, we introduce some more
notations. Let {uj} be an orthonormal basis for the kernel of ∆X on L2(X,E)
and let {Uj} be a basis of the ‘extended L2-solutions’ (bounded solutions of
∆XUj = 0) such that at ∞ on the cylinder, {Uj(∞)} are orthonormal in
L2(Y,E0) where E0 := E|Y . Let vj = uj |Y and Vj = Uj |Y be the restrictions
of uj and Uj , respectively, to the hypersurface {0}×Y . By Lemma A.3 to be
established in the Appendix, the sections {vj , Vj} are linearly independent in
L2(Y,E0), therefore both operators

(1.1) L =
∑

j

vj ⊗ v∗j , L̃ =
∑

j

Vj ⊗ V ∗
j

are nonnegative linear operators on the finite-dimensional vector space V =
span{vj , Vj} ⊂ L2(Y, E0). Since the set {vj , Vj} is a linearly independent
set spanning V , the operator

L + L̃ : V −→ V

is positive. In particular, det(L + L̃) is nonzero.
The final ingredient we need is an operator R over Y , which is defined to be

the sum of the Dirichlet to Neumann operators for ∆M and ∆Z . In Theorem
A.4, we prove that R is a nonnegative first order elliptic classical pseudodif-
ferential operator, so that its ζ-regularized determinant is well defined.

We can now state our main Theorem:

Theorem 1.1. When ∆M,d is invertible, the following decomposition formula
holds:

(1.2)
detbζ∆X

detζ∆M,d · detbζ∆Z,d
= 2−ζ(0,∆Y )−hY

detζR
det(L + L̃)

where ζ(s,∆Y ) is the ζ-function of ∆Y and hY := dimker∆Y .

There are a couple of ways to rewrite formula (1.2). First, one can explicitly
compute that detbζ∆Z,d = e− log detζ∆Y /4 (see Equation (2.6)), so our main
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formula can be written
detbζ∆X

detζ∆M,d
= 2−ζ(0,∆Y )−hY

detζR
det(L + L̃)

· e− 1
4 log detζ∆Y .

This theorem can be recast in terms of relative determinants studied by Müller
[18]. One can show that detbζ∆X/detbζ∆Z,d = detζ(∆X , ∆Z,d), the relative
determinant of the pair (∆X , ∆Z,d). Thus, our main formula can be written

(1.3)
detζ(∆X ,∆Z,d)

detζ∆M,d
= 2−ζ(0,∆Y )−hY

detζR
det(L + L̃)

.

In the recent preprint [16], Müller and Müller derived this relative version
using Carron’s relative determinant formula [3, Theorem 1.4] which implies
that there is a polynomial P such that for λ /∈ (−∞, 0],

detζ(∆X + λ, ∆Z,d + λ)
detζ(∆M,d + λ)

= eP (λ) detζR(λ).

The formula (1.3) is derived in [16] from Carron’s formula by taking λ → 0+.
However, our proof is independent of this result and our proof can be adapted
to solve decomposition problems involving pseudodifferential boundary prob-
lems for Dirac operators [12], [13].

Remark 1.2. We can modify the proof of Theorem 1.1 to derive a similar
formula when a manifold X with cylindrical ends is decomposed into two
manifolds with cylindrical ends. More precisely, suppose that the Laplace
type operator ∆X over X is of product type on a collar neighbourhood of
a cutting hypersurface H. If ∆d denotes the corresponding Laplacians with
Dirichlet boundary conditions over the decomposed manifolds with cylindrical
ends and has no bounded solutions, then

detbζ∆X

detbζ∆d
= 2−ζ(0,∆H)−hH

detζR
det(L + L̃)

where R, L and L̃ are the corresponding operators on H defined as above.
This problem will be studied elsewhere.

We now explain the structure of this paper. In Section 2 we provide an ele-
mentary introduction to the b-integral and b-trace. In Section 3, we introduce
basic material about elliptic boundary problems for Laplace type operators.
In Section 4, we introduce the model operators over the cylindrical part and
study their relations with the original operators. In Section 5, we combine the
variation argument of the ζ-determinant and the comparison with the objects
on the cylinder to get the basic equality for our main result. In Section 6,
we state and combine all the ingredients necessary to prove our main result.
In Section 7, we explicitly compute the ζ-determinants over the cylindrical
part. In doing this, we get the explicit value of the BFK constant, that is,
2−ζ(0,∆Y )−hY in our case. In Section 8, for a parameter λ ∈ R+ we consider
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the asymptotics of detbζ(∆X + λ), detbζ(∆Z,d + λ), and detζR(λ) as λ → 0+,
where R(λ) is the operator for ∆X + λ. The asymptotics of detζR(λ) de-
termine the contribution det(L + L̃). Finally, in Appendix A, we discuss the
analytic properties of R(λ) for λ ∈ [0,∞) that are used in the main body of
the paper.

In conclusion, the authors thank the referee for corrections, suggestions
and simplifications, all of which considerably improved this paper.

2. Introduction to the b-integral and b-trace

The heat operator e−t∆X has a simple structure on the collar of X described
as follows. On the collar Z = [0,∞)u × Y of X, we have

e−t∆X (u, u′, y, y′) =
1√
4πt

e−(u−u′)2/(4t)e−t∆Y + h(t, u, u′, y, y′),

where, for fixed t > 0, h(t, u, u′, y, y′) = O(e−u/2 e−u′/2). This can be proved
in various ways, for instance, one can construct the heat kernel ‘by hand’ as
in [1] or one can appeal to the theory of b-pseudodifferential operators [15].
Restricting this Schwartz kernel to the diagonal, we obtain

(2.1) tr e−t∆X |Diag =
1√
4πt

tr e−t∆Y (y, y) + h(t, u, u, y, y).

Although the second term h(t, u, u, y, y) = O(e−u), which is integrable on
the infinite cylinder Z, the first term is constant with respect to u, so is not
integrable on the infinite cylinder. In particular, the integral of (2.1) over
X diverges, so the heat trace defined via the Lidskĭı [11] trace formula is not
defined. This shows that in order to develop heat kernel methods on manifolds
with cylindrical ends, we need another notion of trace. One such notion was
provided by Melrose [15] and is called the b-trace described as follows. Let f
be a locally integrable function on X and suppose that on the infinite cylinder
Z, we have f(u, y) = c+f̃(u, y) where c is a constant and f̃ is integrable. Then
we see that the constant c is exactly the obstruction to f being integrable on
X. We define the b-integral of f by simply killing this obstruction:

b

∫

X

f :=
∫

M

f +
∫

Z

f̃(u, y) du dy,

where dy is the measure on Y . The b-trace of the heat operator e−t∆X is
defined in terms of the b-integral via

bTr e−t∆X := b

∫

X

tr e−t∆X |Diag,

that is, using the decomposition (2.1),

bTr e−t∆X =
∫

M

tr e−t∆X |Diag +
∫

Z

h(t, u, u, y, y) du dy.
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In [15] it is proved that the b-trace of the heat operator has the usual short
time asymptotic expansion:

(2.2) bTr e−t∆X ∼
∞∑

k=0

ak t(k−n)/2 as t → 0,

where n = dim X; the pointwise trace of the heat kernel on the diagonal also
has such an expansion. There is a related long time asymptotic expansion
(see [7, Appendix]):

(2.3) bTr e−t∆X ∼
∞∑

k=0

bk t−k/2 as t →∞,

where b0 = hX + p
2− hY

4 with hX and p the dimensions of the L2 and extended
L2 kernels of ∆X , respectively.

We can also apply the b-trace to the heat operator e−t∆Z,d . In this case,
we know that

(2.4) e−t∆Z,d =
1√
4πt

[
e
−(u−u′)2

4t − e
−(u+u′)2

4t

]
e−t∆Y ,

where ∆Y denotes the Laplacian over Y as before. Thus, restricting to the
diagonal, we obtain

e−t∆Z,d
∣∣
Diag

=
1√
4πt

[
1− e

−u2
t

]
e−t∆Y (y, y).

The b-trace, by definition, kills the constant term in u, so

(2.5) bTr e−t∆Z,d = −
(∫ ∞

0

1√
4πt

e
−u2

t du

)
· Tr e−t∆Y = −1

4
Tr e−t∆Y .

It follows that bζ(s, ∆Z,d) = − 1
4ζ(s, ∆Y ), and hence

(2.6) detbζ∆Z,d = e− log detζ∆Y /4.

3. Elliptic boundary problems for Laplace type operators

In this Section, we recall some basic material concerning elliptic boundary
problems for Laplace type operators that will be used in the following sections.
See [23] for a general account.

Let us consider our manifold M with boundary Y and a Laplace type
operator ∆ acting on C∞(M, E) where E is a Hermitian vector bundle over
M . Imposing the Dirichlet boundary condition for ∆, we get the operator

∆d := ∆ : dom(∆d) = { F ∈ H2(M, E) : F |Y = 0 } → L2(M, E).

We assume that ∆d is invertible. We denote its Poisson operator by Kd(∆),
which provides us with the unique solution of the Dirichlet boundary problem.
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That is, for a given f ∈ C∞(Y,E0), the section F = Kd(∆)f is the unique
solution of the Dirichlet problem,

∆F = 0 and F |Y = f.

Suppose that ∆ has an L2-invertible extension ∆̃ over a manifold M̃ of
dim M which contains M as a closed submanifold in its interior. The manifold
M̃ need not be compact and may even have boundary. Then we can define
∆−1 to be the restriction of ∆̃−1 to M . More precisely, we define

(3.1) ∆−1 := r+∆̃−1e+,

where e+ : L2(M, E) → L2(M̃, Ẽ) is the extension map by 0 from M to M̃

and r+ : Hk(M̃, Ẽ) → Hk(M,E) is the restriction map back to M . We also
need to introduce the trace map γ,

γ(φ) = (γ0(φ), γ1(φ)) : C∞(M,E) → C∞(Y, E0)⊕ C∞(Y,E0),

where γ0(φ) := φ|Y and γ1(φ) := ∂uφ|Y . Then we can write the inverse of the
operator ∆d in terms of ∆−1:

(3.2) ∆−1
d = ∆−1 −Kd(∆)γ0∆

−1.

We now consider a family of Laplace type operators ∆(λ) depending on a
parameter λ ∈ R+. Then we have

Proposition 3.1. For λ ∈ R+, the following equality holds:

∂λKd(∆(λ)) = −∆(λ)−1
d ∂λ∆(λ) Kd(∆(λ)).

Proof. We consider

∆(λ)Kd(∆(λ)) = 0 , γ0Kd(∆(λ)) = Id

and take the derivative ∂λ to both equalities. Then we obtain

∆(λ)∂λKd(∆(λ)) = −∂λ∆(λ)Kd(∆(λ)) , γ0∂λKd(∆(λ)) = 0.

The second equality means that ∂λKd(∆(λ)) maps into the domain of ∆d.
Then the first equality implies the claim. ¤

We can apply the above constructions to the family of Laplace type opera-
tors ∆M (λ) := ∆M +λ and ∆Z(λ) := ∆Z +λ for λ ∈ R+ and get the Poisson
operator

Kd(λ) := Kd(∆M (λ)) t Kd(∆Z(λ)).
The operator R(λ) for ∆X(λ) := ∆X + λ is defined by

R(λ) := Dfγ1Kd(λ)Dg : C∞(Y, E0) → C∞(Y, E0).

Here, the diagonal map Dg and difference map Df are defined by

Dg(φ) = (φ, φ) : C∞(Y,E0) → C∞(Y, E0)⊕ C∞(Y, E0),

Df (φ, ψ) = φ− ψ : C∞(Y, E0)⊕ C∞(Y, E0) → C∞(Y, E0),
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and the map γ1 should be understood as two copies of the previously defined
one in the natural way. We remark that for λ ∈ R+, the shifted Laplace
operator ∆X(λ) = ∆X +λ is invertible on L2(X, E) and its pseudodifferential
structure is explained thoroughly in [15]. In particular, we can use ∆X(λ) as
an invertible extension to both ∆M (λ) and ∆Z(λ). According to Theorem
A.2, we have

(3.3) R(λ)−1 = γ0(∆X + λ)−1γ∗0 ,

and R(λ) is a positive self-adjoint elliptic pseudodifferential operator of order
1. Hence we can define its ζ-regularized determinant in the standard way.

4. Comparison with the cylinder

The restriction of the operator ∆X(λ) to Ẑ := [−1,∞)×Y defines a family
of Laplacians over Ẑ,

∆Ẑ(λ) := −∂2
u + ∆Y + λ.

We impose the Dirichlet boundary condition for ∆Ẑ(λ) at {−1} × Y and
denote the resulting operator by ∆c(λ) := ∆Ẑ(λ)d. We cut Ẑ at {0} × Y
into N = [−1, 0]× Y and Z = [0,∞)× Y and we impose Dirichlet boundary
conditions over the two copies of {0} × Y in order to get the operator

∆c(λ)d := ∆N (λ)d t∆Z(λ)d

over N t Z. Applying the results in the previous section, we obtain the
operator Rc(λ) for ∆c(λ).

By the natural embedding of L2(Ẑ, E|Ẑ) into L2(X, E), we can extend the
operators ∆c(λ)−1, ∆c(λ)−1

d as zero maps over the orthogonal complement
of L2(Ẑ, E|Ẑ). Therefore we can regard the operators ∆X(λ)−1, ∆(λ)−1

d :=
∆M (λ)−1

d t∆Z(λ)−1
d , ∆c(λ)−1, and ∆c(λ)−1

d as defined over the same Hilbert
space L2(X, E). With respect to the decomposition of L2(X,E) into the sum
L2(M,E|M )⊕ L2(Z, E|Z), the operator ∆X(λ)−1 has the matrix form

∆X(λ)−1 =
(

∆M (λ)−1 rZ∆X(λ)−1eM

rM∆X(λ)−1eZ ∆Z(λ)−1

)
,

where eM , eZ are the extension maps from M, Z and rM , rZ are the restriction
maps to M,Z defined in Section 3, and where ∆M (λ)−1 := rM∆X(λ)−1eM

and ∆Z(λ)−1 := rZ∆X(λ)−1eZ . We denote the diagonal operator of ∆X(λ)−1

by ∆X,dig(λ)−1 := ∆M (λ)−1t∆Z(λ)−1 and similarly we denote by ∆c
dig(λ)−1

the corresponding diagonal operator for ∆c(λ)−1. The main result of this
section is the following proposition.

Proposition 4.1. The difference

R(λ)−Rc(λ) : L2(Y, E0) → L2(Y, E0)



10 PAUL LOYA AND JINSUNG PARK

is a smoothing operator, and the difference

(∆X,dig(λ)−1 −∆(λ)−1
d )− (∆c

dig(λ)−1 −∆c(λ)−1
d ) : L2(X, E) → L2(X,E)

is of trace class.

Proof. Let ρ(a, b) : [−1, 1] → [0, 1] equal to 0 for −a ≤ u ≤ a and equal to 1
for b ≤ |u| . We use ρ(a, b) to define

φ1 = 1− ρ(5/7, 6/7) , ψ1 = 1− ψ2 ,

φ2 = ρ(1/7, 2/7) , ψ2 = ρ(3/7, 4/7)

and then we extend these functions in the obvious way to define functions
over X. Now we define a parametrix Q(λ) for the operator ∆X(λ)−1 by

Q(λ)(x, z) = φ1(x)∆c(λ)−1(x, z)ψ1(z) + φ2(x)∆X(λ)−1(x, z)ψ2(z).

Applying ∆X(λ) to both sides and using that ∂uφ1 and ∂uφ2 have supports
disjoint to the supports of ψ1 and ψ2, respectively, it follows that

∆X(λ)Q(λ) = Id + S(λ),

where S(λ) is a smoothing operator. This equality allows us to write

∆X(λ)−1 −Q(λ) = −∆X(λ)−1S(λ)

where −∆X(λ)−1S(λ) is a smoothing operator, which then implies that

∆X(λ)−1 −∆c(λ)−1 = S ′(λ) + T (λ)(4.1)

where S ′(λ) is a smoothing operator and T (λ) is an integral operator whose
support does not reach {0} × Y . By (3.3), we have

R(λ)−1 −Rc(λ)−1 = γ0(∆X(λ)−1 −∆c(λ)−1)γ∗0 = γ0S ′(λ)γ∗0 .

Hence R(λ)−1 − Rc(λ)−1 is a smoothing operator, so that R(λ) − Rc(λ) is
also a smoothing operator. This completes the proof of the first claim. For
the second claim, using the equality in (3.2), we obtain

∆X,dig(λ)−1−∆(λ)−1
d − (∆c

dig(λ)−1 −∆c(λ)−1
d )

= Kd(λ)γ0∆X,dig(λ)−1 −Kc
d(λ)γ0∆c

dig(λ)−1

=
(Kd(λ)−Kc

d(λ)
)
γ0∆X,dig(λ)−1

+Kc
d(λ)γ0

(
∆X,dig(λ)−1 −∆c

dig(λ)−1
)
,

(4.2)

where Kc
d(λ) is the Poisson operator for the Dirichlet boundary condition of

the operator ∆c(λ)|N t∆c(λ)|Z . Applying the equality (4.1) again, it is easy
to see that Kd(λ) − Kc

d(λ), γ0(∆X,dig(λ)−1 − ∆c
dig(λ)−1) have regularizing

Schwartz kernels. Hence we conclude that the sum of the operators in (4.2)
is of trace class. This completes the proof of the second claim. ¤
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From the equality (4.1) and the corresponding equality for ∆(λ)−1
d −∆c(λ)−1

d ,
it follows that ∆X(λ)−1 − ∆(λ)−1

d − ∆c(λ)−1 + ∆c(λ)−1
d has a continuous

Schwartz kernel. In particular, we have

Corollary 4.2. The operator ∆X(λ)−1−∆(λ)−1
d −∆c(λ)−1 + ∆c(λ)−1

d is of
trace class over L2(X, E).

Remark 4.3. Looking carefully at the proof of Proposition 4.1, one can see
that the proof works for λ = µ ∈ C restricted to any sector Γ not intersecting
the nonpositive real axis and for µ ∈ Γ, using results from the b-calculus [15,
Ch. 6], the operator ∆X(µ)−1−∆(µ)−1

d −∆c(µ)−1+∆c(µ)−1
d has a continuous

Schwartz kernel that vanishes exponentially along the cylinder and is O(|µ|−1)
as |µ| → ∞ in Γ.

We can now apply the results of Proposition 4.1 and Corollary 4.2 to the
variation of ζ-determinants.

Proposition 4.4. The following equalities hold:

(1) ∂λ log (detζR(λ) (detζRc(λ))−1)

= Tr( R(λ)−1∂λR(λ)−Rc(λ)−1∂λRc(λ) ),

(2) ∂λ [ log ( detbζ∆X(λ) (detbζ∆Z(λ)d · detζ∆M (λ)d)−1 )

− log ( detbζ∆Ẑ(λ)d (detbζ∆Z(λ)d · detζ∆N (λ)d)−1 ) ]

= Tr( ∆X(λ)−1 −∆(λ)−1
d −∆c(λ)−1 + ∆c(λ)−1

d ).

Proof. The proofs of these two formulas are similar, so we shall focus on the
proof of (2). Denote the difference of the logarithms in (2) by F (λ). Then
according to Singer’s formula [24], we have

F (λ) = −
∫ ∞

0

t−1 bTr
(
e−t∆X(λ) − e−t∆(λ)d − e−t∆c(λ) + e−t∆c(λ)d

)
dt.

Note that since the small time heat asymptotics are determined by local sym-
bols it follows that, cf. the proof of Proposition 4.1, the asymptotic expansion
as t → 0 of the integrand is trivial. Using that ∂λe−tλ = −t e−tλ, we obtain

∂λF (λ) =
∫ ∞

0

bTr
(
e−t∆X(λ) − e−t∆(λ)d − e−t∆c(λ) + e−t∆c(λ)d

)
dt

= −
∫ ∞

0

∂t
bTr(f(t, λ)) dt,(4.3)

where

f(t, λ) =
e−t∆X(λ)

∆X(λ)
− e−t∆(λ)d

∆(λ)d
− e−t∆c(λ)

∆c(λ)
+

e−t∆c(λ)d

∆c(λ)d
.
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Let Υ ⊂ C be the contour Υ = −λ/2 + {µ ∈ C | arg λ = 3π/4, 5π/4}. Then
by Cauchy’s formula, we can write

(4.4) f(t, λ) =
i

2π

∫

Υ

etµ

µ

(
∆X(λ + µ)−1 −∆(λ + µ)−1

d

−∆c(λ + µ)−1 + ∆c(λ + µ)−1
d

)
dµ.

Note that each resolvent on the right is L2 invertible for all µ /∈ (−∞,−λ], so
each resolvent is well-defined on the contour Υ, and that for µ ∈ Υ, Re µ ≤
−λ/2, so |etµ| ≤ e−tλ/2 for all µ ∈ Υ, which implies that the µ integral
is well-defined. By Remark 4.3, it follows that the integrand in (4.4) has a
continuous Schwartz kernel that vanishes exponentially along the cylinder and
is O(e−tλ/2/|µ|2) as |µ| → ∞ in Υ. Thus, f(t, λ) is a regularizing operator
that vanishes exponentially as t →∞ and is continuous at t = 0, whose value
we obtain by substituting t = 0 in (4.4) and using Cauchy’s formula:

f(0, λ) = ∆X(λ)−1 −∆(λ)−1
d −∆c(λ)−1 + ∆c(λ)−1

d .

The Schwartz kernel of this operator restricted to the diagonal is exponentially
decreasing along the cylinder, so has no constant term. Therefore the b-trace
of f(0, λ) equals the usual trace of f(0, λ). Now applying the fundamental
theorem of calculus to (4.3) completes our proof. ¤

5. Variation of the ζ-determinant

In this Section, we combine the comparison of the ζ-determinants on X
with that on the cylinder Ẑ and the variation argument of the ζ-determinant
found in Proposition 4.4. We begin with the following lemma.

Lemma 5.1. For λ ∈ R+, there is a constant C independent of λ such that

(5.1)
detbζ∆X(λ)

detζ∆M (λ)d · detbζ∆Z(λ)d
· (detζR(λ))−1

= C · detbζ∆Ẑ(λ)d

detζ∆N (λ)d · detbζ∆Z(λ)d
· (detζRc(λ))−1.

Proof. We start from the variation of log detζR(λ). By the definition of R(λ)
and Proposition 3.1, we have

∂λR(λ) = −Dfγ1∆(λ)−1
d ∂λ∆X,dig(λ) Kd(λ)Dg

= −Dfγ1(∆X,dig(λ)−1 −Kd(λ)γ0∆X,dig(λ)−1)Kd(λ)Dg,

where we used (3.2) and that ∂λ∆X,dig(λ) = 1. Now we claim that

(5.2) Dfγ1∆X,dig(λ)−1Kd(λ) : C∞(Y, E0) → L2(Y,E0)
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is the zero map. Indeed, by definition, Kd(λ) maps into H
1
2 (X, E), so that

image of γ1∆X,dig(λ)−1Kd(λ) lies in H1(Y, E0). It follows that the concerned
map in (5.2) is the trivial map. Hence,

∂λR(λ) = Dfγ1Kd(λ)γ0∆X,dig(λ)−1Kd(λ)Dg,

so that

R(λ)−1∂λR(λ) = (Dfγ1Kd(λ)Dg)−1Dfγ1Kd(λ)γ0∆X,dig(λ)−1Kd(λ)Dg.

We note that Dg has a right inverse on the image of γ0∆X,dig(λ)−1Kd(λ)Dg

since γ0∆X,dig(λ)−1Kd(λ)Dg ∈ H2(Y,E0) as we explained above. Therefore,

R(λ)−1∂λR(λ)(5.3)

= (Dfγ1Kd(λ)Dg)−1Dfγ1Kd(λ)γ0∆X,dig(λ)−1Kd(λ)Dg

= (Dfγ1Kd(λ)Dg)−1(Dfγ1Kd(λ)Dg)D−1
g γ0∆X,dig(λ)−1Kd(λ)Dg

= D−1
g γ0∆X,dig(λ)−1Kd(λ)Dg.

A similar formula holds for Rc(λ)−1∂λRc(λ). Then by Equation (1) in Propo-
sition 4.4 and other equalities proved before, we have

∂λ log (detζR(λ)(detζRc(λ))−1)

= Tr(R(λ)−1∂λR(λ)−Rc(λ)−1∂λRc(λ))

= Tr(Kd(λ)γ0∆X,dig(λ)−1 −Kc
d(λ)γ0∆c

dig(λ)−1) by (5.3)

= Tr(∆X,dig(λ)−1 −∆(λ)−1
d −∆c

dig(λ)−1 + ∆c(λ)−1
d ) by (3.2)

= Tr(∆X(λ)−1 −∆(λ)−1
d −∆c(λ)−1 + ∆c(λ)−1

d ).

Equation (2) in Proposition 4.4 now completes our proof. ¤

We can compute the constant C in (5.1) by taking logarithms of both sides
and then taking λ →∞. By the proof of Proposition 4.4, we have

(5.4) log detbζ∆X(λ)− log detbζ∆Z(λ)d − log detζ∆M (λ)d

− log detbζ∆Ẑ(λ)d + log detbζ∆Z(λ)d + log detζ∆N (λ)d

= −
∫ ∞

0

t−1 Tr(e−t(∆X+λ) − e−t(∆d+λ) − e−t(∆Ẑ+λ) + e−t(∆c
d+λ)) dt.

The large time portion of the integral
∫∞
0

dt on the right-hand side decays
exponentially as λ →∞. Hence, the asymptotics of the left-hand side of (5.4)
as λ →∞ is determined by the asymptotic expansion of

Tr(e−t(∆X+λ) − e−t(∆d+λ) − e−t(∆Ẑ+λ) + e−t(∆c
d+λ))

as t → 0, which, in view of the proof of Proposition 4.4, is trivial. This implies
that the asymptotic expansion of the left-hand side of (5.4) is also trivial. We
now consider the asymptotic expansions of log detζR(λ) and log detζRc(λ) as
λ →∞. Let us recall the following result from [2].
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Proposition 5.2. For a positive elliptic pseudodifferential operator P (λ) with
the parameter λ of weight k on an m-dimensional manifold without boundary,
there is an asymptotic expansion

(5.5) log detζP (λ) ∼
∞∑

j=−m

ajλ
− j

k +
m∑

j=0

bjλ
j
k log λ as λ →∞,

where the coefficients aj and bj are determined by local formulas in terms of
the symbol of the operator P (1).

Applying Proposition 5.2 to log detζR(λ) and log detζRc(λ) and denoting
the constant terms of these asymptotic expansions by aR, ac

R, we see that

log C = −(aR − ac
R).

Since the asymptotics of (5.5) are given in terms of the local symbol asymp-
totics of R(1) and Rc(1), Proposition 4.1 implies that aR − ac

R = 0. Hence
we can conclude that C = 1; in other words, we have

Proposition 5.3. For any λ ∈ R+, the following equality holds:

(5.6)
detbζ∆X(λ)

detζ∆M (λ)d · detbζ∆Z(λ)d
· (detζR(λ))−1

=
detbζ∆Ẑ(λ)d

detζ∆N (λ)d · detbζ∆Z(λ)d
· (detζRc(λ))−1.

6. Proof of Theorem 1.1

In this Section, we prove our main Theorem 1.1 by taking λ → 0+ in (5.6)
and combining key results that will be proved in the subsequent sections.
First, in Section 7 (see Theorem 7.4), we prove that

lim
λ→0+

detbζ∆Ẑ(λ)d

detζ∆N (λ)d · detbζ∆Z(λ)d
· (detζRc(λ))−1 = 2−ζ(0,∆Y )−hY .(6.1)

Second, in Section 8 (see Theorem 8.1), we prove that as λ → 0+,

(6.2) log detbζ∆X(λ) =
(
hX +

p

2
− hY

4

)
log λ + log detbζ∆X + o(1),

where p is the number of linearly independent extended L2-solutions of ∆X .
Third, (see Theorem 8.2) we prove that as λ → 0+,

(6.3) log detbζ∆Z(λ)d = −hY

4
log λ + log detbζ∆Z,d + o(1).

Fourth, (see Theorem 8.3) we prove that as λ → 0+,

(6.4) log detζR(λ) =
(
hX +

p

2

)
log λ− log det(L + L̃) + log detζR+ o(1).
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Finally, to complete the proof of our main theorem, we note that as λ → 0+,

(6.5) log detζ(∆M,d + λ) = log detζ(∆M,d) + o(1),

since ∆M,d has discrete spectrum with no kernel. Combining (6.1), (6.2),
(6.3), (6.4), and (6.5), we get our main theorem.

7. Computations over the cylinder

Our goal in this Section is to compute the right-hand side in (5.6) above.
Let us consider the finite cylinder NR := [0, R] × Y and the half infinite
cylinder ZR := [R,∞) × Y in Z. By restriction, we obtain Laplace type
operators ∆NR

over NR and ∆ZR
over ZR of the form −∂2

u + ∆Y where
∆Y denotes the Laplacian over Y as before. We impose Dirichlet boundary
conditions at {0, R} × Y for ∆NR

and at {R} × Y for ∆ZR
and denote by

∆NR,d, ∆ZR,d the resulting operators. For the cutting at {R} × Y of Z into
NR t ZR, we can define the operator Rc

R(λ) for ∆Z,d + λ.
We begin by computing detζ∆NR,d explicitly.

Proposition 7.1. The following equality holds:

(7.1) detζ∆NR,d = (2R)hY · (detζ

√
∆Y )−1

· e− R
2
√

π (Γ(s)−1Γ(s− 1
2 )ζ(s− 1

2 ,∆Y ))′(0) ·
∞∏

l=hY +1

(1− e−2R
√

µl)

where {µl} are the eigenvalues of ∆Y .

Proof. Since the spectrum of ∆NR,d is { µl + π2k2

R2 | l, k ∈ N }, we have

ζ(s, ∆NR,d) =
∞∑

l=hY +1

∞∑

k=1

(
µl +

π2k2

R2

)−s

+ hY (R/π)2sζ(2s)

where ζ(s) is the Riemann-zeta function. We can rewrite the first term on
the right as

1
Γ(s)

∞∑

l=hY +1

µ−s
l

∫ ∞

0

1
2

(∑

k∈Z
exp

(
−

(
1 +

( πk

R
√

µl

)2)
x

)
− e−x

)
xs−1 dx.

Applying the Poisson summation formula

∑

k∈Z
e−a2k2

=
∑

k∈Z

√
π

a
e−

π2k2

a2 =
√

π

a
+ 2

∑

k∈N

√
π

a
e−

π2k2

a2 ,
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where a is a positive real number, we can rewrite this term as

1
Γ(s)

∞∑

l=hY +1

µ−s
l

∫ ∞

0

(∑

k∈N

R
√

µl√
πx

exp
(
− (R

√
µlk)2

x

)
e−x

)
xs−1 dx

+
1

Γ(s)

∞∑

l=hY +1

µ−s
l

1
2

∫ ∞

0

R
√

µl√
πx

e−xxs−1 dx− 1
2
ζ(s,∆Y ).

Now observe that the function∫ ∞

0

(∑

k∈N

R
√

µl√
πx

exp
(
− (R

√
µlk)2

x

)
e−x

)
xs−1 dx

is regular at s = 0, and
∞∑

l=hY +1

µ−s
l

1
2

∫ ∞

0

R
√

µl√
πx

e−xxs−1 dx =
1
2
· R√

π
Γ
(
s− 1

2

)
ζ
(
s− 1

2
, ∆Y

)
.

Therefore, we conclude that

ζ ′(0, ∆NR,d) =
R√
π

∞∑

l=hY +1

√
µl

∫ ∞

0

(∑

k∈N
exp

(
− (R

√
µlk)2

x

)
e−x

)
x−3/2 dx

+
R

2
√

π

(
Γ(s)−1Γ

(
s− 1

2

)
ζ
(
s− 1

2
,∆Y

))′
(0)

− 1
2
ζ ′(0, ∆Y ) + hY (2 log(R/π) ζ(0) + 2ζ ′(0)).

In other words, we have

ζ ′(0,∆NR,d)

=
∞∑

l=hY +1

∑

k∈N

e−2R
√

µlk

k
+

R

2
√

π

(
Γ(s)−1Γ

(
s− 1

2

)
ζ
(
s− 1

2
, ∆Y

))′
(0)

− 1
2
ζ ′(0, ∆Y )− hY log(2R).

This completes the proof. ¤

Proposition 7.2. For λ ∈ [0,∞), we have

detbζ(∆Z,d + λ)
detbζ(∆ZR,d + λ)

= exp

(
− R

2
√

π

(
Γ(s)−1Γ

(
s− 1

2

)
ζ
(
s− 1

2
,∆Y

))′
(0)

)
.

(7.2)

Proof. Using the well-known formulas for e−t(∆Z,d+λ) and e−t(∆ZR,d+λ) (cf.
Equation (2.4)), it is straightforward to prove that for any λ ∈ [0,∞),

bTr(e−t(∆Z,d+λ))− bTr(e−t(∆ZR,d+λ)) = R(4πt)−
1
2 Tr(e−t(∆Y +λ)).
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For λ 6= 0, this gives us

bζ(s,∆Z,d + λ)− bζ(s, ∆ZR,d + λ) =
R

2
√

π

1
Γ(s)

∫ ∞

0

ts−
3
2 Tr(e−t(∆Y +λ)) dt,

from which we can get the claimed equality for λ > 0. When λ = 0,
bζ(s, ∆Z,d) − bζ(s,∆ZR,d) is the sum of the meromorphic extensions of the
following functions which are a priori defined by

R

2
√

π

1
Γ(s)

∫ 1

0

ts−
3
2 Tr(e−t∆Y ) dt

for <s À 0, and
R

2
√

π

1
Γ(s)

∫ ∞

1

ts−
3
2 Tr(e−t∆Y ) dt

for <s ¿ 0. Hence we get the claimed equality even when λ = 0. ¤

Finally, we compute the ζ-determinant of Rc
R(λ).

Proposition 7.3. The following equality holds:

detζRc
R(λ)

=

{
2ζ(0,∆Y +λ) · detζ

√
∆Y + λ · detF (1− e−2R

√
∆Y +λ)−1 if λ 6= 0,

R−hY 2ζ(0,∆Y ) · detζ

√
∆Y · detF (1− e−2R

√
∆∗Y )−1 if λ = 0,

where detF (·) denotes the Fredholm determinant and ∆∗
Y denotes the restric-

tion of ∆Y to (ker∆Y )⊥. In particular, the function λ 7→ detζRc
R(λ) is

continuous at λ = 0.

Proof. By elementary computations, we find that

Rc
R(λ) =

{
2
√

∆Y + λ (1− e−2R
√

∆Y +λ)−1 if λ 6= 0,

2
√

∆Y (1− e−2R
√

∆Y )−1P1 + R−1P0 if λ = 0,

where P1, P0 are the orthogonal projections onto (ker∆Y )⊥ and ker∆Y , re-
spectively. The claim follows from this explicit formula for Rc

R(λ). ¤

Theorem 7.4. The following equality holds:

lim
λ→0+

detbζ∆Ẑ(λ)d

detζ∆N (λ)d · detbζ∆Z(λ)d
· (detζRc(λ))−1 = 2−ζ(0,∆Y )−hY .

Proof. Setting R = 1, making the change of variables u 7→ u−1 (which changes
Z to Ẑ), then using Propositions 7.1, 7.2, and 7.3 proves our theorem. We
note that detζ∆N (λ)d is continuous at λ = 0 since ∆N (λ)d has no kernel for
any λ ∈ [0,∞). ¤
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8. Asymptotics as λ → 0+

In this Section, we prove our main results concerning the asymptotic ex-
pansions of our various determinants as λ → 0+.

Theorem 8.1. We have the following asymptotic relation: As λ → 0+,

log detbζ∆X(λ) =
(
hX +

p

2
− hY

4

)
log λ + log detbζ∆X + o(1).

Proof. From the definition of the b-zeta function, we can write bζ(s,∆X(λ)) =
bζ1(s, λ) + bζ2(s, λ) + b0λ

−s, where b0 = hX + p
2 − hY

4 ,

bζ1(s, λ) =
1

Γ(s)

∫ 1

0

ts−1 e−tλ
(

bTr e−t∆X − b0

)
dt

is meromorphically extended from <s À 0, and

bζ2(s, λ) =
1

Γ(s)

∫ ∞

1

ts−1 e−tλ
(

bTr e−t∆X − b0

)
dt.

Using that bTr e−t∆X − b0 = O(t−1/2) as t → ∞ by (2.3), it follows that
bζ1(s, λ)+ bζ2(s, λ) converges uniformly to bζ(s, ∆X) as λ → 0+ for s ∈ C near
zero. Taking derivatives of these functions at s = 0, we get our result. ¤

Theorem 8.2. We have the following asymptotic relation: As λ → 0+,

log detbζ∆Z(λ)d = −hY

4
log λ + log detbζ∆Z,d + o(1).

Proof. By (2.5) we can write

bTr e−t∆Z(λ)d = −e−tλ

4
Tr e−t∆Y = −1

4

(
hY e−tλ +

∑

k

e−t(λ+µk)
)
,

where {µk} are the positive eigenvalues of ∆Y . This equality implies that

bζ(s,∆Z(λ)d) = −1
4

(
hY · λ−s +

∑

k

(λ + µk)−s
)
.

Taking the derivative with respect to s, multiplying by −1, and using that
the µk’s are positive, proves our theorem. ¤

The following theorem is the last ingredient needed to prove our main
Theorem 1.1.

Theorem 8.3. As λ → 0+, we have

log detζR(λ) =
(
hX +

p

2

)
log λ− log det(L + L̃) + log detζR+ o(1),

where L and L̃ are defined in (1.1).
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Proof. If P : L2(Y,E0) −→ V denotes the orthogonal projection onto V , then

ζ(s,R(λ)) = Tr(R(λ)−s) = Tr(PR(λ)−s) + Tr(P⊥R(λ)−s).

Theorem A.4 implies that as λ → 0+,

− d

ds

∣∣∣∣
s=0

Tr(P⊥R(λ)−s) = log detζR+ o(1).

Since Tr(PR(λ)−s) = Tr(PR(λ)−sP ), it follows that − d
ds

∣∣∣
s=0

Tr(PR(λ)−s)

= − log det
(
PR(λ)−1P

)
. Thus, we are left to prove that as λ → 0+,

log det
(
PR(λ)−1P

)
= −

(
hX +

p

2

)
log λ + log det(L + L̃) + o(1),

or after exponentiating and setting λ = ν2, it remains to prove that

(8.1) det
(
PR(ν2)−1P

)
= ν−2hX−p

(
det(L + L̃) + o(1)

)
.

To prove this we replace λ with ν2 in the formula (A.3) to get

PR(ν2)−1P =
1
ν2

∑
vj ⊗ v∗j +

1
ν

∑
Vj ⊗ V ∗

j + E(ν),

where E(ν) = Pγ0Q(ν2)γ∗0P is an operator that depends continuously on
ν ∈ [0,∞). This implies that

det
(
PR(ν2)−1P

)
= ν−2hX−2p det

(
L + νL̃ + ν2E(ν)

)
.

To compute the determinant on the right, consider the linear map Sν : V → V

defined by vj 7→ vj and Vj 7→ ν−1Vj . Clearly, SνL = L, Sν(νL̃) = L̃, and
Sν(ν2E(ν)) = O(ν). Thus,

L + νL̃ + ν2E(ν) = S−1
ν

(
L + L̃ + O(ν)

)
,

which, together with the fact that det S−1
ν = νp, immediately gives (8.1). ¤

Appendix A. Some analytic properties of R(λ) for λ ∈ [0,∞)

Throughout this section we let λ denote a parameter in [0,∞). For any
λ ∈ [0,∞) and ϕ ∈ C∞(Y,E0), there is a unique smooth bounded solution
Φ = Φ(λ) = (Φ1,Φ2) ∈ C∞(M, E)⊕ C∞(Z,E) that is continuous at Y with
value ϕ such that (∆X + λ)Φ = 0 off of Y . (See below for the uniqueness on
Z.) The usual theory of elliptic boundary value problems shows that Φ1(λ)
is a continuous (even smooth) function of λ ∈ [0,∞). To see that Φ2(λ) is
continuous in λ, let {ϕj} be a basis of ∆Y with the eigenvalues {µj} for each
j. If ϕ =

∑
j ajϕj , then one can check that the unique solution Φ2(λ) is given

explicitly by
Φ2(λ) =

∑

j

aje
−
√

µj+λ uϕj .
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Hence, Φ2(λ) is a continuous function of λ and this formula shows that
∂uΦ2(λ) is also a continuous function of λ too. Then

R(λ)ϕ := ∂uΦ1(λ)
∣∣∣
Y
− ∂uΦ2(λ)

∣∣∣
Y

.

This discussion implies the following lemma.

Lemma A.1. R(λ) is a continuous function of λ ∈ [0,∞).

We now find a formula for R(λ). Fix λ ∈ [0,∞). On a neighbourhood of
Y , define the function Ψ(u, y) by the formula

∂uΦ = −R(λ)ϕH(u) + Ψ(u, y),

where H(u) is the Heaviside function. Then Ψ(0−, y) = ∂uΦ1 and

Ψ(0+, y) = ∂uΦ2 +R(λ)ϕ = ∂uΦ2 + (∂uΦ1 − ∂uΦ2) = ∂uΦ1,

hence Ψ(u, y) is continuous at Y . Since Ψ(u, y) is smooth up to Y from each
side, it follows that ∂uΨ has at most a jump discontinuity at Y . On the collar,
∆X + λ = −∂2

u + ∆Y + λ, therefore

(A.1) (∆X + λ)Φ = −∂2
uΦ + (∆Y + λ)Φ = R(λ)ϕ⊗ δY − ∂uΨ + (∆Y + λ)Φ,

where δY is the delta distribution concentrated at Y . Off of the hypersurface
Y , we know that (∆X +λ)Φ = 0, thus (A.1) implies that −∂uΨ+(∆Y +λ)Φ =
0 off of Y . Since −∂uΨ has at most a jump discontinuity at Y and (∆Y +λ)Φ
is smooth at Y , it follows that −∂uΨ + (∆Y + λ)Φ must be identically zero
since it zero off of Y with at most a jump discontinuity at Y . Therefore, (A.1)
implies that

(∆X + λ)Φ = R(λ)ϕ⊗ δY = γ∗0 R(λ)ϕ.

If λ > 0, then we can multiply both sides by (∆X + λ)−1 and then restrict to
Y , obtaining

(A.2) ϕ = γ0(∆X + λ)−1γ∗0 R(λ)ϕ,

where γ∗0 = (· ⊗ δY ) is the adjoint to γ0. This formula is the basis for estab-
lishing the following theorem.

Theorem A.2. For λ > 0, R(λ) is a positive definite first order elliptic
classical pseudodifferential operator such that

R(λ)−1 = γ0(∆X + λ)−1γ∗0 .

Proof. Fix λ > 0. We begin by proving that A(λ) = γ0(∆X + λ)−1γ∗0 is
an elliptic classical pseudodifferential operator of order −1. Note that A(λ)
is self-adjoint and therefore its kernel and cokernel have the same dimension.
This fact, together with the formula (A.2), immediately imply that A(λ) must
in fact be invertible with inverse R(λ). Hence, R(λ) = A(λ)−1 is a classical
elliptic operator of order 1. At the end of this proof we show that R(λ) is
positive definite. To see that A(λ) is a classical elliptic operator of order −1
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we choose a partition of unity of Y in order to work in local in coordinates.
In a coordinate patch [−1, 1]u×Rn−1 on X, where n = dim X and where the
factor Rn−1 is a coordinate patch on Y , we can write

(∆X + λ)−1(γ∗0ϕ) =
∫

Rn

ei(u,y)·(τ,η) a(u, y, τ, η;λ) (̂γ∗0ϕ)(τ, η) d̄τ d̄η,

where a(u, y, τ, η;λ) = σ((∆X+λ)−1) is an elliptic classical symbol of order−2
and d̄ is d divided by as many 2π’s as there are variables. Since (̂γ∗0ϕ)(τ, η) =
ϕ̂(η), we see that

A(λ)ϕ = γ0(∆X + λ)−1(γ∗0ϕ) =
∫

Rn−1
eiy·η b(y, η; λ) ϕ̂(η) d̄η,

where b(y, η; λ) =
∫
R a(0, y, τ, η; λ) d̄τ . One can check that b(y, η;λ) is an

elliptic classical symbol of order −1 in η. This proves that A(λ) is an elliptic
classical pseudodifferential operator of order −1.

To prove that R(λ) is positive definite, let χ(u) ∈ C∞c ((−1, 1)) be such
that

∫
χ(u) du = 1 and for j = 1, 2, . . ., define ψj(u, y) := j χ(ju) ϕ(y). Then

it is straightforward to check that

〈R(λ)−1ϕ,ϕ〉 = 〈γ0(∆X + λ)−1γ∗0ϕ, ϕ〉 = lim
j→∞

〈(∆X + λ)−1ψj , ψj〉.

Since the operator (∆X +λ)−1 is positive definite, the last limit involves only
nonnegative real numbers, therefore the limit 〈R(λ)−1ϕ,ϕ〉 is nonnegative.
Of course, 〈R(λ)−1ϕ,ϕ〉 cannot be zero unless ϕ = 0, so R(λ)−1 is positive
definite. Thus, R(λ) is also positive definite. ¤

We now analyze R = R(0). To do so, we use the formula

R(λ)−1 = γ0(∆X + λ)−1γ∗0 ,

where γ0 is the restriction map to the boundary Y and γ∗0 = (· ⊗ δY ). Ac-
cording to Proposition 6.28 in [15] we have

(∆X + λ)−1 =
1
λ

∑

j

uj ⊗ u∗j +
1√
λ

∑

j

Uj ⊗ U∗
j + Q(λ),

where Q(λ) is a b-pseudodifferential operator of order −2 depending contin-
uously on λ ∈ [0,∞), {uj} is an orthonormal basis for the kernel of ∆X on
L2(X, E), and {Uj} is a basis of the extended L2-solutions, the bounded solu-
tions ∆XUj = 0 such that at ∞ on the cylinder, {Uj(∞)} is an orthonormal
set in L2(Y,E0). Thus,

R(λ)−1 =
1
λ

∑

j

γ0uj ⊗ u∗jγ
∗
0 +

1√
λ

∑

j

γ0Uj ⊗ U∗
j γ∗0 + γ0Q(λ) γ∗0 .
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If vj = uj |Y and Vj = Uj |Y are the restrictions of uj and Uj to Y , respectively,
then setting L =

∑
j vj ⊗ v∗j and L̃ =

∑
j Vj ⊗ V ∗

j , we have

(A.3) R(λ)−1 =
1
λ

L +
1√
λ

L̃ + γ0Q(λ) γ∗0 .

In the following lemma we collect various facts concerning the sections {vj , Vj}
and the operator γ0Q(λ) γ∗0 .

Lemma A.3. The sections {vj , Vj} are linearly independent in L2(Y, E0) and
the kernel of R = R(0) is exactly the subspace V = span{vj , Vj} ⊂ L2(Y, E0).
The operator γ0Q(λ) γ∗0 is a self-adjoint classical elliptic pseudodifferential
operator of order −1 depending continuously on λ ∈ [0,∞).

Proof. Suppose there is a linear relation

(A.4)
∑

aj vj + bj Vj = 0, aj , bj ∈ C.

Consider the section

Φ =
∑

aj uj + bj Uj ∈ C∞(X, E).

Then Φ is an extended L2-solution of ∆X and by (A.4), Φ|Y = 0, therefore
by the uniqueness of the solutions to the Dirichlet problems on M and on Z,
Φ must be identically zero on all of X. This implies that aj = bj = 0 for each
j.

The fact that V ⊂ kerR follows almost from the definition of R, so assume
that Rϕ = 0. By definition of R we can choose a smooth bounded function
Φ = (Φ1,Φ2) ∈ C∞(M, E)⊕C∞(Z, E) such that Φ1|Y = Φ2|Y = ϕ, ∆XΦ = 0
off of Y , and

0 = Rϕ = ∂uΦ1

∣∣∣
u=0

− ∂uΦ2

∣∣∣
u=0

.

This implies that Φ defines a continuously differentiable bounded function on
all of X such that ∆XΦ = 0. By elliptic regularity, Φ must actually be smooth
on all of X and hence Φ ∈ span{uj , Uj}. Therefore, ϕ = Φ|Y ∈ V .

Finally, since near Y , the operator Q(0) has the structure of a usual classical
pseudodifferential operator of order−2 on a closed manifold [15], the argument
in Theorem A.2 can be used to show that γ0Q(λ) γ∗0 is an elliptic classical
pseudodifferential operator on Y of order −1. ¤

Theorem A.4. The operator R = R(0) is a nonnegative self-adjoint first
order elliptic classical pseudodifferential operator such that

R =

{
0 on V

A−1 on V ⊥,

where A = P⊥γ0Q(0)γ∗0P⊥.
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Proof. If A(λ) = γ0(∆X + λ)−1γ∗0 , then we know that R(λ)−1 = A(λ), so in
particular, given a smooth section ϕ ∈ V ⊥, for λ > 0 we have ϕ = R(λ)A(λ)ϕ.
Since ϕ ∈ V ⊥, we have Lϕ = 0 = L̃ϕ, so according to (A.3),

A(λ)ϕ =
(

1
λ

L +
1√
λ

L̃ + γQ(λ) γ∗0

)
ϕ = γ0Q(λ)γ∗0ϕ,

which is continuous at λ = 0. Therefore, taking λ → 0+ in the equation
ϕ = R(λ)A(λ)ϕ and using that R(λ) is continuous at λ = 0, RP = 0, and
ϕ = P⊥ϕ, we get

(Id− P )ϕ = ϕ = R(0) A(0)ϕ

= R(P + P⊥)A(0)ϕ = RP⊥A(0)P⊥ϕ = RAϕ,

where A = P⊥A(0)P⊥ = P⊥γ0Q(0)γ∗0P⊥ is, by Lemma A.3, a self-adjoint
elliptic classical pseudodifferential operator on Y of order −1. Since A van-
ishes on V , the equation (Id − P )ϕ = RAϕ holds for any smooth section ϕ,
so

(A.5) Id− P = RA

on all smooth sections on Y . Since A is a self-adjoint elliptic operator of order
−1, it has a Green’s operator, an elliptic self-adjoint operator B of order 1 on
Y such that

AB = Id−K = BA, K =
∑

j

ψj ⊗ ψ∗j ,

where {ψj} ⊂ C∞(Y, E0) is an orthonormal basis for the kernel of A. Hence,

(Id− P )B = RAB = R
(
Id−

∑

j

ψj ⊗ ψ∗j
)

= R−
∑

j

(Rψj)⊗ ψ∗j ,

which implies that

R = B − PB +
∑

j

(Rψj)⊗ ψ∗j .

Since P is a finite rank smoothing operator, the operator to the right of B in
this equation is also a finite rank smoothing operator. Thus, R differs from
B by a smoothing operator, so R is a first order elliptic pseudodifferential
operator. Since R(λ) is positive definite for λ > 0 and is continuous as a
function of λ, taking λ → 0+ shows that R = R(0) is nonnegative. Since the
kernel of R is exactly V , the equation (A.5) implies that A must in fact be
the Green’s operator of R. This completes the proof of our theorem. ¤
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